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H 0 + V and H ⊥ := H 0,⊥ + V be respectively perturbations of the free Schrödinger operators H 0 on L 2 R 2d+1 and H 0,⊥ on L 2 R 2d , d ≥ 1 with constant magnetic field of strength b > 0, and V is a complex relatively compact perturbation. We prove Lieb-Thirring type inequalities for the discrete spectrum of H and H ⊥ . In particular, these estimates give a priori information on the distribution of eigenvalues around the Landau levels of the operator, and describe how fast sequences of eigenvalues converge.

Introduction

Let x := (X ⊥ , x) ∈ R 2d+1 be the cartesian coordinates, with d ≥ 1 and X ⊥ := (x 1 , y 1 , . . . , x d , y d ) ∈ R 2d . Let b > 0 be a constant and consider the Schrödinger operators with constant magnetic field. Note that in the 2d + 1 dimensional case, i.e. H 0 , the magnetic field B : R 2d+1 → R 2d+1 is pointing in the x-direction: B = (0, . . . 0, b). So X ⊥ = (x 1 , y 1 , . . . , x d , y d ) ∈ R 2d are the variables on the plane perpendicular to the magnetic field.

The selfadjoint operators H 0,⊥ and H 0 are originally defined on C ∞ 0 R n for n = 2d and n = 2d + 1 respectively, and then closed in L 2 R n . It is well known (see e.g. [START_REF] Dimassi | Spectral asymptotics for quantum Hamiltonians in strong magnetic fields[END_REF]) that the spectrum of the operator H 0,⊥ consists of the increasing sequence of Landau levels Λ j , j ∈ N := {0, 1, 2 . . .}:

Λ 0 = bd Λ j = inf r ∈ R : r > Λ j-1 , r = b d k=1 (2s k -1), (s 1 , . . . , s d ) ∈ N d * ,
and the multiplicity of each eigenvalue Λ j is infinite. We see that for any j

(1.3) Λ j = b(d + 2j).
In the sequel we put E := {Λ j } j∈N for the set of Landau levels. Since the operator H 0 can be written in

L 2 R n = L 2 R 2d ⊗ L 2 R as H 0 = H 0,⊥ ⊗ I + I ⊗ D 2
x , the spectrum of H 0 is absolutely continuous, equals [Λ 0 , +∞), and has an infinite set of thresholds Λ j , j ∈ N.

On the domains of H 0 and H 0,⊥ , we introduce the perturbed operators (1.4) H := H 0 + V and H ⊥ := H 0,⊥ + V, where V : R n → C is a non-selfadjoint perturbation for n = 2d + 1 and n = 2d respectively. Everywhere in this article, we identify V with the multiplication operator by the function V . To simplify in the sequel, by H 0 we mean the free operators H 0 and H 0,⊥ , and by H we mean H and H ⊥ defined by (1.4). So let

N (H) := {(Hf, f ) : f ∈ dom(H), f L 2 ≤ 1}
be the numerical range of H. It is well known (see e.g. [START_REF] Davies | Linear Operators and their Spectra[END_REF], Lemma 9.3.14) that the spectrum σ(H) of H satisfies σ(H) ⊆ N (H).

Thus, if the perturbation V is bounded we can easily verify that

(1.5) σ(H) ⊆ N (H) ⊂ λ ∈ C : Reλ ≥ -V ∞ and |Imλ| ≤ V ∞ .
Assume that V is relatively compact with respect to H 0 . Then it follows from the Weyl criterion that the essential spectrum of H and H 0 coincide, so that σ ess (H) = [Λ 0 , +∞) and σ ess (H ⊥ ) = {Λ j } j∈N . However, the perturbation V may give rise to a discrete set of eigenvalues, whose only possible limiting points are on σ ess (H). This set of eigenvalues is called the discrete spectrum of H and it will be denoted by σ d (H). For a separable Hilbert space X, we denote by S q (X), q ∈ [1, +∞) the Schatten-Von Neuman classes of compact linear operators L for which the norm L q := (Tr |L| q ) 1/q is finite. Through this paper, we will consider non-selfadjoint electric potentials V bounded and satisfying the following estimates:

(1.6) |V (x)| ≤ CF (x)G(x), if n = 2d + 1 |V (X ⊥ )| ≤ CF (X ⊥ ), if n = 2d,
where C > 0 is a constant in both cases, F and G are two positive functions satisfying F ∈ L p (R n ) for p ≥ 2, and G ∈ L 2 ∩L ∞ R . Under these assumptions, we obtain some estimates of the p-Schatten norm of the sandwiched resolvents F (H 0 -λ) -1 G and F (H 0,⊥ -λ) -1 (see Lemma 3.1 and Lemma 6.1, respectively). Furthermore, we use these estimates to derive quantitative information on the set of eigenvalues, in particular on how fast sequences in σ d (H) converge to [Λ 0 , +∞) and to the Landau levels Λ j , j ∈ N. Most of known results on σ d (H) deal with selfadjoint perturbations V and investigate the asymptotic behaviour of σ d (H) near the boundary points of its essential spectrum. This behaviour has been extensively studied in case where V admits power-like or slower decay at infinity (see [START_REF] Ya | Microlocal Analysis and Precise Spectral Asymptotics[END_REF], chapters 11 and 12, [START_REF] Pushnitski | Asymptotic Density of Eigenvalue Clusters for the Perturbed Landau Hamiltonian[END_REF], [START_REF] Raikov | Eigenvalue asymptotics for the Schrödinger operator with homogeneous magnetic potential and decreasing electric potential. I. Behaviour near the essential spectrum tips[END_REF], [START_REF] Raikov | Border-line eigenvalue asymptotics for the Schrödinger operator with electromagnetic potential[END_REF], [START_REF] Sobolev | Asymptotic behavior of the energy levels of a quantum particle in a homogeneous magnetic field, perturbed by a decreasing electric field. I[END_REF], [START_REF] Tamura | Asymptotic distribution of eigenvalues for Schrödinger operators with homogeneous magnetic fields[END_REF]). In [START_REF] Raikov | Quasi-classical versus non-classical spectral asymptotics for magnetic Schrödinger operators with decreasing electric potentials[END_REF] this behaviour is studied for potentials V decaying at infinity exponentially fast or having a compact support. For Landau Hamiltonians in exterior domains see [START_REF] Kachmar | Remark on magnetic Schroedinger operators in exterior domains[END_REF], [START_REF] Persson | Eigenvalue asymptotics for the even-dimensional exterior Landau-Neumann Hamiltonian[END_REF] and [START_REF] Pushnitski | Eigenvalue Clusters of the Landau Hamiltonian in the Exterior of a Compact Domain[END_REF].

Typical example of potentials satisfying (1.6) for n = 2d + 1 is the special case of the relatively compact perturbations V : R n → C satisfying the estimate

(1.7) |V (x)| ≤ C X ⊥ -m ⊥ x -m , m ⊥ > 0, m > 1/2,
where

y := 1 + |y| 2 1/2 , y ∈ R d , d ≥ 1. Indeed, put F (x) = X ⊥ -m ⊥ x -ν and G(x) = x -m, where ν + m = m with ν > 0 and m > 1/2. Clearly for any p ≥ 2 such that pm ⊥ > 2d and pν > 1, F ∈ L p (R n ) and G ∈ L 2 ∩ L ∞ R . We can also consider perturbations V : R n → C verifying (1.8) |V (x)| ≤ C x -α , α > 1/2.
Indeed, (1.8) implies that

|V (x)| ≤ C x -(α-ν) x -ν , ν ∈ (1/2, α).
So V satisfies (1.6) for any p ≥ 2 with p(α -ν) > n. Note that (1.8) implies (1.7) with any m ∈ (1/2, α) and m ⊥ = α -m.

In the 2d-dimensional case, assumption (1.6) is satisfied for example by class of potentials V : R n → C such that

(1.9) |V (X ⊥ )| ≤ C X ⊥ -m ⊥ , m ⊥ > 0,
pm ⊥ > 2d and p ≥ 2. Under the assumption m ⊥ > 0, pm ⊥ > 2d and p ≥ 2, we can also consider power-like decaying electric potentials V : R n → C satisfying the asymptotics

(1.10) V (X ⊥ ) = v X ⊥ /|X ⊥ | |X ⊥ | -m ⊥ 1 + o(1) as |X ⊥ | → ∞,
where v is a continuous function on S 1 which is non-negative and does not vanish identically (see also [START_REF] Raikov | Eigenvalue asymptotics for the Schrödinger operator with homogeneous magnetic potential and decreasing electric potential. I. Behaviour near the essential spectrum tips[END_REF] where V is selfadjoint).

We prove our first result (see Theorem 2.1) by constructing a holomorphic function whose zeros are the eigenvalues of H, and using complex analysis methods to obtain information on these zeros. One of our main tools is a result by Borichev, Golinskii and Kupin [START_REF] Borichev | A Blaschke-type condition and its application to complex Jacobi matrices[END_REF] providing bounds on the zeros of a holomorphic function in the unit disk, in terms of its growth towards the boundary. Similar techniques are used in [START_REF] Demuth | On the discrete spectrum of non-seladjoint operators[END_REF] and [START_REF] Demuth | Eingenvalues of non-selfadjoint operators: a comparaison of two approaches[END_REF] for non-magnetic Schrödinger operators H with σ ess (H) = [0, +∞), and Jacobi matrices J with σ ess (J) = [-2, 2]. In both situations, the essential spectrum has a finite number of thresholds (0 for the first and -2, 2 for the second). Since in our case σ ess (H) = [Λ 0 , +∞) with an infinite set of thresholds Λ j , we are led to introduce appropriate modifications to the above techniques to prove our results. More precisely, we will obtain two types of estimates. First, we bound the sums depending on parts of σ d (H) concentrated around a Landau level (see Proposition 5.1) using the Schwarz-Christoffel formula. Second, we get global estimates summing up the previous bounds with appropriate weights. This is to compare to results of [START_REF] Demuth | On the discrete spectrum of non-seladjoint operators[END_REF] and [START_REF] Demuth | Eingenvalues of non-selfadjoint operators: a comparaison of two approaches[END_REF], where global estimates were obtained directly by mapping conformally C \ [0, +∞) and C \ [-2, 2] onto the unit disk respectively (see also [START_REF] Borichev | A Blaschke-type condition and its application to complex Jacobi matrices[END_REF]). To prove our second main result (see Theorem 2.2), we reason similarly to [START_REF] Golinskii | On discrete spectrum of complex perturbations of finite band Schrödinger operators[END_REF]; in particular, we use a recent result by Hansmann [START_REF] Hansmann | Variation of discrete spectra for non-selfadjoint perturbations of selfadjoint operators[END_REF] and a technical distorsion Lemma (see Lemma 6.2).

The paper is organized as follows. In Section 2, we formulate our main results and we discuss some of their immediate consequences on the discrete spectrum of the operators H and H ⊥ defined by (1.4). Sections 3, 4 and 5 are devoted to the (2d + 1)-Schrödinger operators H 0 and H. In Section 3, we establish estimates on appropriate sandwiched resolvents. Section 4 contains auxiliary material as the construction of a holomorphic function whose zeros coincide with the eigenvalues of H in C \ [Λ 0 , +∞), and the presentation of appropriate tools of complex analysis. In Section 5, we prove a local bound on the eigenvalues of the operator H (see Proposition 5.1) and derive the proof of Theorem 2.1 from it. Section 6 is devoted to the 2d-Schrödinger operators H 0,⊥ and H ⊥ , and we prove Theorem 2.2.

Main Results

In this section and elsewhere in this paper, for any r ∈ R we denote by r + := max (r, 0) and by [r] its integer part.

2.1. The 2d + 1 dimensional case. We obtain a Lieb-Thirring type inequality for the discrete spectrum of the (2d + 1)-Schrödinger operator H defined by (1.4). The following theorem is proved in Section 5.

Theorem 2.1. Let H = H 0 + V with V satisfying (1.6) for n = 2d + 1, d ≥ 1. Assume that F ∈ L p R n with p ≥ 2 d 2 + 2 and G ∈ L 2 ∩ L ∞ R . Define (2.1) K := F p L p G L 2 + G L ∞ p 1 + V ∞ d+ p 2 + 3 2 +ε .
for 0 < ε < 1. Then we have

(2.2) λ ∈ σ d (H) dist λ, [Λ 0 , +∞) p 2 +1+ε dist(λ, E) ( p 4 -1+ε)+ (1 + |λ|) γ ≤ C 0 K,
where E is the set of Landau levels defined by (1.3), γ > d+ Note that in (2.2) and elsewhere in this article, each eigenvalue is summed accordingly to its algebraic multiplicity. Since for any τ > 0 with |λ| ≥ τ we have (2.3)

1 1 + |λ| = 1 |λ| 1 1 + |λ| -1 ≥ 1 |λ| 1 1 + τ -1
, the following holds.

Corollary 2.1. Under the assumptions and the notations of Theorem 2.1, the following bound holds for any τ > 0

(2.4) λ ∈ σ d (H) |λ| ≥ τ dist λ, [Λ 0 , +∞) p 2 +1+ε dist(λ, E) ( p 4 -1+ε)+ |λ| γ ≤ C 0 1 + 1 τ γ K.
These inequalities contain certain information about the discrete spectrum of H. Let us discuss some of their immediate consequences.

The finiteness of the sum on LHS of (2.2) has corollaries regarding sequences (λ k ) of isolated eigenvalues converging to some λ * ∈ σ ess (H) = [Λ 0 , +∞). Taking a subsequence, we can assume that one of the following options holds.

(i) λ * ∈ [Λ 0 , +∞) \ E. (ii) λ * ∈ E.
In case (i), since the sequence dist(λ k , E) k is positive and does not converge to 0, (2.2) implies that (2.5)

k |Im λ k | p 2 +1+ε < ∞.
In case (ii), we consider the λ k tending to a Landau level non-tangentially i.e. |Re λ k -λ * | ≤ C |Im λ k | with some C > 0 and such that dist(λ k , E) is small enough. We then can claim that (2.2) implies the estimate

(2.6) k dist(λ k , E) p 2 +1+ε+( p 4 -1+ε)+ < ∞.
So estimates (2.5) and (2.6) allows us to claim that a priori the eigenvalues are less densely distributed near Landau levels than elsewhere in the essential spectrum of the operator H.

Let us give some remarks about the three-dimensional case on selfadjoint perturbations V satisfying the condition

(2.7) V ≤ 0, C -1 x -α ≤ |V (x)| ≤ C x -α , α > 0 with some constant C > 1. Let (λ k ) be a sequence of eigenvalues of H accumulating to Λ 0 from the left. Suppose that it describes all eigenvalues λ ∈ σ d (H)∩(Λ 0 -r, Λ 0 )
with some r > 0. Under some supplementary regularity assumptions on V (see [START_REF] Tamura | Asymptotic distribution of eigenvalues for Schrödinger operators with homogeneous magnetic fields[END_REF], Theorem 1), we have

(2.8) k dist λ k , Λ 0 ) p = r 0 pλ p-1 N Λ 0 -λ, H dλ < ∞ for p > 3/α -1/2 if α < 2 and p(α -1) > 1 if α > 2.
Here N Λ 0 -λ, H is the number of eigenvalues of H less than Λ 0 -λ repeated according to their multiplicity. Hence in (2.6), conditions on p are not optimal at least for selfadjoint perturbations V of definite sign as above. Indeed, it can be checked that if the potential V satisfies (2.7) with α > 1/2 this is to compare to (1.8) , then p/2

+ 1 + ε > 3/α -1/2 if α < 2 and p/2 + 1 + ε > 1/(α -1) if α > 2.
Theorem 2.1 gives also information about divergent sequences of eigenvalues. For example if (λ k ) is a sequence of eigenvalues which stays bounded from [Λ 0 , +∞), i.e.

(2.9) dist λ k , [Λ 0 , +∞) ≥ η
for some η > 0 and all k, then (2.4) implies that (2.10)

k 1 |λ k | γ < ∞,
where γ > d + 3 2 . This means that |λ k | converge to infinity sufficiently fast.

2.2.

The 2d dimensional case. The following theorem is proved in Section 6 and concerns the 2d-Schrödinger operator H ⊥ defined by (1.4). We obtain a Lieb-Thirring type inequality for the discrete spectrum of

H ⊥ . Theorem 2.2. Let H ⊥ = H 0,⊥ + V with V satisfying (1.6) for n = 2d, d ≥ 1. Assume that F ∈ L p R n with p ≥ 2 d 2 + 2.
Then the following holds

(2.11) λ∈σ d (H ⊥ ) dist λ, E p 1 + |λ| 2p ≤ C 1 F p L p 1 + V ∞ 2p ,
where E is the set of Landau levels defined by (1. Since for any τ > 0 with |λ| ≥ τ the lower bound (2.3) holds, we have the following corollary.

Corollary 2.2. Under the assumptions and the notations of Theorem 2.2, the following bound holds for any τ > 0 (2.12)

λ ∈ σ d (H ⊥ ) |λ| ≥ τ dist λ, E p |λ| 2p ≤ C 1 1 + 1 τ 2p F p L p 1 + V ∞ 2p .
Let us have a look at some immediate consequences of these inequalities on the discrete spectrum of the operator H ⊥ . The finiteness of the sum on LHS of (2.11) has consequences regarding sequences (λ k ) of isolated eigenvalues converging to some λ * ∈ σ ess (H) = E. Indeed, by (2.11)

(2.13) k dist λ k , E p < ∞,
which a priori means that the accumulation of eigenvalues near the Landau levels decreases with decreasing p.

Note that if the perturbation V satisfies (1.10), the finiteness of the sum in (2.13) hols for p > max (2d/m ⊥ , 2), m ⊥ > 0. However, it is convenient to mention that in the two-dimensional case i.e. d = 1, if V ≥ 0 is selfadjoint and satisfies (1.10) with m ⊥ > 1, the condition p > max (2/m ⊥ , 1) is optimal for the finiteness of the sum in (2.13). This is a direct consequence of Theorem 2.6 of [START_REF] Raikov | Eigenvalue asymptotics for the Schrödinger operator with homogeneous magnetic potential and decreasing electric potential. I. Behaviour near the essential spectrum tips[END_REF], assuming some supplementary regularity assumptions on V . Indeed if λ ′ ∈ (Λ j , Λ j+1 ), j ≥ 0 and (λ k ) an infinite sequence of discrete eigenvalues of H ⊥ accumulating to the Landau level Λ j from the right, then

(2.14) k dist λ k , Λ j ) p = λ ′ -Λj 0 pλ p-1 N Λ j + λ, λ ′ , H ⊥ dλ < ∞ if and only if pm ⊥ > 2.
The quantity N Λ j +λ, λ ′ , H ⊥ is the number of eigenvalues of H ⊥ in (Λ j +λ, λ ′ ) repeated according to their multiplicity. Analogous result holds if we consider the eigenvalues of H ⊥ = H 0,⊥ -V accumulating to Λ j from the left. Namely, (2.14) 

remains valid if we replace N Λ j + λ, λ ′ , H ⊥ by N λ ′′ , Λ j -λ, H ⊥ with some λ ′′ ∈ (Λ j-1 , Λ j ) if j > 0, or by N Λ j -λ, H ⊥ if j = 0 with N Λ j -λ, H ⊥ defined as in (2.8).
Also in the two-dimensional case and selfadjoint perturbations V ∈ C R 2 , R satisfying (1.9) with m ⊥ > 1, we have the asymptotic property (2.15)

k dist λ k , Λ j ) p = o j -(p-1)/2 , j -→ ∞,
for any p ≥ 1 such that p(m ⊥ -1) > 1. This is a direct consequence of Lemma 1.5 and Theorem 1.6 of [START_REF] Pushnitski | Asymptotic Density of Eigenvalue Clusters for the Perturbed Landau Hamiltonian[END_REF]. For Λ j defined by (1.3) and λ ∈ C \ [Λ 0 , +∞), we have

(3.2) (H 0 -λ) -1 = j∈N p j ⊗ D 2 x + Λ j -λ -1
, where p j is the orthogonal projection onto ker (H 0,⊥ -Λ j ). Recall that for z ∈

C \ [0, +∞), the operator D 2 x -z -1
admits the integral kernel

(3.3) ie i √ z|x-x ′ | 2 √ z , if the branch of √ z is chosen so that Im √ z ∈ C + .
In the sequel, we assume that the perturbation V satisfies assumption (1.6). We have the following lemma.

Lemma 3.1. Let n = 2d + 1, d ≥ 1 and λ ∈ C \ [Λ 0 , +∞). Assume that F ∈ L p R n with p ≥ 2 d 2 + 2 and G ∈ L 2 ∩ L ∞ R . Then there exists a constant C = C(p, b, d) such that (3.4) F (H 0 -λ) -1 G p p ≤ C(1 + |λ|) d+ 1 2 K 1 dist λ, [Λ 0 , +∞) p 2 dist(λ, E) p 4
, where E is the set of Landau levels defined by (1.3) and

(3.5) K 1 := F p L p G L 2 + G L ∞ p .
Proof. It suffices to prove the case λ ∈ C + . Constants are generic (changing from a relation to another).

(i): We show that (3.4) holds if p is even. Let us first prove that if Re λ < Λ 0 , then

(3.6) F (H 0 -λ) -1 G p p ≤ C(1 + |λ|) d+ 1 2 K 1 dist(λ, E) 3p 4
.

Using the identity

(H 0 -λ) -1 -H 0 + 1 + |λ| -1 = H 0 + 1 + |λ| -1 (1 + |λ| + λ)(H 0 -λ) -1 ,
one gets

(H 0 -λ) -1 = H 0 + 1 + |λ| -1 (1 + |λ| + λ)(H 0 -λ) -1 + I .
Then

F (H 0 -λ) -1 G p p ≤ F H 0 + 1 + |λ| -1 p p × (1 + |λ| + λ)(H 0 -λ) -1 + I G p (3.7)
Since p is even, we can apply the diamagnetic inequality for the S p class operators (Theorem 2.3 of [START_REF] Avron | Schrödinger operators with magnetic fields. I. General interactions[END_REF] and Theorem 2.13 of [START_REF] Simon | Trace ideals and their applications[END_REF]). We get

F H 0 + 1 + |λ| -1 p p ≤ F (-∆ + 1 + |λ|) -1 p p . By Theorem 4.1 of [26], F (-∆ + 1 + |λ|) -1 p p ≤ C(p) F p L p | • | 2 + 1 + |λ| -1 p L p . Since | • | 2 + 1 + |λ| -1 p L p = C ∞ 0 r 2d dr (r 2 + 1 + |λ|) p = C(p) (1 + |λ|) d+ 1 2 (1 + |λ|) p , then (3.8) F H 0 + 1 + |λ| -1 p p ≤ C(p) (1 + |λ|) d+ 1 2 (1 + |λ|) p F p L p .
Otherwise, (3.9)

(1 + |λ| + λ)(H 0 -λ) -1 + I G p ≤ C 1 + |λ| (H 0 -λ) -1 G + G L ∞ p .
By (3.2), we have

(H 0 -λ) -1 G = j∈N p j ⊗ D 2 x + Λ j -λ -1 G direct sum ≤ C sup j D 2 x + Λ j -λ -1
G .

(3.10) One has

D 2 x + Λ j -λ -1 G ≤ D 2 x + Λ j -λ -1 G 2 = G D 2 x + Λ j -λ -1 2 . (3.11) 
As above, by Theorem 4.1 of [START_REF] Simon | Trace ideals and their applications[END_REF],

G D 2 x + Λ j -λ -1 2 2 ≤ C G 2 L 2 | • | 2 + Λ j -λ -1 2 L 2 (R)
.

Since Re λ < Λ 0 , we have for any r ∈ R

r 2 + Λ j -λ 2 ≥ r 4 + |λ -Λ j | 2 .
This implies that

| • | 2 + Λ j -λ -1 2 L 2 ≤ | • | 4 + |λ -Λ j | 2 -1 L 1 (R) ≤ C |λ -Λ j | 3 2 
, so that

(3.12) (H 0 -λ) -1 G ≤ C G L 2 dist(λ, E) 3 4 
.

By (3.9) and (3.12), we have 

(1 + |λ| + λ)(H 0 -λ) -1 + I G p ≤ C G L 2 1 + |λ| dist(λ, E) 3 4 + G L ∞ p ≤ C(p, b, d) G L 2 + G L ∞ p 1 + |λ| p dist(λ, E) 3p 4 , (3.13 
F (H 0 -λ) -1 G p p ≤ C(1 + |λ|) d+ 1 2 K 1 |Im λ| p 2 dist(λ, E) p 4 . From (3.11), we compute the Hilbert-Schmidt norm of G D 2 x + Λ j -λ -1
with the help of its integral kernel (3.3). Thus for Im λ -Λ j > 0, we have

G D 2 x + Λ j -λ -1 2 2 = C G 2 L 2 Im λ -Λ j |λ -Λ j | . Now from Imλ = Im(λ -Λ j ) = 2Im λ -Λ j Re λ -Λ j ,
one deduces that

G D 2 x + Λ j -λ -1 2 2 = C G 2 L 2 Re λ -Λ j |Imλ||λ -Λ j | ≤ C G 2 L 2 |Imλ|dist(λ, E) 1 2 
.

( )

(H 0 -λ) -1 G ≤ C G L 2 |Imλ| 1 2 dist(λ, E) 1 4 
.

Finally by (3.9) and (3.16), (ii): We prove that (3.14) holds for any p ≥ 2 d 2 + 2 using interpolation method. Clearly if p is as above, there exists even integers p 0 < p 1 such that p ∈ (p 0 , p 1 ) with p 0 > d + 1/2. Now choose s ∈ (0, 1) such that 1 p = 1-s p0 + s p1 . For i = 0, 1 consider the operator

(1 + |λ| + λ)(H 0 -λ) -1 + I G p ≤ C(p) G L 2 + G L ∞ p 1 + |λ| p |Imλ| p 2 dist(λ, E)
L pi R n ∋ F T -→ F (H 0 -λ) -1 G ∈ S pi .
By (i) proved above, estimate (3.4) holds for any F ∈ L pi R n . Let C i = C(p i , b, d) be the constant in (3.4) and define .

C(λ, p i , d) := C 1 p i i (1 + |λ|) d+ 1 2 1 p i G L 2 + G L ∞ dist λ, [Λ 0 , +∞) 1 2 dist(λ, E)
Then by (3.4) for (i) proved above, we have T ≤ C(λ, p i , d) for any i = 0, 1. Using the Riesz-Thorin Theorem (see e.g [START_REF] Folland | Real analysis Modern techniques and their applications[END_REF] Subsection 5 of Chapter 6, [START_REF] Riesz | Sur les maxima des formes bilinéaires et sur les fonctionnelles linéaires[END_REF], [START_REF] Thorin | An extension of a convexity theorem due to M. Riesz[END_REF], [START_REF] Lunardi | Interpolation Theory[END_REF] Chapter 2), we can interpolate between p 0 and p 1 to get the extension

T : L p R 2d+1 -→ S p with T ≤ C(λ, p 0 , d) 1-s C(λ, p 1 , d) s ≤ C(p, b, d) (1 + |λ|) d+ 1 2 1 p G L 2 + G L ∞ dist λ, [Λ 0 , +∞) 1 2 dist(λ, E) 1 4 
.

In particular for any F ∈ L p R n , we have

(3.18) T (F ) p ≤ C(p, b, d) (1 + |λ|) d+ 1 2 1 p G L 2 + G L ∞ dist λ, [Λ 0 , +∞) 1 2 dist(λ, E) 1 4 
F L p , which implies estimate (3.4). This concludes the proof of the lemma.

Now let λ 0 be such that

(3.19) min |Imλ 0 |, dist λ 0 , N (H) ≥ 1 + V ∞ .
We have the following lemma.

Lemma 3.2. Assume that λ 0 satisfies condition (3.19). Under the assumptions of Lemma 3.1, there exists a constant C = C(p) such that

(3.20) F (H -λ 0 ) -1 G p p ≤ C(1 + |λ 0 |) d+ 1 2 K 2 ,
where the constant K 2 is defined by

(3.21) K 2 := F p L p G p L ∞ .
Proof. Constants are generic (changing from a relation to another). From

(H -λ 0 ) -1 = (H 0 -λ 0 ) -1 (H 0 -λ 0 )(H -λ 0 ) -1 , we deduce that F (H -λ 0 ) -1 G p p ≤ F (H -λ 0 ) -1 p p G p L ∞ ≤ F (H 0 -λ 0 ) -1 p p (H 0 -λ 0 )(H -λ 0 ) -1 p G p L ∞ . (3.22) 
Using similar method to that of the proof of Lemma 3.1, one can show that 

(3.23) F (H 0 -λ 0 ) -1 p p ≤ C(1 + |λ 0 |) d+ 1 2 F p L p |Imλ 0 | p . So (
F (H 0 -λ 0 ) -1 p p ≤ C(1 + |λ 0 |) d+ 1 2 F p L p . Otherwise, we have (H 0 -λ 0 )(H -λ 0 ) -1 = I -V (H -λ 0 ) -1 ≤ 1 + V ∞ (H -λ 0 ) -1 .
By Lemma 9.3.14 of [START_REF] Davies | Linear Operators and their Spectra[END_REF],

(H -λ 0 ) -1 ≤ 1 dist λ 0 , N (H) .
The assumption on λ 0 implies then that Let λ ∈ C \ [Λ 0 , +∞). We have the identity

(3.25) (H 0 -λ 0 )(H -λ 0 ) -1 ≤ 2.
(4.1) (H -λ)(H 0 -λ) -1 = I + V (H 0 -λ) -1 .
LHS of (4. 

T (λ) = V (H 0 -λ) -1 , it follows for λ ∈ C \ [Λ 0 , +∞) that (4.3) λ ∈ σ d (H) ⇔ I + T (λ) is not invertible.
Otherwhise, assumption (1.6) for n = 2d + 1 on the potential V implies that for any x = (X ⊥ , x) ∈ R n , V (x) = VF (x)G(x) where V is a bounded operator. Thus, as in proof of Lemma 3.1, we can show that T (λ) ∈ S p for any p ≥ 2. Let det ⌈p⌉ I +T (λ) be the regularized determinant defined by

(4.4) det ⌈p⌉ I + T (λ) := µ∈σ T (λ)   (1 + µ) exp   ⌈p⌉-1 k=1 (-µ) k k     ,
where ⌈p⌉ := min{n ∈ N : n ≥ p}. Hence (4.3) can be rewritten as (see e.g. [START_REF] Simon | Trace ideals and their applications[END_REF], Chapter 9)

(4.5) λ ∈ σ d (H) ⇔ det ⌈p⌉ I + T (λ) = 0. Defining (4.6) f (λ) := det ⌈p⌉ I + T (λ) , we obtain that f is holomorphic on C \ [Λ 0 , +∞) and (4.7) σ d (H) = {λ ∈ C \ [Λ 0 , +∞) : f (λ) = 0}.
Moreover, the order of λ as a zero of f coincides with its algebraic multiplicity as an eigenvalue of H.

We conclude this subsection by the following bound on f (λ). 

(4.8) log f (λ) f (λ0) ≤ ΓpC(1 + |λ|) d+ 1 2 K1 dist λ, [Λ0, +∞) p 2 dist(λ, E) p 4 + ΓpC(1 + |λ0|) d+ 1 2 K1,
where Γ p is some positive constant and K 1 is defined by (3.5).

Proof. First, write f (λ)

f (λ0) = f (λ) • f (λ 0 ) -1 . Since f (λ 0 ) -1 = det ⌈p⌉ I + V (H 0 -λ 0 ) -1 -1 ,
then passing to the inverse in (4.1), we get

f (λ 0 ) -1 = det ⌈p⌉ I -V (H -λ 0 ) -1 .
This implies that

f (λ) f (λ 0 ) = det ⌈p⌉ I + V (H 0 -λ) -1 • det ⌈p⌉ I -V (H -λ 0 ) -1 = det ⌈p⌉ I + VF (H 0 -λ) -1 G • det ⌈p⌉ I -VF (H -λ 0 ) -1 G . (4.9) 
Otherwise, for any A ∈ S ⌈p⌉ , we have the estimate (see e.g. [START_REF] Simon | Trace ideals and their applications[END_REF])

det ⌈p⌉ (I + A) ≤ e Γp A p p .
Thus using (4.9), we get (4.10)

f (λ) f (λ 0 ) ≤ e C Γp( F (H0-λ) -1 G p p + F (H-λ0) -1 G p p ) .
So Lemma 3.1 and Lemma 3.2 together with the inequality K 2 < K 1 give (4.8).

In the sequel, we want to study the zeros of f (λ) in C \ [Λ 0 , +∞). Since our tool will be a theorem on zeros of holomorphic function in the unit disk D := {|z| < 1}, we have to transform the problem from C \ [Λ 0 , +∞) to D. More precisely, we transform locally the problem to D using a conformal map.

4.2.

The conformal map ϕ(z). Let Π = R(λ 1 , λ 2 , λ 3 , λ 4 ) be a rectangle (or a square) with vertices λ 1 , λ 4 ∈ R, and λ 2 , λ 3 ∈ C + or λ 2 , λ 3 ∈ C -(see the figure below). It is well known (see e.g. [START_REF] Lavrentiev | Méthodes de la théorie des fonctions d'une variable complexe[END_REF] Theorem 1, p. 176), that there exists a conformal map ϕ : D → Π given by Schwarz-Christoffel formula. Denote by

T := ∂D = {z ∈ C : |z| = 1},
and let z j ∈ T be the points such that ϕ(z j ) = λ j , for 1 ≤ j ≤ 4. Since Π is a rectangle, the map ϕ satisfies

(4.11) ϕ ′ (z) = C (z -z 1 ) 1 2 (z -z 2 ) 1 2 (z -z 3 ) 1 2 (z -z 4 ) 1 2
where C is a constant.

× • z 4 • z 1 • z 2 • z 3 L 2,z L 4,z L 1,z L 3,z R λ 4 λ 1 λ 3 λ 2 L 1,λ L 3,λ L 2,λ L 4,λ z λ ϕ : D → Π ϕ -1
We write λ = ϕ(z) = λ(z) or z = ϕ -1 (λ) = z(λ). We have ϕ(L j,z ) = L j,λ and ∂Π = j L j,λ . We set also F z := {z j } j and F λ := {λ j } j so that ϕ(F z ) = F λ .

Elsewhere in this paper, P ≃ Q means that there exist constants C 1 , C 2 such that (4.12)

0 < C 1 ≤ P Q ≤ C 2 < ∞.
Lemma 4.2. For z ∈ D and λ ∈ Π, the following holds:

dist(λ, ∂Π) ≃ dist(z, T) 1 dist(z, F z ) 1 2
or equivalently

dist(z, T) ≃ dist(λ, ∂Π) dist(λ, F λ ).
Proof. Follows directly from Corollary 1.4 of [START_REF] Ch | Boundary Behavior of Conformal Maps[END_REF] and (4.11).

In the sequel, we are interested in the same quantities where dist(z, T) and dist(λ, ∂Π) are respectively replaced by dist(z, L 1,z ) and dist(λ, L 1,λ ). As in Lemma 4.2, we have

(4.13) dist(λ, L 1,λ )≃ dist(z, L 1,z ) 1 dist z, {z 1 , z 4 } 1 2 dist(z, L 1,z )≃ dist(λ, L 1,λ ) dist λ, {λ 1 , λ 4 } .

4.3.

A theorem of Borichev, Golinskii and Kupin. The following result is proved in [START_REF] Borichev | A Blaschke-type condition and its application to complex Jacobi matrices[END_REF], and gives a bound on zeros of a holomorphic function in D in terms of its growth near the boundary. Assume that h satisfies a bound of the form

log |h(z)| ≤ K 0 1 (1 -|z|) α N j=1 1 |z -ξ j | βj ,
where ξ j ∈ T and α, β j ≥ 0. Let τ > 0. Then the zeros of h satisfy the inequality

{h(z)=0} (1 -|z|) α+1+τ N j=1 |z -ξ j | (βj-1+τ )+ ≤ C α, {β j }, {ξ j }, τ K 0 .

Bounds on eigenvalues of H

Local bound.

Let us recall that the Λ j are the Landau levels given by (1.3). In this subsection, we prove a bound on λ ∈ σ d (H) in a rectangle Π j containing one Landau level Λ j (see the figure below). We treat only the case λ ∈ σ d (H) ∩ C + . The same is true for λ ∈ σ d (H) ∩ C -by considering rectangles Π j in the half plane C -. For simplicity in the sequel, by λ 0 we mean λ 0,j ∈ Π j and we assume that it satisfies condition (3.19).

R λ 0 Π j λ 4 λ 1 λ 3 λ 2 L 1,λ S 1 L 3,λ S 3 L 2,λ S 2 L 4,λ S 4 • Λ j • Λ j+1 • Λ j-1 V ∞ || || || ||
We have ϕ j (1) = Λ j and ϕ j (0) = λ 0 where ϕ j : D → Π j is the conformal map defined in the Subsection 4.2 for the rectangle Π j . The four triangles S k , 1 ≤ k ≤ 4 form a partition of the rectangle Π j . Let f be the function defined by (4.6) and define h j : D → C by (5.1) h j (z) = f (ϕ j (z)) and hj (z) = h j (z) h j (0) .

Then hj is holomorphic in the unit disk and (4.7) implies that (5.2)

σ d (H) ∩ Π j = {ϕ j (z) ∈ Π j : z ∈ D : hj (z) = 0}.
We have the following lemma.

Lemma 5.1. Under the assumptions of Lemma 4.1, for any z ∈ D,

(5.3) log | hj (z)| ≤ C(p, b, d, j)K 3 dist z, T p 2 |z -1| p 4
, where the constant C(p, b, d, j) satisfies the asymptotic property

(5.4) C(p, b, d, j) ∼ j→∞ j d+ 1 2 ,
and the constant K 3 is defined by

(5.5) K 3 := F p L p G L 2 + G L ∞ p 1 + V ∞ d+ 1 2 .
Proof. Constants are generic (changing from a relation to another). Let K 1 be the constant defined by (3.5). For λ, λ 0 = λ 0,j ∈ Π j with λ 0 satisfying condition (3.19), using (1.3) we get the inequality

Γ p C(p, b, d)K 1 (1 + |λ|) d+ 1 2 dist λ, [Λ 0 , +∞) p 2 dist(λ, E) p 4 + Γ p C(p)K 1 (1 + |λ 0 |) d+ 1 2 ≤ Γ p C(p, b, d)K 3 (1 + j) d+ 1 2 dist λ, L 1,λ p 2 |λ -Λ j | p 4 + Γ p C(p)K 3 (1 + j) d+ 1 2 .
(

Since ϕ j (z) = λ and ϕ j (1) = Λ j , (4.13) (or Lemma 4.2) implies that

Γ p C(p, b, d)K 3 (1 + j) d+ 1 2 dist λ, L 1,λ p 2 |λ -Λ j | p 4 ≃ C(p, d, j)K 3 dist z, {z 1 , z 4 } p 4 dist z, T p 2 |z -1| p 4 ≤ C(p, d, j)K 3 dist z, T p 2 |z -1| p 4
.

This together with (5.6) show that for any λ ∈ Π j ,

Γ p C(p, b, d)K 1 (1 + |λ|) d+ 1 2 dist λ, [Λ 0 , +∞) p 2 dist(λ, E) p 4 + Γ p C(p)K 1 (1 + |λ 0 |) d+ 1 2 ≤ C(p, b, d, j)K 3 dist z, T p 2 |z -1| p 4 + C(p, d, j)K 3 ≤ C(p, b, d, j)K 3 dist z, T p 2 |z -1| p 4 . (5.7) 
Now (5.3) follows from Lemma 4.1, (5.1) and (5.7).

Applying Theorem 4.1 to hj satisfying (5.3) in Lemma 5.1, for any 0 < ε < 1

(5.8) { hj (z)=0} dist z, T p 2 +1+ε |z -1| ( p 4 -1+ε)+ ≤ C(p, d, j, ε)K 3 .
Equivalently, using Lemma 4.2, estimate (5.8) can be rewritten in Π j as (5.9)

λ∈σ d (H)∩Π j dist λ, ∂Πj) dist λ, F λ ) p 2 +1+ε |λ -Λj | ( p 4 -1+ε) + ≤ C(p, d, j, ε)K3.
where the constant C(p, d, j, ε) satisfies again the asymptotic property (5.4) above.

In the sequel we want to derive from (5.9) a bound of the quantity (5.10)

λ∈σ d (H)∩Πj dist λ, [Λ 0 , +∞) p 2 +1+ε dist(λ, E) ( p 4 -1+ε)+ .
Note that in (5.9), we can have accumulation of λ ∈ σ d (H) on the edges L 2,λ and L 4,λ of the boundary ∂Π j of Π j . This is not due to the nature of the problem, but to the method we use. To treat this problem appearing in (5.9), the idea is to deal for any rectangle Π j with its magnified version Π ′ j in the horizontal direction as in the figure below, where the constant δ is such that 0 < δ < b.

R λ 0 Π j λ ′ 4 λ ′ 1 λ ′ 3 λ ′ 2 L ′ 1,λ S ′ 1 L ′ 3,λ S ′ 3 L ′ 2,λ S ′ 2 L ′ 4,λ S ′ 4 • Λ j • Λ j-1 • Λ j+1 Π j+1 Π ′ j Π ′ j+1 δ δ δ V ∞ || || || || ||
In the figure above, we introduce a partition of the rectangle Π ′ j by the four triangles S ′ k , 1 ≤ k ≤ 4. Applying (5.9) to the rectangle Π ′ j , we get

λ∈σ d (H)∩Π ′ j dist λ, ∂Π ′ j dist λ, F λ ′ p 2 +1+ε |λ -Λ j | ( p 4 -1+ε)+ ≤ C( p, b, d, j, ε)K 3 . 
Since Π j ⊂ Π ′ j , then the sum taken on Π j gives

(5.11)

λ∈σ d (H)∩Π j dist λ, ∂Π ′ j dist λ, F λ ′ p 2 +1+ε |λ -Λj | ( p 4 -1+ε) + ≤ C(p, b, d, j, ε)K3.
Otherwise, since there is no eigenvalues in the sector S ′ 3 , we have

λ∈σ d (H)∩Πj dist λ, ∂Π ′ j dist λ, F λ ′ p 2 +1+ε |λ -Λ j | ( p 4 -1+ε)+ = λ∈σ d (H)∩Πj ∩S ′ 1 dist λ, L ′ 1,λ dist λ, {λ ′ 1 , λ ′ 4 } p 2 +1+ε |λ -Λ j | ( p 4 -1+ε)+ + λ∈σ d (H)∩Πj ∩S ′ 2 dist λ, L ′ 2,λ dist λ, {λ ′ 4 , λ ′ 3 } p 2 +1+ε |λ -Λ j | ( p 4 -1+ε)+ + λ∈σ d (H)∩Πj ∩S ′ 4 dist λ, L ′ 4,λ dist λ, {λ ′ 2 , λ ′ 1 } p 2 +1+ε
|λ -Λ j | ( p 4 -1+ε)+ .

(5.12) 

(1 + j) γ λ∈σ d (H)∩Πj dist λ, [Λ 0 , +∞) p 2 +1+ε dist(λ, E) ( p 4 -1+ε)+ ≤ C(p, b, d, j, ε) (1 + j) γ K.
(5.20)

Taking in (5.20) the sum with respect to j, we get (1 + j) γ K.

(5.21)

By the above choice of γ, RHS in (5.21) is convergent so that

(5.22) j C(p, b, d, j, ε) (1 + j) γ K = C(p, b, d, ε)K.
Thus using the fact that for any λ ∈ Π j we have 1 + j ≃ 1 + |λ|, we get

(5.23)

λ∈σ d (H)∩C + dist λ, [Λ0, +∞) p 2 +1+ε dist(λ, E) ( p 4 -1+ε) + (1 + |λ|) γ ≤ C0K
where C 0 = C(p, b, d, ε). Since (5.23) is true for λ ∈ σ d (H) ∩ C -by considering rectangles Π j in the half plane C -, then finally we have (5.24)

λ∈σ d (H) dist λ, [Λ0, +∞) p 2 +1+ε dist(λ, E) ( p 4 -1+ε) + (1 + |λ|) γ ≤ C0K.
This concludes the proof of Theorem 2.1.

6. About the dimension 2d, d ≥ 1

Consider the Schrödinger operator H 0,⊥ defined by (1.1). In this section, we investigate the discrete spectrum σ d (H ⊥ ) of the perturbed operator H ⊥ defined by (1.4), and we assume that the electric potential V satisfies assumption (1.6) for n = 2d.

6.1. Estimate of the resolvent. Recall that the spectrum σ(H 0,⊥ ) of H 0,⊥ is a discrete set and consists of the Landau levels Λ j defined by (1.3), j ∈ N. So for any λ ∈ C \ σ(H 0,⊥ ) the resolvent of H 0,⊥ is given by (6.1)

(H 0,⊥ -λ) -1 = j∈N (Λ j -λ) -1 p j ,
where p j is the orthogonal projection onto ker (H 0,⊥ -Λ j ). 

F (H 0,⊥ -λ) -1 p p ≤ C(1 + |λ|) d F p L p dist(λ, E) p .
Proof. Let λ ∈ C\ E. We first show that (6.2) holds if p is even. Using the identity

(H 0,⊥ -λ) -1 = H 0,⊥ + 1 + |λ| -1 (1 + |λ| + λ)(H 0,⊥ -λ) -1 + I , one gets 
F (H 0,⊥ -λ) -1 p p ≤ F H 0,⊥ + 1 + |λ| -1 p p × (1 + |λ| + λ)(H 0,⊥ -λ) -1 + I p . (6.3) 
Hence if p is even, (6.2) follows as in the proof of Lemma 3.1 from (3.7) to (3.10), where the operator H 0 is replaced by H 0,⊥ , D 2

x is removed and G = I. To prove that (6.2) holds for any p ≥ 2 d 2 +2, we interpolate by the Riesz-Thorin Theorem as in (ii) of the proof of Lemma 3.1. This concludes the proof. 6.2. Proof of Theorem 2.2. Constants are generic (changing from a relation to another). The first important tool of the proof is the following result of Hansmann (see [START_REF] Hansmann | Variation of discrete spectra for non-selfadjoint perturbations of selfadjoint operators[END_REF], Theorem 1). Let A 0 = A * 0 be a bounded selfadjoint operator on a Hilbert space, A a bounded operator such that A -A 0 ∈ S p , p > 1. Then (6.4)

λ∈σ d (A) dist λ, σ(A 0 ) p ≤ C A -A 0 p p ,
where C is an explicit constant which depends only on p. Now let us fix a constant µ defined by (6.5)

µ := -V ∞ -1.
Since H 0,⊥ and H ⊥ are not bounded operators, to apply (6.4) we will consider the bounded resolvents (6.6) A 0 (µ) := (H 0,⊥ -µ) -1 and A(µ) := (H ⊥ -µ) -1 .

The assumption (1.6) on V for n = 2d implies that for any X ⊥ ∈ R n , V (X ⊥ ) = VF (X ⊥ ) where V is a bounded operator. So using the resolvent equation

(H ⊥ -µ) -1 -(H 0,⊥ -µ) -1 = -(H ⊥ -µ) -1 V (H 0,⊥ -µ) -1 , we get (6.7) A(µ) -A 0 (µ) p p ≤ C (H ⊥ -µ) -1 p F (H 0,⊥ -µ) -1 p p ,
with C > 0 a constant. The choice of the constant µ and (1.5) imply that dist µ, N (H ⊥ ) ≥ 1, and by Lemma 9.3.14 of [START_REF] Davies | Linear Operators and their Spectra[END_REF] (6.8)

(H ⊥ -µ) -1 ≤ 1 dist µ, N (H ⊥ ) ≤ 1.
Lemma 6.1 and the choice of µ imply that (6.9)

F (H 0,⊥ -µ) -1 p p ≤ C F p L p .
By combining (6.7), (6.8) and (6.9), we finally get (6.10)

A(µ) -A 0 (µ) p p ≤ C F p L p .
Hence by applying (6.4) to the resolvents A(µ) and A 0 (µ), we get (6.11)

z∈σ d (A(µ)) dist z, σ(A 0 (µ)) p ≤ C F p L p ,
where C = C(p). Let z = ϕ µ (λ) = (λ -µ) -1 . The Spectral Mapping Theorem implies that (6.12)

z ∈ σ d A(µ) z ∈ σ A 0 (µ) ⇐⇒ λ ∈ σ d (H ⊥ ) λ ∈ σ(H 0,⊥ ) .
The second ingredient of the proof of the theorem is the following distorsion lemma for the transformation z = ϕ µ (λ) = (λ -µ) -1 . Lemma 6.2. Let µ be the constant defined by (6.5) and E be the set of Landau levels defined by (1.3). Then the following bound holds The proof of Lemma 6.2 follows directly from Lemma 6.3 and Lemma 6.4 below. For more comprehension in the sequel, it is convenient to give the figure which represents the transformation of the complex plane by the conformal map ϕ µ (see the figure below).

(6.13) dist ϕ µ (λ), ϕ µ (E) ≥ C dist λ, E 1 + V ∞ 2 1 + |λ| 2 , λ ∈ C,
• Λ 0 • • • • E × µ+Λ 0 2 • µ λ -→ ϕµ(λ) = z = 1 λ-µ I = [Λ 0 , +∞) • 1 Λ 0 -µ • • • • ϕµ(E) • 0 ϕµ(I) = 0, 1 Λ 0 -µ
It can be easily checked that

(6.14) ϕµ λ ∈ C : Re λ < µ = z ∈ C : Re z < 0 , (6.15 
) ϕµ λ ∈ C : λ - µ + Λ0 2 ≤ Λ0 -µ 2 = z ∈ C : Re z ≥ 1 Λ0 -µ , (6.16 
) ϕµ µ ≤ Re λ ≤ Λ0 = z ∈ C : Re z ≥ 0 ∩ outside the gray disk, (6.17) ϕµ λ ∈ C : Re λ ≥ Λ0 = z : z - 1 2(Λ0 -µ) ≤ 1 2(Λ0 -µ) .
Lemma 6.3. Let I = [Λ 0 , +∞). The following bound holds for any λ ∈ C

(6.18) dist ϕ µ (λ), ϕ µ (I) ≥ C dist λ, I 1 + V ∞ 2 1 + |λ| 2 ,
where C = C(b, d) is a constant depending on b and d.

Proof. It suffices to show that (6.18) holds for λ in each of the four sectors defined by (6.14)-(6.17). For further use in this proof, let us recall that the relation ≃ is defined by (4.12).

• |λ-µ| 2 . Then (6.18) holds as above.

• For λ ∈ λ ∈ C : Re λ ≥ Λ 0 , we have dist λ, I = |Im λ| and by (6.17 

D = C \ A. • Λ j I λ = [Λ 0 , +∞) • Λ 0 r j r j • Λ j-1 • Λ j+1 • Λ j+2 B Λ j , 2r j
Note that by (1.3), we have r j = 2b, A = j B Λ j , 4b and up to constant factor ϕ µ (A) = A. We have the following lemma. Since dist λ, E ≤ dist λ, I + r j , i.e. dist λ, E -r j ≤ dist λ, I , then (6.21) implies that dist λ, E - Now we turn back to the proof of Theorem 2.2. Lemma 6.2 together with (6.11) and (6.12) show that

z∈σ d (H ⊥ ) dist λ, E p 1 + |λ| 2p ≤ C 1 F p L p 1 + V ∞ 2p ,
where C 1 = C(p, b, d) is a constant depending on p, b and d. This complete the proof of Theorem 2.2.
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Now ( 3 . 20 ). Preliminaries 4 . 1 .
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 41 Let h be a holomorphic function in the unit disk D with h(0) = 1.
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  ) dist ϕ µ (λ), ϕ µ (I) = |Im ϕ µ (λ)| = |Im λ| |λ -µ| 2 = dist λ, I |λ -µ| 2 .Then (6.18) holds as above. This concludes the proof of Lemma 6.3. Now for futher use, let us introduce some notations. For Λ j ∈ E ⊂ I, definer j = dist Λ j , E \ {Λ j } , A = j B Λ j ,2r j and D = C \ A (see the figure below). Corresponding notations on the plane of z = ϕ µ (λ) are A and D. That means for ω ∈ ϕ µ (E) = 1 Λj -µ j , r ω = dist ω, ϕ µ (E) \ {ω} , A = ω B ω, 2r ω and
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 64 With the notations above, the following estimates hold.(i) For any λ ∈ D and any ϕ µ (λ) ∈ D,dist λ, E 2 ≤ dist λ, I ≤ dist λ, E . dist ϕ µ (λ), ϕ µ (E) 2 ≤ dist ϕ µ (λ), ϕ µ (I) ≤ dist ϕ µ (λ), ϕ µ (E) .

(

  

dist λ,E 2 ≤

 2 dist λ, I . That means dist λ, E 2 ≤ dist λ, I .(ii): Obviously all points λ ∈ A are of the form |Im λ| ≤ 4b andΛ j ≤ Re λ ≤ Λ j+1 for some Λ j ∈ E such that dist λ, E = |λ -Λ j | or dist λ, E = |λ -Λ j+1 | . For dist λ, E = |λ -Λ j |, we have dist ϕ µ (λ), ϕ µ (E) = 1 λ -µ -1 Λ j -µ = dist λ, E |λ -µ||Λ j -µ| .Then (6.20) holds since |λ -µ| ≤ C 1 + V ∞ 1 + |λ| and |Λ j -µ| ≤ 2|λ -µ| for Re λ > Λ 0 . This complete the proof.

  Proposition 5.1. For any j ≥ 0 the following bound Proof of Theorem 2.1. The main idea is to do with the help of (5.19) a summation on the index j. The only way to obtain a finite sum with respect to j is first to multiply(5.19) by an appropriate weight fonction of j, taking into account the asymptotic property (5.4) of the constant C(p, b, d, j, ε):

	(5.19)	dist λ, [Λ0, +∞)	p 2 +1+ε dist(λ, E) ( p 4 -1+ε) + ≤ C(p, b, d, j, ε)K
	λ∈σ d (H)∩Π j		
	holds, where K is defined by (2.1) and the constant C(p, b, d, j, ε) satisfies the as-
	ymptotic property (5.4).	
	Now we go back to the global bound.
	5.2. C(p, b, d, j, ε) ∼ j→∞	j d+ 1 2 .
	Let γ be such that γ -(d + 1 2 ) > 1 or equivalently γ > d + 3 2 . By (5.19), we have
	1		

  Lemma 6.1. Let n = 2d, d ≥ 1 and λ ∈ C \ E where E is the set of Landau levels defined by (1.3). Assume that F ∈ L p R n with p ≥ 2 d

	constant C = C(p) such that	2 + 2. Then there exists a
	(6.2)	

  Proof. (i): We prove only the first estimate in(6.19). The same holds for the second. Obviously dist λ, I ≤ dist λ, E . For λ ∈ D, let Λ j ∈ E such that

	6.19)				
	(ii) For any λ ∈ A,			
	(6.20)	dist ϕµ(λ), ϕµ(E) ≥	C dist λ, E 1 + V ∞ 2 1 + |λ|	2 .
	(6.21)	dist λ, E = |λ -Λj| ≥ 2rj	⇐⇒	dist λ, E 2	≥ rj .
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This together with (5.11) implies in particular that

|λ -Λ j | ( p 4 -1+ε)+ ≤ C(p, b, d, j, ε)K 3 ,

(5.13) Take into account the fact that there is no eigenvalues in the sector S ′ 3 , clearly quantity (5.10) above can be rewritten as

(5.14)

By combining (5.11) and (5.12), and using the first term of RHS in (5.12) and the lower bound dist λ, {λ ′ 1 , λ ′ 4 } ≥ δ, we get the following bound

(5.15)

.

|λ -Λ j | ( p 4 -1+ε)+ . Now using (5.13) we get the bound (5.16)

where the constant K is defined by (2.1). By similar arguments, we show that (5.17)

For the rectangle Π 0 containing the first Landau level Λ 0 , choose the vertice λ 1 of the edge L 4,λ so that λ 1 ≤ -V ∞ . Then estimates (5.14)-(5.17) imply that for any j ≥ 0

(5.18)

Thus we have proved the following proposition.
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