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Controllability of the Schrödinger equation via adiabatic methods and conical intersections of the eigenvalues

We present a constructive method to control the bilinear Schrödinger equation by means of two or three controlled external fields. The method is based on adiabatic techniques and works if the spectrum of the Hamiltonian admits eigenvalue intersections, with respect to variations of the controls, and if the latter are conical. We provide sharp estimates of the relation between the error and the controllability time.

I. INTRODUCTION

In this paper we are interested in the problem of controlling the bilinear Schrödinger equation

i dψ dt = H0 + m X k=1 u k (t)H k ! ψ(t). (1) 
Here ψ belongs to the Hilbert sphere S of a (finite or infinite dimensional) complex separable Hilbert space H and H0, . . . , Hm are self-adjoint operators on H. The controls u1, . . . , um are scalarvalued and represent the action of external fields. H0 describes the "internal" dynamics of the system, while H1, . . . , Hm the interrelation between the system and the controls. When describing quantum phenomena, typical models have often the previous form with H0 = -∆ + V0(x), Hi = Vi(x), where x belongs to a domain D ⊂ R n and V0, . . . , Vm are real functions (multiplication operators). However, equation [START_REF] Adami | Controllability of the Schroedinger equation via intersection of eigenvalues[END_REF] can be used to describe more general controlled dynamics. For instance, a quantum particle on a Riemannian manifold subject to external fields or a two-level ion trapped in a harmonic potential (the so-called Eberly-Law model [START_REF] Adami | Controllability of the Schroedinger equation via intersection of eigenvalues[END_REF], [START_REF] Bloch | The controllability of infinite quantum systems and closed subspace criteria[END_REF]). In the latter case, as in many other relevant physical situations, H0 cannot be written as the sum of a Laplacian plus a potential.

The controllability problem aims at establishing whether, for every pair of states ψ0 and ψ1, there exist controls u k (•) and a time T such that the solution of (1) with initial condition ψ(0) = ψ0 satisfies ψ(T ) = ψ1. The answer to this question is in general negative when H is infinite-dimensional (see [START_REF] Ball | Controllability for distributed bilinear systems[END_REF], [START_REF] Turinici | On the controllability of bilinear quantum systems[END_REF]). Hence one has to look for weaker controllability properties as, for instance, approximate controllability (see for instance [START_REF] Boscain | A weak spectral condition for the controllability of the bilinear Schrödinger equation with application to the control of a rotating planar molecule[END_REF], [START_REF] Chambrion | Controllability of the discrete-spectrum Schrödinger equation driven by an external field[END_REF], [START_REF] Mirrahimi | Lyapunov control of a quantum particle in a decaying potential[END_REF], [START_REF] Nersesyan | Global approximate controllability for Schrödinger equation in higher Sobolev norms and applications[END_REF]) or controllability between subfamilies of states and in particular the eigenstates of H0 (which are the most relevant physical states) and other regular states (see [START_REF] Beauchard | Controllability of a quantum particle in a moving potential well[END_REF], [START_REF] Beauchard | Local controllability of 1D linear and nonlinear Schrödinger equations with bilinear control[END_REF]).

In most of the results in the literature only the case m = 1 is considered. In this paper we study the cases m = 2, 3 and we look both for controllability results and explicit expressions of the external fields realizing the transition. The system under consideration is then

i d dt ψ(t) = H(u(t))ψ(t),
with H(u) = H0 + P m i=1 uiHi, m = 2, 3 and u = (u1, . . . , um). The idea is to use slowly varying controls and climb the energy levels through conical intersections, if they are present.

A classical tool, which is used in our approach, is the adiabatic theorem (see [START_REF] Teufel | Adiabatic perturbation theory in quantum dynamics[END_REF]). Roughly speaking, the adiabatic theorem states that the occupation probabilities associated with the energy levels of a time-dependent Hamiltonian H(•) are almost preserved along the evolution given by i ψ(t) = H(t)ψ(t), provided that H(•) varies very slowly. This result works whenever the energy levels (i.e. the eigenvalues of H(•)) are pairwise isolated for every t. On the other hand, if H(•) is a C 2 slowly varying Hamiltonian, the passage through (conical) intersections among energy levels determine (approximate) exchanges of the corresponding occupation probabilities (see [START_REF] Teufel | Adiabatic perturbation theory in quantum dynamics[END_REF]Corollary 2.5] and Figure 1). In this paper we generalize this property in order to construct suitable paths allowing to approximately attain prescribed distributions of probability, thus getting a particular controllability property (that we call approximate spread controllability). The case m = 2 has already been studied in [START_REF] Boscain | Adiabatic control of the Schrödinger equation via conical intersections of the eigenvalues[END_REF]. In this paper we will tackle the case m = 3. For reasonable space reasons, all the results will be presented without proof. As for the case m = 3 they can be obtained by suitably adapting the proofs in [START_REF] Boscain | Adiabatic control of the Schrödinger equation via conical intersections of the eigenvalues[END_REF]. This case will be analyzed in more details in future works.

The structure of the paper is the following. In Section II, we introduce the framework and we state the main result. In Section III we recall the time adiabatic theorem and some results on the regularity of eigenvalues and eigenstates of parameter-dependent Hamiltonians. In Section IV we deepen our analysis of conical intersection; in particular, we state and prove a sufficient condition for an intersection to be conical. Our first controllability result is introduced in Section V, while Section VI is devoted to the construction, under additional assumptions, of some special curves that allow to strengthen our controllability result.

II. DEFINITIONS AND NOTATIONS

We consider the Hamiltonian

H(u) = H0 + m X i=1 uiHi,
for u = (u1, . . . , um) ∈ R m . From now on we assume that H(•) satisfies the following assumption:

(H0) H0 is a self-adjoint operator on a separable Hilbert space H, and Hi are bounded self-adjoint operators on H for i = 1, . . . , m. Some of the results of this paper, in particular those in the last section, are obtained in the case where m = 3, denoted in the following with (C), or in the following case (R) Assume that m = 2 and that there exists an orthonormal basis {χj }j of the Hilbert space H such that the matrix elements χj, H0χ k , χj, H1χ k and χj, H2χ k are real for any j, k. We denote with H R the real Hilbert space generated by the basis {χj}j .

Remark 2.1: In the case (R), with each u and each eigenvalue of H(u) (counted according to their multiplicity), it is possible to associate an eigenstate whose components with respect to the basis {χj }j are all real.

Concerning the case (R), a typical example is when H0 = -∆+ V , where ∆ is the Laplacian on a bounded domain Ω ⊂ R d with Dirichlet boundary conditions, V ∈ L ∞ (Ω, R), H = L 2 (Ω, C), and H1, H2 are two bounded multiplication operators by real valued functions. In this case the spectrum of H0 is discrete. However the case (R) does not cover some basic quantum systems, as for instance the electromagnetic Hamiltonian, in which one controls the magnetic field. Although this system is not linear in the controls, the results presented in this paper for the case (C) have to be intended as a first step towards the complete analysis of the electromagnetic case.

The dynamics are described by the time-dependent Schrödinger equation

i dψ dt = H(u(t))ψ(t). (2) 
Such an equation has classical solutions under hypothesis (H0), u(•) piecewise C 1 and with an initial condition in the domain of H0 (see [START_REF] Segal | Non-linear semi-groups[END_REF] and also [START_REF] Ball | Controllability for distributed bilinear systems[END_REF]). We are interested in controlling (2) inside some portion of the discrete spectrum of H(u). Since we use adiabatic techniques, such portion of spectrum must be well separated from its complement in the spectrum of the Hamiltonian, and this property must hold uniformly for u belonging to some domain in R m . All these properties are formalized by the following notion.

Definition 2.2: Let ω be a domain in R m . A map Σ defined on ω that associates with each u ∈ ω a subset Σ(u) of the discrete spectrum of H(u) is said to be a separated discrete spectrum on ω if there exist two continuous functions f1, f2 : ω → R such that

• f1(u) < f2(u) and Σ(u) ⊂ [f1(u), f2(u)] ∀u ∈ ω. • there exists Γ > 0 such that inf u∈ω inf λ∈Spec(H(u))\Σ(u) dist(λ, [f1(u), f2(u)])) > Γ.
Notation From now on we label the eigenvalues belonging to Σ(u) in such a way that Σ(u) = {λ0(u), . . . , λ k (u)}, where λ0(u) ≤ • • • ≤ λ k (u) are counted according to their multiplicity (note that the separation of Σ from the rest of the spectrum guarantees that k is constant). Moreover we denote by φ0(u), . . . , φ k (u) an orthonormal family of eigenstates corresponding to λ0(u), . . . , λ k (u). Notice that in this notation λ0 does not need to be the ground state of the system. Definition 2.3: Let Σ be a separated discrete spectrum on ω. We say that ( 2) is approximately spread-controllable on Σ if for every u 0 , u 1 ∈ ω such that Σ(u 0 ) and Σ(u 1 ) are non-degenerate, for every φ ∈ {φ0(u 0 ), . . . , φ k (u 0 )}, p ∈ [0, 1] k+1 such that P k l=0 p 2 l = 1, and every ε > 0 there exist T > 0, ϑ0, . . . , ϑ k ∈ R and a piecewise

C 1 control u(•) : [0, T ] → R m such that ψ(T ) - k X j=0 pj e iϑ j φj(u 1 ) ≤ ε, (3) 
where ψ(•) is the solution of (2) with ψ(0) = φ.

Our techniques rely on the existence of conical intersections between the eigenvalues. Notice indeed that when two levels intersect the conservation of occupation probabilities of the concerned levels under adiabatic evolution is no more guaranteed. Conical intersections constitute a well-known notion in molecular physics (see for instance [START_REF] Born | Beweis des adiabatensatzes[END_REF], [START_REF] Lasser | Propagation through conical crossings: an asymptotic semigroup[END_REF], [START_REF] Teufel | Adiabatic perturbation theory in quantum dynamics[END_REF]).

In this paper we will use the following definition, which meets all the features commonly attributed to conical intersections.

Definition 2.4: Let H(•) satisfy hypothesis (H0). We say that ū ∈ R m is a conical intersection between the eigenvalues λj and λj+1 if λj(ū) = λj+1(ū) has multiplicity two and there exists a constant c > 0 such that for any unit vector v ∈ R m and t > 0 small enough we have that λj+1(ū + tv) -λj(ū + tv) > ct .

(4) It is worth noticing that conical intersections are not pathological phenomena. On the contrary, they often happen to be generic, as explained in [START_REF] Boscain | Adiabatic control of the Schrödinger equation via conical intersections of the eigenvalues[END_REF].

III. SURVEY OF BASIC RESULTS

A. The adiabatic theorem

One of the main tools used in this paper is the adiabatic theorem ( [START_REF] Born | Beweis des adiabatensatzes[END_REF], [START_REF] Kato | On the adiabatic theorems of quantum mechanics[END_REF], [START_REF] Nenciu | On the adiabatic theorem of quantum mechanics[END_REF], [START_REF] Panati | Space-adiabatic perturbation theory[END_REF]); here we recall its formulation, adapting it to our framework. For a general overview see the monograph [START_REF] Teufel | Adiabatic perturbation theory in quantum dynamics[END_REF]. We remark that we refer here exclusively to the time-adiabatic theorem.

The adiabatic theorem deals with quantum systems governed by Hamiltonians that explicitly depend on time, but whose dependence is slow. While in quantum systems driven by timeindependent Hamiltonians the evolution preserves the occupation probabilities of the energy levels, this is in general not true for time-dependent Hamiltonians. The adiabatic theorem states that if the time-dependence is slow, then the occupation probability of the energy levels, which also evolve in time, is approximately conserved by the evolution.

More precisely, consider h(t) = H0 + P m i=1 uiHi, t ∈ I = [t0, t f ], satisfying (H0), and assume that the map t → u(t) = (u1(t), . . . , um(t)) belongs to C 2 (I, R m ). Assume moreover that there exists ω ⊂ R m such that u(t) ∈ ω for all t ∈ I and Σ is a separated discrete spectrum on ω.

We introduce a small parameter ε > 0 that controls the time scale, and consider the slow Hamiltonian h(εt

), t ∈ [t0/ε, t f /ε]. The time evolution (from t0/ε to t) e U ε (t, t0/ε) generated by h(ε•) satisfies the equation i d dt e U ε (t, t0/ε) = h(εt) e U ε (t, t0/ε). Let τ = εt belong to [t0, t f ] and τ0 = t0; the time evolution U ε (τ, τ0) := e U ε (τ /ε, τ0/ε) satisfies the equation iε d dτ U ε (τ, τ0) = h(τ )U ε (τ, τ0). (5) 
Notice that U ε (τ, τ0) does not preserve the probability of occupations: in fact, if we denote by P * (τ ) the spectral projection of h(τ ) on Σ(u(τ )), then P * (τ

)U ε (τ, τ0) is in general different from U ε (τ, τ0)P * (τ0).
Let us consider the adiabatic Hamiltonian associated with Σ,

ha(τ ) = h(τ )-iεP * (τ ) Ṗ * (τ )-iεP ⊥ * (τ ) Ṗ ⊥ * (τ )
, where P ⊥ * (τ ) = id -P * (τ ) and id denotes the identity on H. Here and in the following the time-derivatives shall be intended with respect to the reparametrized time τ . The adiabatic propagator associated with ha(τ ), denoted by U ε a (τ, τ0), is the solution of

iε d dτ U ε a (τ, τ0) = ha(τ )U ε a (τ, τ0), U ε a (τ0, τ0) = id.
Notice that P * (τ )U ε a (τ, τ0) = U ε a (τ, τ0)P * (τ0), that is, the adiabatic evolution preserves the occupation probability of the band Σ.

Now we can adapt to our setting the strong version of the quantum adiabatic theorem, as stated in [START_REF] Teufel | Adiabatic perturbation theory in quantum dynamics[END_REF].

Theorem 3.1: Assume that H(u) = H0 + P m i=1 uiHi satisfies (H0), and that Σ is a separated discrete spectrum on ω ⊂ R m . Let I = [t0, t f ], u : I → ω be a C 2 curve and set h(t) = H(u(t)). Then P * ∈ C 2 (I, L(H)) and there exists a constant C > 0 such that for all τ, τ0 ∈ I

U ε (τ, τ0) -U ε a (τ, τ0) ≤ Cε (1 + |τ -τ0|) . (6 
) Remark 3.2: If there are more than two parts of the spectrum which are separated by a gap, then it is possible to generalize the adiabatic Hamiltonian as ( [START_REF] Nenciu | On the adiabatic theorem of quantum mechanics[END_REF]) ha(τ ) = h(τ )iε P α Pα(τ ) Ṗα(τ ), where each Pα(τ ) is the spectral projection associated with a separated portion of the spectrum, partitioning it as α varies.

Let us now consider the band made by the eigenvalues λj, λj+1 ∈ Σ. There exists an open domain ω ′ ⊂ ω such that {λj , λj+1} is a separated discrete spectrum on ω ′ . As above, we consider a control function u(•) ∈ C 2 (I, ω ′ ). We can then apply the adiabatic theorem to the separated discrete spectrum Σ ′ : u → {λj (u), λj+1(u)}, u ∈ ω ′ : we call H(τ ) the space constituted by the direct sum of the eigenspaces relative to λj(u(τ )), λj+1(u(τ )).

We are interested in the dynamics inside H(τ ). Since H(τ ) is two-dimensional for any τ , it is possible to map it isomorphically on C 2 and identify an effective Hamiltonian whose evolution is a representation of U ε a (τ, τ0)| H(τ 0 ) on C 2 . Let us assume that there exists an eigenstate basis {φα(τ ), φ β (τ )} of H(τ ) such that φα(•), φ β (•) belong to C 1 (I, H). We construct the time-dependent unitary operator U(τ ) : H(τ ) → C 2 by defining for any ψ ∈ H(τ ) U(τ )ψ = e1 φα(τ ), ψ + e2 φ β (τ ), ψ , where {e1, e2} is the canonical basis of C 2 , and the effective propagator

U ε eff (τ, τ0) = U(τ )U ε a (τ, τ0)U * (τ0). It is easy to see that U ε eff (τ, τ0) satisfies the equation iε d dτ U ε eff (τ, τ0) = H ε eff (τ )U ε eff (τ, τ0), U ε eff (τ0, τ0) = id,
where H ε eff (τ ) is the effective Hamiltonian whose form is

H ε eff (τ ) = " λα(τ ) 0 0 λ β (τ ) " -iε " φα(τ ), φα(τ ) φ β (τ ), φα(τ ) φα(τ ), φβ (τ ) φ β (τ ), φβ (τ ) " . (7) 
Theorem 3.1 implies the following. Theorem 3.3: Assume that {λj , λj+1} is a separated discrete spectrum on ω ′ and let u : [t0, t f ] → ω ′ be a C 2 curve such that there exists a C 1 -varying basis of H(•) made of eigenstates of h(•). Then there exists a constant C such that

(U ε (τ, τ0) -U * (τ )U ε eff (τ, τ0)U(τ0)) | H(τ ) (τ0) ≤ Cε(1 + |τ -τ0|)
for every τ, τ0 ∈ [t0, t f ].

B. Regularity of eigenstates

Classical results (see [START_REF] Reed | Methods of modern mathematical physics. IV. Analysis of operators[END_REF]) say that the map u → Pu, where Pu is the spectral projection relative to a separated discrete spectrum, is analytic on ω. In particular, eigenstates relative to simple eigenvalues can be chosen analytic with respect to u. Similar results hold also for intersecting eigenvalues, provided that the Hamiltonian depends on one parameter and is analytic. In particular, if Σ is a separated discrete spectrum on ω and u : I → ω is analytic, then there exist two families of analytic functions Λj : I → R and Φj : I → H, j = 0, . . . , k, such that for every t in I the (k + 1)-tuple (Λ0(t), . . . , Λ k (t)) is a reordering of (λ0(u(t)), . . . , λ k (u(t))), and (Φ0(t), . . . , Φ k (t)) is an orthonormal basis of corresponding eigenstates. (see [START_REF] Kato | Perturbation theory for linear operators[END_REF], [START_REF] Reed | Methods of modern mathematical physics. IV. Analysis of operators[END_REF]Theorem XII.13]). Moreover, we can easily find conditions on the derivatives of the functions Λ l , Φ l : indeed, consider a C 1 curve u : I → R m such that there exist two families of C 1 functions Λ l : I → R and Φ l : I → H, l = 0, . . . , k, which for any t ∈ I, correspond to the eigenvalues and the (orthonormal) eigenstates of H(u(t)).

By direct computations we obtain that for all t ∈ I the following equations hold:

Λl (t) = Φ l (t), " m X i=1 ui(t)Hi " Φ l (t) (8) 
(Λm(t) -Λ l (t)) Φ l (t), Φm(t) = = Φ l (t), " m X i=1 ui(t)Hi " Φm(t) . (9) 
An immediate consequence of ( 8) is that the eigenvalues λ l are Lipschitz with respect to t.

Let ū be a conical intersection between λj(u) and λj+1(u). Consider the straight line rv(t) = ū+tv, t ≥ 0, v = (v1, . . . , vm) unit vector. Then [START_REF] Chambrion | Controllability of the discrete-spectrum Schrödinger equation driven by an external field[END_REF] implies that

lim t→0 + φj(rv(t)), " m X i=1 viHi " φj+1(rv(t)) = 0. (10) 

IV. CONICAL INTERSECTIONS

In this section, we investigate the features of conical intersections and provide also a criterion for checking if an intersection between two eigenvalues is conical. First of all we notice that Definition 2.4 can be reformulated by saying that an intersection ū between the eigenvalues λj and λj+1 is conical if and only if there exists c > 0 such that, for every straight line r(t) with r(0) = ū, it holds

d dt ˛t=0 + h λj+1(r(t)) -λj (r(t)) i ≥ c.
Moreover, the following result guarantees that (4) holds true in a neighborhood of a conical intersection. It follows easily from the Lipschitz continuity of the eigenvalues. Then there exists a suitably small neighborhood U of ū and C > 0 such that λj+1(u) -λj (u) ≥ C|u -ū|, ∀u ∈ U.

(11) Let us now define the following matrices, which allow to introduce a further characterization of conical intersections and which play an important role for our strongest controllability results obtained in the cases (R) and (C). Definition 4.2: In the case (R) we define the conicity matrix associated with (ψ1, ψ2)

∈ H R × H R as M(ψ1, ψ2)= " ψ1, H1ψ2 1 2 ` ψ2, H1ψ2 -ψ1, H1ψ1 ´ ψ1, H2ψ2 1 2 
` ψ2, H2ψ2 -ψ1, H2ψ1

´« .

If (C) holds, then the conicity matrix associated with (ψ1, ψ2) ∈ H × H is defined as Proposition 4.4: Assume that (R) or (C) holds and that {λj , λj+1} is a separated discrete spectrum with λj(ū) = λj+1(ū). Let {ψ1, ψ2} be an orthonormal basis of the eigenspace associated with the double eigenvalue, with ψ1, ψ2 ∈ H R in the (R) case. Then ū is a conical intersection if and only if M(ψ1, ψ2) is nonsingular.

M(ψ1, ψ2) = 0 @ ψ1,
As noticed above, for any analytic curve that reaches a conical intersection it is possible to choose analytic eigenstates along the curve. A peculiarity of conical intersections is that, when approaching the singularity from different directions, the eigenstates corresponding to the intersecting eigenvalues have different limits. Calling φ 0 j , φ 0 j+1 be the limits as t → 0 + of the eigenstates φj(r0(t)), φj+1(r0(t)) along a straight line r0(t) = u + tv0 for some unit vector v0, and φ v j , φ v j+1 the limit basis along the straight line rv(t) = u + tv, we can relate them by the following transformation, up to some phases for φ v j and φ v j+1 :

" φ v j φ v j+1 « = " cos Ξ e -iβ sin Ξ -e iβ sin Ξ cos Ξ « " φ 0 j φ 0 j+1 « . ( 12 
)
Using [START_REF] Kato | On the adiabatic theorems of quantum mechanics[END_REF], it is easy to see that the parameters Ξ = Ξ(v) and β = β(v) satisfy the following equations:

tan 2Ξ(v) = 2| φ 0 j , Hvφ 0 j+1 | φ 0 j , Hvφ 0 j -φ 0 j+1 , Hvφ 0 j+1 ( 13 
)
β(v) = arg φ 0 j , Hvφ 0 j+1 , (14) 
where Hv = P m i=1 Hivi. Remark 4.5: It can be seen that not all the solutions of ( 13)-( 14) provide the correct transformation [START_REF] Lasser | Propagation through conical crossings: an asymptotic semigroup[END_REF]. Nevertheless, let v0, v1 be two unit vectors and w(s), s ∈ [0, s], be a curve joining v0 to v1 such that w(s) / ∈ {v0, -v0} for every s ∈ (0, s);

for conical intersections, it is possible to associate with such a curve a continuous solution (Ξ(w(s)), β(w(s))) of ( 13)-( 14) with Ξ(v0) = 0 and compatible with [START_REF] Lasser | Propagation through conical crossings: an asymptotic semigroup[END_REF]. It is easy to see that Ξ(w(s)) ∈ [-π/2, 0] for s ∈ [0, s] from which one deduces that the final value Ξ(v1) = Ξ(w(s)) is independent of the chosen path and continuously depends on v1. In particular it turns out that Ξ(-v0) = -π/2. Similarly, one can show that β(v1) = β(w(s)) is independent of the chosen path and continuous outside {v0, -v0}. Note that the fact that β is discontinuous at -v0 implies that the corresponding limit basis (φ v j , φ v j+1 ) has a discontinuity at -v0.

V. A SPREAD CONTROLLABILITY RESULT

Our first result states that spread controllability holds for a class of systems having pairwise conical intersections, providing in addition an estimate of the controllability time. As a byproduct of the proof, we will also get an explicit characterization of the motion planning strategy (the path γ(•) below).

Theorem 5.1: Let H(u) = H0 + P m i=1 uiHi satisfy hypothesis (H0). Let Σ : u → {λ0(u), . . . , λ k (u)} be a separated discrete spectrum on ω ⊂ R m and assume that there exist conical intersections uj ∈ ω, j = 0, . . . , k -1, between the eigenvalues λj, λj+1, with λ l (uj ) simple if l = j, j + 1. Then, for every u 0 and u 1 such that Σ(u 0 ) and Σ(u 1 ) are non-degenerate, for every φ ∈ {φ0(u 0 ), . . . , φ k (u 0 )}, and p ∈ [0, 1] k+1 such that P k l=0 p 2 l = 1, there exist C > 0 and a continuous control

γ(•) : [0, 1] → R m with γ(0) = u 0 and γ(1) = u 1 , such that for every ε > 0 ψ(1/ε) - k X j=0 pje iϑ j φj (u 1 ) ≤ C √ ε, (15) 
where ψ(•) is the solution of (2) with ψ(0) = φ, u(t) = γ(εt), and ϑ0, . . . , ϑ k ∈ R are some phases depending on ε and γ. In particular, ( 2) is approximately spread controllable on Σ.

The control strategy consists in constructing piecewise smooth paths that pass through conical intersections making suitable corners. While far from a conical intersection, we can use an adiabatic approximation that separates all the levels in Σ, and therefore the occupation probabilities of the energy levels are approximately conserved. When in a neighborhood of a conical intersection (to fix the ideas, between the eigenvalues λj and λj+1), we will treat the two intersecting levels together, by means of [START_REF] Boscain | A weak spectral condition for the controllability of the bilinear Schrödinger equation with application to the control of a rotating planar molecule[END_REF]. We then consider the effective Hamiltonian and its associated evolution operator U ε eff . The key point is that there exists some phases (depending on ε) ϑj, ϑj+1 such that

U ε eff (0, τ0) - " e iϑ j 0 0 e iϑ j+1 « ≤ C √ ε,
and a similar inequality holds for U ε eff (τ0, 1). This fact can be shown with explicit computations (see e.g. [START_REF] Boscain | Adiabatic control of the Schrödinger equation via conical intersections of the eigenvalues[END_REF]). We remark that the term √ ε is due to the presence of intersecting eigenvalues (see [START_REF] Boscain | Adiabatic control of the Schrödinger equation via conical intersections of the eigenvalues[END_REF] and also [START_REF] Teufel | Adiabatic perturbation theory in quantum dynamics[END_REF]Corollary 2.5] for a similar result). The spreading of occupation probabilities induced by the corner at the singularity is described by the following proposition. Proposition 5.2: Let ū be a conical intersection between the eigenvalues λj , λj+1, and let γ : [0, 1] → ω be the curve defined as

γ(τ ) = ( ū + (τ0 -τ )v0 τ ∈ [0, τ0] ū + (τ -τ0)v τ ∈ [τ0, 1].
Let φ 0 j , φ 0 j+1 be limits as τ → τ - 0 of the eigenstates φj(γ(τ )), φj+1(γ(τ )), respectively. Then there exists C > 0 such that, for any ε > 0,

ψ(1/ε) -p1e iϑ j φj (γ(1)) -p2e iϑ j+1 φj+1(γ(1)) ≤ C √ ε (16) 
where ϑj, ϑj+1 ∈ R, ψ(•) is the solution of equation ( 2) with ψ(0) = φj(γ(0)) corresponding to the control u : [0, 1/ε] → ω defined by u(t) = γ(εt),

p1 = | cos (Ξ(v)) |, p2 = | sin (Ξ(v)) |,
and Ξ(•) is defined as in equation ( 13) and Remark 4.5. Remark 5.3: For control purposes, it is interesting to consider the case in which the initial probability is concentrated in the first level, the final occupation probabilities p 2 1 and p 2 2 are prescribed. Choosing η ∈ [0, π/2] such that (p1, p2) = (cos η, sin η), we select the outcoming direction v in such a way that it satisfies

Ξ(v) = ±η.
Thanks to Remark 4.5, this is always possible.

VI. NON-MIXING CURVES

The purpose of this section is to improve the controllability results in the cases (R) and (C). Throughout the section we assume, without loss of generality, that {λj, λj+1} is a separated discrete spectrum on an open domain ω and that 0 ∈ ω is the only conical intersection between the eigenvalues.

Following Section III-A, the effective Hamiltonian H ε eff , defined as in [START_REF] Boscain | A weak spectral condition for the controllability of the bilinear Schrödinger equation with application to the control of a rotating planar molecule[END_REF], (approximately) describes the dynamics in the eigenspaces associated with λj, λj+1, for u slowly varying in ω. When integrating the effective Hamiltonian, the off-diagonal terms in [START_REF] Boscain | A weak spectral condition for the controllability of the bilinear Schrödinger equation with application to the control of a rotating planar molecule[END_REF] induce a (a priori) non-negligible probability transfer between the two levels, which is taken into account in the estimate [START_REF] Nersesyan | Global approximate controllability for Schrödinger equation in higher Sobolev norms and applications[END_REF] by the term O( √ ε).

Thus, to improve the precision of the result, we need to kill the off-diagonal terms in the effective Hamiltonian. In order to do that, we choose some special trajectories in ω along which the term φj, φj+1 is null. Here and in the following we use the notation φ = φ(γ(•)) to denote d dt (φ(γ(•))). We treat the cases (R) and (C) separately.

(R) We consider trajectories satisfying the following system  u1 = -φj, H2φj+1 u2 = φj, H1φj+1 .

Notice that the right-hand side of ( 17) can be taken real-valued under the current hypotheses. It is defined up to a sign, because of the freedom in the choice of the sign of the eigenstates. Nevertheless, locally around points where λj = λj+1, it is possible to choose the sign in such a way that the right-hand side of ( 17) is smooth, and, from equation ( 9), we see that φj(γ(t)), φj+1(γ(t)) = 0 along any integral curve γ of [START_REF] Reed | Methods of modern mathematical physics. IV. Analysis of operators[END_REF]. Let now Gr2(H R ) be the 2-Grassmannian of H R , i.e. the set of all two-dimensional subspaces of H R . This set has a natural structure of a metric space defined by the distance d(W1, W2) = PW 1 -PW 2 , where PW 1 , PW 2 are the orthogonal projections on the two-dimensional subspaces W1, W2. Lemma 4.3 allows us to define the function

F : Gr2(H R ) → R as F (W ) = | det M(v1, v2)|, where {v1, v2} is any orthonormal basis of W ∈ Gr2(H R ).
It is easy to see that F is continuous.

Let Pu be the spectral projection associated with the pair {λj (u), λj+1(u)}. We know from Section III-B that Pu is analytic on

ω. Therefore u → PuH∩H R is continuous in Gr2(H R ). Let now F (u) := | det M(φj(u), φj+1(u))|. Since F (u) = F (PuH∩H R )
and by Proposition 4.4 we get the following result. Lemma 6.1: The function u → F (u) is well defined and continuous in ω. In particular F is different from 0 in a neighborhood of u = 0.

Without loss of generality, we assume from now on that F is different from zero on ω. Lemma 6.2: There exists a C ∞ choice of the right-hand side of [START_REF] Reed | Methods of modern mathematical physics. IV. Analysis of operators[END_REF] 

in ω \ {0} such that, if u(•) is a corresponding solution, then d dt h λj+1(u(t)) -λj(u(t)) i = -2F (u(t)) (18) 
on ω \ {0}.

We now define the non-mixing field, denoted by XP , as the smooth vector field on ω \ {0} identified by the preceding lemma. Its integral curves are C ∞ in ω \{0}. Moreover, its norm is equal to the norm of the first row of M(φj, φj+1), and therefore bounded both from above and from below by positive constants in ω \ {0}.

By considering λj+1(u) -λj (u) as a local Lyapunov function, the above results lead to the following proposition. Proposition 6.3: There exists a punctured neighborhood U of 0 such that all the integral curves of XP starting from U reach the origin in finite time.

The integral curves of non-mixing field turn out to be smooth even at the singularity (for technical details, see [START_REF] Boscain | Adiabatic control of the Schrödinger equation via conical intersections of the eigenvalues[END_REF]). The following result is crucial to our controllability strategy. Proposition 6.5: For every unit vector w in R 2 there exists an integral curve γ : [-η, 0] → ω of XP with γ(0) = 0 such that lim t→0 - γ(t) γ(t) = w.

By concatenating integral curves of the non-mixing field, we construct paths that realize the transitions with a precision of the order ε. This allows us to state the following result: Theorem 6.6: Consider the case (R), and let the hypotheses of Theorem 5.1 hold. Then for every u 0 and u 1 such that Σ(u 0 ) and Σ(u 1 ) are non-degenerate, for every φ ∈ {φ0(u 0 ), . . . , φ k (u 0 )}, and p ∈ [0, 1] k+1 such that P k l=0 p 2 l = 1, there exist C > 0 and a continuous control γ(•) : [0, 1] → R 2 with γ(0) = u 0 and γ(1) = u 1 , such that for every ε > 0

ψ(1/ε) - k X j=0 pje iϑ j φj (u 1 ) ≤ Cε, (19) 
where ψ(•) is the solution of (2) with ψ(0) = φ, u(t) = γ(εt), and ϑ0, . . . , ϑ k ∈ R are some phases depending on ε and γ. Remark 6.7: The phases ϑ0, . . . , ϑ k may, in principle, be computed explicitly. In fact, they are sums of terms of the form 1 ε R s l+1 s l λj (γ(s)) ds, where γ| [s l ,s l+1 ] are the pieces of the path γ between two successive passages through conical intersections. Moreover, if at the final point u 0 (or at any other point of the chosen path) all the ratios λ j (u 0 ) λ l (u 0 ) , l = j, j, l = 0, . . . , k, are not rational, then, by stopping at u 0 for a long enough time, one can approximately recover every final value of (ϑ0, . . . , ϑ k ) (the rational independence of the eigenvalues guarantees that the set of points (ϑ0, . . . , ϑ k ) attainable from any initial configuration is dense in the k-dimensional torus). Thus this method allows to (approximately) induce any transition from an eigenstate relative to the eigenvalues in Σ to any other state belonging to the sum of eigenspaces relative to the eigenvalues in Σ. Notice however that the computation of the final phases is very sensitive to variations of ε and to errors in the computation of the eigenvalues, and also
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 1 Fig. 1. A slow path "climbing" the spectrum of H(•), plotted in function of u = (u 1 , u 2 ).

Lemma 4 . 1 :

 41 Let ū a conical intersection between λj and λj+1.

Lemma 4 . 3 :

 43 If (R) holds, the function (ψ1, ψ2) → | det M(ψ1, ψ2)| is invariant under orthogonal transformations of the argument, that is if ( b ψ1, b ψ2) T = O(ψ1, ψ2) T for a pair ψ1, ψ2 of orthonormal elements of H R and O ∈ O(2), then one has | det M( b ψ1, b ψ2)| = | det M(ψ1, ψ2)|. If (C) holds, then det M(ψ1, ψ2) is purely imaginary and the function (ψ1, ψ2) → det M(ψ1, ψ2) is invariant under unitary transformation of the argument, that is if ( b ψ1, b ψ2) T = U(ψ1, ψ2) T for a pair ψ1, ψ2 of orthonormal elements of H and U ∈ U(2), then one has det M( b ψ1, b ψ2) = det M(ψ1, ψ2). The following result characterizes conical intersections in terms of the conicity matrix.

Proposition 6 . 4 :

 64 Let γ : [-η, 0] → ω be an integral curve of XP with γ(0) = 0. Then γ(•) and the eigenstates φj(γ(•)), φj+1(γ(•)) are C ∞ on [-η, 0].
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approximate recovering of the desired phases could need a very large time, leading to important computational errors. Therefore this controllability strategy seems to be essentially unfeasible in practice.

We conclude the study of the case (R) with a result of structural stability of conical intersections. Theorem 6.8: Assume ū is a conical intersection between the eigenvalues λj and λj+1 for an Hamiltonian H(u) = H0 + u1H1 + u2H2 in the case (R). Assume moreover that u → {λj (u), λj+1(u)} is a separated discrete spectrum in a neighborhood of ū. Then for every ε > 0 there exists δ > 0 such that, if Ĥ(u) = Ĥ0 + u1 Ĥ1 + u2 Ĥ2 is in the case (R) and

then the operator Ĥ(u) admits a conical intersection of eigenvalues at û, with |ū -û| ≤ ε.

(C) The results obtained in the case (R) can be partially adapted to the case (C). We only give a sketch of the necessary modifications. Similarly to the above construction, we can define the function u → det M(φj(u), φj+1(u)), where φj(u), φj+1(u) are eigenstates relative to the intersecting eigenvalues. We can prove the analogue of Lemma 6.1, that is, the previous function is continuous and therefore it has constant sign in a neighbourhood of the conical intersection.

Let us now introduce the following vector m(ψ1, ψ2) = ( ψ1, H1ψ2 , ψ1, H2ψ2 , ψ1, H3ψ2 ) T , (21

where ψ1, ψ2 ∈ H and denote its components ψ1, Hiψ2 as mi.

Moreover we call

It is easy to see that the real vector

where × denotes the cross product, is orthogonal to both Imm and Rem. Remark 6.9: Let us remark that the vector X(ψ1, ψ2) is invariant under phase changes in the argument, that is X(ψ1, ψ2) = X(e iβ 1 ψ1, e iβ 2 ψ2). Notice however that X(ψ1, ψ2) = -X(ψ2, ψ1).

Consider now the vector field XP (u) = X(φj(u), φj+1(u)), and call it the non-mixing field. It turns out that it is well defined and smooth in a punctured neighborhood of the conical intersection, and, because of ( 9) and ( 22), we have φj, φj+1 = 0 along its integral curves. Moreover, since * X(ψ1, ψ2), 0 @ ψ2, H1ψ2 -ψ1, H1ψ1 ψ2, H2ψ2 -ψ1, H2ψ1 ψ2, H3ψ2 -ψ1, H3ψ1

we can conclude as in Proposition 6.3 that there is a global choice of the sign of XP (u) such that all its integral curves starting from a punctured neighborhood of the conical intersection reach it in finite time.

The other technical results concerning the non-mixing field and its integral curves, stated for the case (R), still hold true for the case (C). The proofs can be derived from those contained in [START_REF] Boscain | Adiabatic control of the Schrödinger equation via conical intersections of the eigenvalues[END_REF],

after an adaptation to the current framework. This means that we can construct the effective Hamiltonian along the integral curves of the non-mixing field that go through the conical intersection, thus controlling the spreading of the occupation probability between the two levels involved. In particular, Theorem 6.6, remains true in the case (C).