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Abstract. We are interested in the problem of transition reduction of non-
deterministic automata. We present some results on the reduction of the
automata recognizing the language L(En) denoted by the regular expres-
sion En = (1 + ε) · (2 + ε) · (3 + ε) · · · (n+ ε). These results can be used
in the general case of the transition reduction problem.

1 Introduction

Minimizing the number of states of an automaton is a subject that has been
studied extensively since the 1950s, both in the deterministic case and the non-
deterministic case [11,7]. However, works on the minimization of the number
of transitions have appeared recently.

In 1997, J. Hromkovic̃ et al. [8] have proposed an algorithm based on the con-
cept of Common Follow Set of a regular expression, that converts a regular ex-
pression of size n into a finite state automaton with O(n) states, O(n log n) tran-
sitions as lower bound and O(n log2 n) transitions as upper bound. Muscholl
et al. [6], showed that this algorithm can be implemented in time O(n log2 n).
In [9] Ouardi and Ziadi, based on the ZPC structure [2], gave an O(n log2 n)
algorithm to convert a weighted regular expression of size n into a weighted
automaton having O(n) states and O(n log2 n) transitions. In [5], Viliam Geffert
showed that every regular expression of size n over a fixed alphabet of s sym-
bols can be converted into a nondeterministic ε-free finite state automaton with
O(sn log n) transitions.

Lower bound was improved by Yuri Lifshits [15] to Ω( n log2 n
log log n

), after, Schnit-

ger [13] improved it to Ω(n log2 n) transitions.
In [3], R. Cox has done an exhaustive search to find the transition minimal

automata of L(En) for n = 1 to 7. He has also used an heuristic approach that
construct transition reduced automata for n = 8 to 10.

Here, we are able to produce an algorithm for which the number of tran-
sitions is minimal for L(En) languages class, in the sense that, asymptotically,
this number of transitions is equivalent to n log2 n (see Section 6).

We mention that most of complexity results mentioned above are obtained
from the study of L(En) languages class. This class of languages corresponds

http://arxiv.org/abs/1301.3751v1
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to a simple class of automata, in which, the minimization of the number of
transitions is difficult and not obvious. The study of this class of languages, can
also find its application in bioinformatics, since that L(En) is exactly the set of
all sub-sequences of the word 1.2.3 . . . n.

Our approach to reduce the number of transitions of a nondeterministic ho-
mogeneous finite state automaton is based on the decomposition of the tran-
sition table of the automaton into blocks. This decomposition is based on the
concept of Common Follow Sets. From a block decomposition we construct an
automaton with less transitions than the initial automaton. See Figure 1.

The main problem in our approach is to find a good block decomposition of
the transition table (even the best one). In the case where this matrix is lower
triangular or upper triangular, finding a minimal decomposition block leading
to a minimal transition automaton, is not evident. Our study is focused on the
upper triangular matrix, which corresponds to the transition table of the deter-
ministic minimal automaton recognizing the L(En) language. The case of lower
triangular matrix can be obtained in a similar manner.
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Fig. 1. The reduced automaton (at right) is obtained from a decomposition transition
table (at right bottom) of the homogeneous automaton (at left). The automaton A(L5) is
the part of the reduced automaton which represents the triangle (in the transition table
decomposition).

In this paper we present the following results: At first, in Section 3, we ex-
tend the concept of Common Follow Sets to homogeneous automata. Then, in
Section 4 we introduce particular decompositions called Z-partitions associ-
ated with expressions En. Then, in Section 5 we introduce the notion of Z-tree
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to represent any Z-partition by a binary tree. Then, we propose an algorithm of
O(n log n) time complexity to generate the Z-minimal trees. We finish our study
by experimental results and a last section in which we show that our algorithms
construct automata with a number of transitions equivalents to n log2(n) which
is the minimal lower bound according to Schnitger.

2 Notation and terminology

We recall the basics of regular expressions, languages and finite state machines
and introduce the notation that we use. Let Σ be a non-empty finite set of sym-
bols, called alphabet. The set of all the words over Σ is denoted by Σ∗. The
empty word is denoted by ε. A language over Σ is a subset of Σ∗. A finite au-
tomaton over Σ is a 5-tuple A = (Q,Σ, I, δ, F ) where Q is a set of states, I is
a subset of Q whose elements are the initial states, F is a subset of Q whose
elements are the final states, δ is a subset of the cartesian product Q × Σ × Q
whose elements are the transitions. A transition (q, a, p) ∈ δ goes from the head
q to the tail p. A path in A is a sequence of transitions (qi, ai, qi+1), i = 1 to n,
of consecutive transitions. Its label is the word w = a1a2 · · · an. A word w ∈ Σ∗

is recognized by the automaton A if there is a path with label w such that
q1 ∈ I and qn+1 ∈ F . The language recognized by the automaton A is the set
of words that are recognized by A. The automaton A is homogeneous if for all
(q, a, p), (q′, a′, p′) ∈ δ, p = p′ implies that a = a′, in this case we write h(p) = a.
The function h assigns to each non-initial state q of an homogeneous automaton
the symbol that is the unique label of all the transitions having q as tail.

In Appendix A we recall the basics of asymptotic notations.

3 CFS for homogeneous automata

J. Hromkovic̃ et al. [8] have given an elegant algorithm based on the notion of
Common Follow Sets, to convert a regular expression of size n into a nondeter-
ministic finite automaton having O(n) states and O(n log2 n) transitions. This
notion can be easily extended to homogeneous automata.

Let A = (Q,Σ, {q0}, δ, F ) be an homogeneous automaton. In order to cap-
ture the final states in the A, we introduce a dummy state denoted by # which
is not in Q. We define over Q the function follow as follows:

follow(q) =

{
{p | (q, a, p) ∈ δ} ∪ {#} if q ∈ F,
{p | (q, a, p) ∈ δ} otherwise.

Let q ∈ Q be a state in A, we denote by dec(q) = {Q1, Q2, · · · , Qk} (where Qi ⊆
follow(q)) any decomposition of the set follow(q), i.e. follow(q) =

⋃

Qi∈dec(q)

Qi.

In the case where dec(q) is a partition of the set follow(q), the decomposition
dec(q) will be called a partition decomposition. Figure 2 provides examples of
decompositions.
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Fig. 2. We have follow(0) = {1, 2, 3,#}. Here are three possible decompositions of
follow(0). The two first ones are partition decompositions. (i) dec(0) = {{1, 2}, {3,#}}
(ii) dec(0) = {{1}, {2}, {3,#}} (iii) dec(0) = {{1, 2}, {2, 3,#}} .

Definition 1 (Common Follow Sets System). Let A be a homogeneous automaton.
A CFS system for A is given as S(A) = (dec(q))q∈Q, where each dec(q) ⊆ 2Q is a
decomposition of follow(q).

Definition 2 (CFS automaton). Let A = (Q,Σ, {q0}, δ, F ) be a homogeneous au-
tomaton and S(A) an associated Common Follow Sets system. The Common Follow
Sets automaton associated with S(A) is defined by CS(A) = (Q′, Σ, I ′, δ′, F ′) where

– Q′ =
⋃

q∈Q

dec(q)

– I ′ = dec(q0)
– For Q1 ∈ Q′, Q1 ∈ F ′ if and only if # ∈ Q1

– δ′ = {(Q1, a,Q2) | ∃q ∈ Q1 s.t. h(q) = a and Q2 ∈ dec(q)}.

Theorem 1. Let A be a homogeneous automaton, S(A) be a Common Follow Sets
System associated with A and CS(A) its Common Follow Sets automaton. Then CS(A)

and A recognize the same language.

This theorem can be proved in the same way as Theorem 5 of the paper of
J. Hromkovic̃ et al. [8].

To evaluate the number of transitions in the automaton CS(A) we define over
the states of A two functions,

– a(q) = |dec(q)| the size of the decomposition of the set follow(q)
– b(q) = |{Q1 ∈ Q′ | q ∈ Q1}| the number of states in Q′ that contain the

state q.

Lemma 1. The number of transitions TC in CS(A) is such that TC ≤
∑

q∈Q

a(q)b(q).

It is easy to see that if for all p, q ∈ Q\{q0} such that p 6= q, we have h(p) 6= h(q)
then the equality holds. From Lemma 1, we can see that the number of tran-
sitions in a CFS automaton depends on the decomposition system. A decom-
position which is not a partition will induce more transitions than a partition
decomposition. Therefore in the following we are interested only in partition
decompositions. As it was mentioned in the introduction our study will focus
on the CFS automata associated with the family of automata (An)n≥1. The au-
tomaton An = (Q,Σ, I, δ, F ) is defined by:

– Σ = {1, 2, . . . , n}
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– Q = Σ ∪ {0}
– F = Q

– I = {0}, δ = {(p, q, q) ∈ Q×Σ ×Q | q > p}.

Figure 3 shows two CFS automata associated with the automaton A3.

In the next sections we present two algorithms that construct particular CFS
systems which correspond to CFS automata with a reduced number of transi-
tions. In the last section we give comparative and experimental results.

{1, 2, 3,#}

{2, 3,#}

{3,#} {#}
2

1 2

32

3

3

q a(q) b(q) a(q)b(q) dec(q)

0 1 0 0 {{1, 2, 3,#}}

1 1 1 1 {{2, 3,#}}

2 1 2 2 {{3,#}}

3 1 3 3 {{#}}

TC = 6

{3,#}

{1, 2}

{2} {3} {#}1
1

2

2

2

2 3

3

q a(q) b(q) a(q)b(q) dec(q)

0 2 0 0 {{1, 2}, {3,#}}

1 2 1 2 {{2}, {3,#}}

2 2 2 4 {{3}, {#}}

3 1 2 2 {{#}}

TC = 8

Fig. 3. Two CFS Automata constructed from the automaton A3 shown in Figure 2.

4 An Reduction Algorithm

The notion of Z-partition is nowhere introduced formally. In the following we
are interested in reducing the number of transitions in the automaton An. The
following algorithm computes particular CFS systems S(An) that provide CS(An)

automata with small number of transitions and having n + 1 states. Let En =
(1 + ε) · (2 + ε) · (3 + ε) · · · (n+ ε) be a regular expression, it is easy to see that
the language denoted by the expression En is exactly the language recognized
by the automaton An. We have:

Proposition 1. Each transition minimal automaton that recognizes L(En) has ex-
actly n+ 1 states.

This proposition can be proved using properties of the universal automaton [10]
of L(En).

For fixed n, a CFS system produced by the following algorithm will be de-
noted by Z(An). The set of all Z(An) will be denoted CFSZ(n). Our aim in this
section is to compute all minimal decompositions in CFSZ(n).
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Algorithm 1 CFSPartitions(n)

Require: n ∈ N

Ensure: Z(An)
1: Q← {0, 1, 2, 3, 4, . . . , n}
2: for i = 0 to n do
3: follow(i) ← {j ∈ Q|j > i} ∪ {#}
4: dec(i)← φ

5: Qi ← φ

6: end for
7: for i = 0 to n do
8: Choose j in Q

9: Q← Q\{j}
10: Qj ← follow(j)
11: for all k ∈ Q do
12: if (Qj ⊆ follow(k)) then
13: dec(k)← dec(k) ∪ {Qj}
14: follow(k)← follow(k)\Qj

15: end if
16: end for
17: end for

Proposition 2. The number of all Z(An) CFS partition systems is the nth Catalan
number: |CFSZ(n)| = 1

n+1

(
2n
n

)
.

The successive choice of values of j (line 8) leads to a permutation of size n. So,
each CFS partition system Z(An) can be associated with at least one permuta-
tion of size n.

The following algorithm is a recursive version of Algorithm 1. Its first call
is done by RecursiveDecomposition(0, n). Without loss of generality we asso-
ciate in this last algorithm the dummy state # to the number n + 1. At each
call, Algorithm 2 constructs one block from the transition matrix M , for the
call RecursiveDecomposition(n1, n2) and the choice of j (line 2), it produces the
block Bj which is the submatrix M [j..n1; j..n2].
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Algorithm 2 RecursiveDecomposition (n1, n2)

Require: n1, n2 ∈ N

Ensure: Z(An) when n1 = 0 and n2 = n

1: if n1 ≤ n2 then
2: Choose an integer j between n1 and n2, j ∈ {n1, . . . , n2}
3: Qj ← {j + 1, . . . , n2 + 1}
4: for k = n1 to j do
5: dec(k)← dec(k) ∪ {Qj}
6: end for
7: Bj = M [j..n1 ; j..n2]
8: RecursiveDecomposition(n1, j − 1)
9: RecursiveDecomposition(j + 1, n2)

10: end if

Example 1. In this example we shows the CFS partition systems associated with
permutations (0, 2, 1, 3) and permutation (1, 0, 2, 3).

dec(0) = { { 1 , 2 , 3 , # } }
dec(1) = { { 2 } , { 3 , # } }
dec(2) = { { 3 , # } }
dec(3) = { { # } }

0 : 1 2 3 #
1 : 2 3 #
2 : 3 #
3 : #

dec(0) = { { 1 } , { 2 , 3 , # } }
dec(1) = { { 2 , 3 , # } }
dec(2) = { { 3 , # } }
dec(3) = { { # } }

0 : 1 2 3 #
1 : 2 3 #
2 : 3 #
3 : #

For permutation (0, 2, 1, 3) the first block B0 is 1 2 3 # , the second block

B2 is
3 #
3 #

, the third block B1 is 2 and B3 = # is the last one.

Proposition 3. The computation of all minimal partition system Z(An) in CFSZ(n)
can be done in time O(n!).

Proof. This can be done by calling the nondeterministic Algorithm 1 or 2 for
each possible execution.

Remark 1. By the use of the dynamic programming, we can improve the expo-
nential brute force method to a polynomial algorithm as shown in Algorithm ??.

In the following sections we will introduce our second algorithm which is based
on trees. It computes efficiently the reduced Z(An) systems.

5 Tree based reduction

A binary tree is a structure defined on a finite set of nodes that either contains
no nodes, or is made of three disjoint sets of nodes:

– a root node
– a binary tree called its left subtree
– a binary tree called its right subtree.
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The binary tree that contains no nodes is called the empty tree. If the left sub-
tree is non-empty, its root is called the left child of the root of the entire tree.
Likewise, the root of a non-empty right subtree is the right child of the root of
the entire tree. Therefore, in a full binary tree each node is either a leaf or has
degree exactly 2, there is no degree-1 nodes. In the following we call a n-tree a
full binary tree with n leaves. There is a unique n-tree for n = 0 to 2.

Let t be a n-tree and let π be a path in t. The left weight (resp. right weight)
aπ (resp. bπ) is defined as the number of left (resp. right) edges in the path π.
The length of π denoted by lπ = aπ + bπ is the length of the path π. Denote by
wπ = aπbπ the weight of π. The cost cπ of π is the sum of its weight and its length.
So we have cπ = wπ + lπ.

Let ν be a node in t. Denote by πν the path from the node ν to the root of t.
Denote by νl (resp. νr) the left child of ν (resp. the right child of ν). Denote by
fν the father4 of ν. If π is a path from the node ν to the root of t then we denote
by fπ the path from the node fν to the root of t. We also associate aπν

, bπν
, wπν

,
lπν

and cπν
to the node ν and we denote them respectively by aν , bν , wν , lν and

cν . The set of leaves of a tree t will be denoted by Lt. The weight w(t) of the tree

t is defined as the sum of the weight of its leaves, that is w(t) =
∑

ν∈Lt

wν .

Proposition 4. Each Z(An) partition system corresponds to a unique n-tree.

Proof. The idea is that if we follow the execution trace of the recursive Algo-
rithm 2 we can see that it corresponds to a binary tree whose weight is the num-
ber of transitions of the reduced automaton. And by induction we can prove
that for each state q we have aνq = a(q) and bνq = b(q). See Figure 4.

ν0

ν1 ν2 ν3 ν4

ν aν bν lν wν cν

ν0 1 0 1 0 1
ν1 2 1 3 2 5
ν2 1 2 3 2 5
ν3 1 2 3 3 6
ν4 0 3 3 0 3

follow(0) : 1 2 3 4
follow(1) : 2 3 4
follow(2) : 3 4
follow(3) : 4

dec(0) : {1, 2, 3, 4}

dec(1) : {2} {3, 4}

dec(2) : {3, 4}

dec(3) : {4}

Fig. 4. A full binary 5-tree and an associated Z(A5) partition (left edges are represented
by dotted lines and right edges with solid lines).

So, finding a minimal Z(An) partition system is reduced to finding a n-tree
having minimal weight. Let us denote it by Z-tree of rank n.

Let Split(t) be the function that returns the tree obtained from t by replacing
a leaf having minimal cost in t by the unique 2-tree. See Figure 5.

Proposition 5. The set of Z-trees can be computed inductively as follows:

4 The first ancestor.
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– 1-tree is the Z-tree of rank one

– if t is a Z-tree (of rank i) then Split(t) is a Z-tree (of rank i+ 1).

Proof. Let tn be a Z-tree of rank n. To get a tree tn+1 of rank n + 1 from tn we
have to split a leaf µ. The weight of tn+1 is:

w(tn+1) =
∑

ν∈Ltn+1

wν

= (
∑

ν∈Ltn

wν)− wµ + wleft−child(µ) + wright−child(µ)

= w(tn)− aµbµ + (aµ + 1)bµ + aµ(bµ + 1)

= w(tn) + cµ

If µ is the leaf of tn which have the minimal coast, then, the tree tn+1 will have
minimal weight.

So, this inductive construction allows us to have the minimal weight tree. The
difference of weights between two consecutive minimal trees is exactly the cost
of the split leaf. All Z-trees of rank less than n, can be generated by the follow-
ing Algorithm 3.

Algorithm 3 MinZtree (n)

Require: n ∈ N

Ensure: Z-tree of rank less than n

1: t← 1-tree
2: for i = 1 to n do
3: t← Split(t)
4: end for

Theorem 2. Algorithm 3 computes one Z-tree of rank i for all i = 1 to n in O(n log n)
time.

Proof. At each step of this algorithm we look for a minimal cost leaf and then
we split it. We can maintain the costs of the leaves in a dynamic structure which
allow us a logarithmic time search for the minimal cost leaf and also a logarith-
mic time insertion of the two leaves obtained from the split function.

It is clear that for a given n, there may exist several Z-trees of rank n.

In the following we introduce a subclass of full binary trees (called P -trees),
for which the Z-trees are unique. We do that in order to study the size-complexity
of the reduced automata (the number of transitions).
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5.1 P -Trees

We denote by Mt the set of leaves having minimal cost in t, that is: Mt =
arg min

ν∈Lt

cν . The function SplitAll(t) returns the tree obtained from t by replac-

ing every leaf in Mt by the unique 2-tree. See Figure 5.

t

3 5

3

7 8

5 5 3

SplitAll(t)

3 5

3

7 8

5 5 3

Fig. 5. A 8-tree t with a Split tree and its SplitAll tree. Values in the nodes are costs.

Definition 3. The class (tn)n>0 of P -trees is defined inductively as follows:

– t1 = 1-tree and
– t(n+1) = SplitAll(tn).

See Figure 6.

Remark 2. Notice that if ν ∈ Mtn then cν = (n − 1). This can be established by
induction on n. Therefore, to get t(n+1) from tn we split leaves of cost (n− 1).

t1 t2 t3 t4 t5

Fig. 6. The first four P -trees. Leaves with big circle have minimal cost.

5.2 Eratosthenes-Pascal’s Triangle

The Eratosthenes-Pascal’s Triangle is constructed from Pascal’s Triangle as fol-
lows: we interleave each column k of Pascal’s Triangle with (k − 1) zeros. The
element of the Eratosthenes-Pascal’s Triangle at the nth row and the kth column
is denoted by T k

n with n ≥ 1 and k ≥ 1.
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1 2 3 4 5 6 7 8 9 10 · · ·
1 1
2 1 1
3 1 0 1
4 1 2 0 1
5 1 0 0 0 1
6 1 3 3 0 0 1
7 1 0 0 0 0 0 1
8 1 4 0 4 0 0 0 1
9 1 0 6 0 0 0 0 0 1
10 1 5 0 0 5 0 0 0 0 1
11 1 0 0 0 0 0 0 0 0 0 1

Let n be a natural number. We denote by Dn the set of divisors of n.

Proposition 6.

T k
n =





(n

k
+ k − 2

k − 1

)
if k ∈ Dn

0 otherwise.

Proof. The element of the Pascal’s Triangle at the nth row and the jth column
is
(
i−1
j−1

)
. This element is moved in the Eratosthenes-Pascal’s Triangle to the row

r = (i − j + 1)j in the same column j. We have then

T j

(i−j+1)j =

(
i− 1

j − 1

)
Thus T j

r =

(r

j
+ j − 2

j − 1

)

Let Sn be the sum of the nth row in the Eratosthenes-Pascal’s Triangle.

Sn =
n∑

k=1

T k
n =

∑

k∈Dn

(n

k
+ k − 2

k − 1

)

5.3 P -trees and Eratosthenes-Pascal’s Triangle

In this section we will describe the link between the Eratosthenes-Pascal’s Tri-
angle and the set of P -trees.

Theorem 3. The sum of the elements of the nth row of Eratosthenes-Pascal’s Trian-
gle’s, Sn, is exactly |Mtn | the number of leaves of minimal cost in the P -tree tn.

To prove this theorem we introduce a family Fn which is in bijection with both
the Eratosthenes-Pascal’s Triangle’s rows and with P -trees. We focus on the
following question: Given a natural number n what are all the possible paths that
have (n − 1) as cost? To answer this question, we define F(n−1) as the set of all
paths of cost (n− 1):

F(n−1) = {π | cπ = (n− 1)}
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Lemma 2. For all n ≥ 1, |F(n−1)| = Sn.

Proof. Let F i
(n−1) for 0 ≤ i ≤ (n − 1) be the set of paths of F(n−1) having i left

edges. We have F(n−1) =

(n−1)⋃

i=0

F i
(n−1) where

F i
(n−1) = {π ∈ F(n−1) | aπ = i}

= {π | (aπbπ + aπ + bπ = (n− 1)) ∧ (aπ = i)}
= {π | (bπ =

n

i+ 1
− 1) ∧ (aπ = i)}

So, we get |F i
(n−1)| =






( n

i + 1
+ i− 1

i

)
if (i+ 1) ∈ Dn

0 otherwise.

This corresponds to the different ways to arrange i left edges in a path of length
n

i+ 1
+ i− 1. Let k = i+ 1 then

|F k−1
(n−1)| =






(n

k
+ k − 2

k − 1

)
if k ∈ Dn

0 otherwise.

Thus |F k−1
(n−1)| = T k

n . That is for 0 ≤ i < n we get |F i
(n−1)| = T i+1

n . Finally

|F(n−1)| =
(n−1)∑

i=0

|F i
(n−1)| =

(n−1)∑

i=0

T i+1
n =

n∑

i=1

T i
n = Sn

Therefore, we can associate the nth row of the Eratosthenes-Pascal’s Triangle to
F(n−1).

(a) (b) (c) (d)

Fig. 7. All paths of cost 5. (a) The unique path of cost 5 with no left edges which corre-
sponds to

(

5

0

)

= 1. (b) The three paths of cost 5 with one left edges which corresponds to
(

3

1

)

= 3. (c) The three paths of cost 5 with two left edges which corresponds to
(

3

2

)

= 3.

(d) The unique path of cost 5 with five left edges which corresponds to
(

5

5

)

= 1. There is

no paths of cost 5 with three or four left edges that correspond to zeros in the 6th row of
the Eratosthenes-Pascal’s Triangle.
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Lemma 3. For all n ≥ 1, |F(n−1)| = |Mtn |.

Proof. We will show that each set Fn is associated with the P -tree tn. We pro-
ceed by induction. Assume that for all k ≤ n, the P -tree tn contains all paths
of cost less or equal to n, that is, for all k ≤ n, Fk is in the P -tree tn. From this
hypothesis we should show that t(n+1) = SplitAll(tn) contains all the paths of
cost less or equal to (n + 1). Of course, t(n+1) contains all the paths of cost less
or equal to n because the tree t(n+1) is obtained from tn. However, does t(n+1)

contain all paths of cost equal to (n + 1)? To answer this question, we proceed by
absurd. Let π be a path with cost cπ = (n + 1) which is not in t(n+1). It is clear
that the cost of the father of π is:

cfπ =

{
(aπ − 1)bπ + (aπ − 1) + bπ if π is a left child,
aπ(bπ − 1) + aπ + (bπ − 1) if π is a right child.

As cfπ < cπ then cfπ ≤ n. From this we deduce that when cfπ < n, the father
fπ of π was split by the SplitAll() function within an earlier or it will be split in
the current tree tn in the case where cfπ = n (see Remark 2). In both cases, the
path π is necessarily in t(n+1).

From the two last lemmas, we construct a bijection between the P -trees and the
Eratosthenes-Pascal’s Triangle’s rows, and we claim following corollary:

Corollary 1. Let tn be a P -tree. Then |Mtn | = |F(n−1)| = Sn.

From Corollary 1, we have Sn =
∑

k|n

(
n
k
+ k − 2

k − 1

)
.

Proposition 7. Let tn be a P -tree. Its size s(tn) = |Ltn | (the number of leaves), and

its weight w(tn) are: s(tn) = 1 +

n−1∑

i=1

Si and w(tn) =

n∑

i=2

(i− 2)Si−1.

Proof. From Corollary 1 and Remark 2, we have, the size of the tree tn is the
sum of the size of the tree tn−1 and the number of all split minimal leaves, that
is, s(tn) = s(tn−1) + |Mtn−1

|. We have also, the weight of the tree tn is the sum
of the weight of the tree tn−1 and the costs of all split minimal leaves, that is,
w(tn) = w(tn−1) + (n− 2)|Mtn−1

|.

From Proposition 4, the P -tree tn (which is a Z-tree) corresponds to a Z(As(tn))
partition system. The CFS automaton associated with Z(As(tn)) has w(tn) tran-
sitions.

With our construction the CFS automaton associated with a Z(An) CFS par-
tition system may contain several initial states. However, in order to compare
the number of minimal automata and their number of transitions, with those
obtained by R. Cox [3] (seen Table 1), we must restrict our study to CFS parti-
tion systems leading to a unique initial state automata. It is easy to verify that

in this case a P -tree tn has s(tn) = 1 +

n−1∑

i=1

Si+2

2
and w(tn) =

n∑

i=1

iSi+1

2
.
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n 1 2 3 4 5 6 7 8 9 10 11 12 13 14

(i) 1 3 6 9 13 18 23 ≤ 28 ≤ 34 ≤ 41 ? ? ? ?

(ii) 1 1 2 1 1 4 6 ≥ 1 ≥ 1 ≥ 1 ? ? ? ?

(iii) 1 3 6 9 13 18 23 28 33 39 46 53 60 67

(iv) 1 1 2 1 1 4 6 4 1 1 5 10 10 5

Table 1. Comparison table. (i) Minimal transition number estimated by R. Cox [3]
(ii) Number of minimal automata estimated by R. Cox [3] (iii) Number of transitions in
our reduced automaton (iv) Number of reduced automata estimated by our approach.

6 Asymptote behavior of the number of transitions

Appendix A contains the basics of asymptotic notations. In this section we shall
establish one of our main result which concern the asymptotically result on
the behavior of the number of transitions w(tn), where s(tn) is the number of
states. Namely, we will show that the weight of our automata is asymptotically
equivalent to s(tn)log

2s(tn) up to constant which means that the number of
transitions is minimal in the sense that we reach the lower bounded of Shnitger
[13]. Indeed, we have

Theorem 4. log2(4) w(tn) ∼ s(tn) log
2 s(tn).

As a consequence we obtain the following

Corollary 2. For a large n, we have

ω(tn) < s(tn) log
2 s(tn).

It is also easy to deduce the following

Corollary 3.
s(tn) log

2 s(tn)

log log s(tn)
= o

(
w(tn)

)
.

Before starting the proof of Theorem 4. Observe that according to the Corollary
1 combined with Proposition 7, one may consider that ω(tn) and s(tn) are given
by

s(tn) = 1 +

n−1∑

1

Si and ω(tn) =

n−2∑

i=1

iSi+1.

As usual in the number theory, any arithmetical function f : Z −→ R can be
extended to the real line by putting, for any x ∈ R, f(x) = f(⌊x⌋). Therefore,
for any x ≥ 2, we have

s(tx) = 1 +

⌊x⌋−1∑

1

Si and ω(tx) =

⌊x⌋−2∑

i=1

iSi+1.
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We recall that the classical arithmetical function π(x) denote the number of
primes not exceeding x. We shall need also the following classical identity due
to Abel

Theorem 5 (Abel’s identity, [1]). For any arithmetical function a(n) let

A(x) =
∑

n≤x

a(n)

where A(x) = 0 if x < 1. Assume f has a continuous derivative on the interval [y, x],
where 0 < y < x. Then we have

∑

y<n≤x

a(n)f(n) = A(x)f(x) −A(y)f(y)−

ˆ

x

y

A(u)f ′(u)du.. (1)

We deduce easily from the Abel’s identity the following lemma

Lemma 4. For any integer n ≥ 1, we have

ω(tn) = (n− 2)s̃(tn)− 3−

ˆ

n−2

2

s̃(tu)du,

where s̃(tu) = s(tu)− 1.

We need to estimate ω(tn) with respect to s(tn). For that, we shall need the
following weaker form of the Prime Number Theorem (WPNT for short) due
to Cheyshev

Theorem 6 ([1]). For every integer n ≥ 2 we have

1

6

n

log(n)
< π(n) < 6

n

log(n)
. (2)

We deduce from the WPNT the following crucial proposition

Proposition 8. For all u ≥ 4 we have

s̃(tu) ≥
1

3

u− 2

log(u− 2)
. (3)

Proof. We can show that for any prime number p ≥ 2, we have Sp = 2. Hence

s̃(tu) =
∑

i≤u

Si ≥ 2π(u− 1).

Consequently, by WPNT we get

s̃(tu) ≥
1

3

[u]− 1

log([u]− 1)
.
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But the function x ∈ [3,+∞[ 7→ x
log(x) is increasing function. It follows that we

have, For all u ≥ 3,

s̃(tu) ≥
1

3

u− 2

log(u− 2)
,

Which achieve the proof of the proposition.

For any x ≥ 2 and any positive integer n, let

Lin(x) =

ˆ

x

2

dt

logn(t)
.

Let us summarize in the following proposition a classical well-known results
on Lin(x) that we shall used.

Proposition 9. For every x ≥ 2 and integer n ≥ 1, we have

Li1(x) =
x

log(x)
+ Li2(x) −

2

log(2)
, (4)

Lin(x) = O
( x

logn(x)

)
. (5)

Now, we are able to formulate our key estimation of ω(tn) with respect to
s(tn) in the following proposition.

Proposition 10. lim sup
( ω(tn)

(n− 2)s̃(tn)

)
≤ 1.

Proof. Applying Lemma 4 we have, for any n ≥ 3,

ω(tn)

(n− 2)s̃(tn)
= 1− 3

(n− 2)s̃(tn)
− 1

(n− 2)s̃(tn)

ˆ

n−2

2

s̃(tu)du.

Therefore, for any n ≥ 5, we have

ω(tn)

(n− 2)s̃(tn)
≤ 1− 3

(n− 2)s̃(tn)

From Proposition 8 we deduce, that for any n ≥ 5 we have

3

(n− 2)s̃(tn)
≤ 1

log(n− 2)

Hence, by letting n goes to ∞ we obtain

3

(n− 2)s̃(tn)
−−−−−→
n→∞

0.

Which implies that

lim sup
( ω(tn)

(n− 2)s̃(tn)

)
≤ 1,

and this finish the proof of the proposition.
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We are reduced to compare the sequences (n − 2)s(tn) and s(tn) log
2 s(tn). For

that we shall estimate s(tx). Precisely, we argue that we have the following

Theorem 7. For a large x > 0 we have

x
3
4
4
√
x−1

√
π

≤ s(tx) ≤ x
3
4 log(x)

4
√
x−1

√
π

.

The proof of Theorem 7 will be given later. For instance, using Theorem 7 holds
we shall extended Proposition 10 as follows.

Proposition 11. The sequences ω(tn) and (n − 2)s(tn) two sequences be equivalent.
That is,

ω(tn)

(n− 2)s(tn)
−−−−−→
n→∞

1.

Proof. By Lemma 4, write

ω(tn)

(n− 2)s(tn)
= 1− 3

(n− 2)s(tn)
− 1

(n− 2)s(tn)

ˆ

n−2

2

s(tx)dx.

Let ε > 0 and x sufficiently large. Then, by Theorem 7, for a large x, we have

x
3
4
4
√
x−1

√
π

≤ s(tx) ≤ x
3
4 log(x)

4
√
x−1

√
π

. (6)

But
ˆ

n−2

2

4
√
xdx

u=
√
x

=

ˆ

√
n−2

√
2

2 u 4udu

=
[ 2u

log(4)
4u

]√n−2

√
2

−
[ 2

log2(4)
4u

]√n−2

√
2

=
2
√
n− 2 .4

√
n−2

log(4)
− 2

√
2 .4

√
2

log(4)
− 2 .4

√
n−2

log2(4)
+

2 .4
√
2

log2(4)
. (7)

Since 1
(n−2)s(tn)

vanishes at the infinity and s̃(tn) is equivalent to s(tn) we may

assume that (6) holds starting from 2 and Theorem 7 is valid for s̃(tn). Therefore

1

(n− 2)s̃(tn)

ˆ

n−2

2

s̃(tx)dx ≤ 1

(n− 2)(n− 2)
3
4 4

√
n

ˆ

n−2

2

x
3
4 log(x) 4

√
xdx

≤ (n− 2)
3
4 log(n− 2)

(n− 2)(n− 2)
3
4 4

√
n

ˆ

n−2

2

4
√
xdx

≤ log(n− 2)

(n− 2)4
√
n

ˆ

n−2

2

4
√
xdx. (8)
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From (7) combined with (8) it follows that

1

(n− 2)s̃(tn)

ˆ

n−2

2

s̃(tx)dx ≤

2
√
n− 2 .4

√
n−2

log(4)
× log(n− 2)

(n− 2)4
√
n
+

2 .4
√
2

log2(4)
× log(n− 2)

(n− 2)4
√
n
−−−−−→
n→∞

0.

We conclude that
ω(tn)

(n− 2)s̃(tn)
−−−−−→
n→∞

1.

which proves the proposition.

It remains to prove Theorem 7. For that we shall need the following classical
lemma. The proof of it can be found in [4]. Nevertheless we include the proof
for the sake of completeness.

Lemma 5.

(
2n
n

)
∼ 4n√

π
√
n
.

Proof. By Stirling formula we have

n! ∼ nne−n
√
2πn

Hence (
2n
n

)
=

2n!

(n!)2
∼ 4n√

π
√
n
.

This finishes the proof of the lemma.

Proof (Proof of Theorem 7). For x ≥ 2, Write

s(tx) =
∑

n≤x

∑

d|n

(
n
d
+ d− 2
d− 1

)

=
∑

dq≤x

(
q + d− 2
d− 1

)

=

⌊x⌋∑

d=1

⌊x
d
⌋∑

q=1

(
q + d− 2
d− 1

)

From this we see that

s(tx) ≤
⌊x⌋∑

d=1

⌊x
d
⌋
(
2(⌊x⌋ − 1)
⌊x⌋ − 1

)

≤ x log(x)
(2(⌊x⌋ − 1)

⌊x⌋ − 1

)
, (9)
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and

s(tx) ≥ ⌊x⌋
(2(⌊x⌋ − 1)

⌊x⌋ − 1

)
, (10)

Using the relation ⌊x⌋ = x+O(1) combined with (9) and (10), we obtain

x
(
2(⌊x⌋ − 1)
⌊x⌋ − 1

)
≤ s(tx) ≤ x log(x)

(
2(⌊x⌋ − 1)
⌊x⌋ − 1

)
.

By Lemma 5, this gives

x
3
4
4
√
x−1

√
π

≤ s(tx) ≤ x
3
4 log(x)

4
√
x−1

√
π

,

which proves the theorem.

Now we are able to give the proof of Theorem 4.

Proof (of Theorem 4). By Proposition 11, it is sufficient to show that

s(tn) log
2(s(tn)) ∼ (n− 2)s(tn).

For that, observe that we have

s(tn) log
2(s(tn))

(n− 2)s(tn)
=

log2(s(tn))

n− 2

Applying Theorem 3, we deduce that

log(s(tn)) ∼ log(4)
√
n.

Whence
log2(s(tn)) ∼ log2(4) n.

Hence
log2(s(tn))

(n− 2)
−−−−−→
n→∞

log2(4).

We deduce that
ω(tn)

s(tn) log
2 s(tn)

−−−−−→
n→∞

1

log2(4)
< 1.

This finishes the proof of the theorem.

7 Conclusion

In this paper we show how binary trees can be used to design a fast algorithm
for computing an automaton with a reduced5 number of transitions recogniz-
ing the language L(En). We have verify that our algorithm gives the minimal
number of transitions for n = 1 to 7 (see Table 1) and we have shown that our
reduction is asymptotically a minimization. Hence, we conjecture that Algo-
rithm 3 computes the minimal transition automaton.

5 Asymptotically minimal.
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A Asymptotic notations

Following [4], we employ the standard asymptotic notation called Bachmann-
Landau notation as follows. Let S be a set and s0 ∈ S a particular element
of S. We assume a notion of neighbourhood to exist on S. Examples are S =
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Z>0

⋃{+∞} with s0 = +∞, S = R with s0 any point in R; S = C or a subset
of C with s0 = 0, and so on. Two functions f and g from S \ {s0} to R or C are
given.

– O-notation: write
f(s)

s→s0= O(g(s)),

if the ratio
f(s)

g(s)
stays bounded as s → s0 in S. In other words, there exists

a neighborhood V of s0 and a constant C > 0 such that

|f(s)| < C|g(s)|, s ∈ V, s 6= s0.

One also says that ”f is of order at most g”, or ”f is big-Oh of g”(as s tends
to s0).

– o-notation: write
f(s)

s→s0= o(g(s)),

if the ratio
f(s)

g(s)
tends to 0 as s → s0 in S. In other words, for any (arbitrarily

small) ε > 0, there exists a neighborhood Vε of s0 (depending on ε), such
that

|f(s)| < ε|g(s)|, s ∈ Vε, s 6= s0.

One also says that ”f is of order smaller than g, or f is little-oh of g” (as s
tends to s0).

– ∼-notation: write
f(s)

s→s0∼ g(s),

if the ratio
f(s)

g(s)
tends to 1 as s → s0 in S. One also says that ”f and g are

asymptotically equivalent” (as s tends to s0).
– Ω-notation: write

f(s)
s→s0= Ω(g(s)),

if the ratio
f(s)

g(s)
stays bounded from below in modulus by a non-zero quan-

tity, as s → s0 in S. Which means that there exists k > 0 and a neighborhood
V of s0, such that

f(s) ≥ k.g(s), s ∈ V .
One then says that f is of order at least g.

– θ-notation: if f(s) = O(g(s)) and f(s) = Ω(g(s)), write

f(s)
s→s0= θ(g(s)).

This implies that there exits k, C > 0 and a neighborhood V of s0, such that

k.g(s) ≤ f(s) ≤ C.g(s), s ∈ V .

One then says that f is of order exactly g.
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At this point we are able to make a parallel between the history of our con-
tribution and the history of the famous Prime Number Theorem (PNT) which
we shall use later in its weaker form. The PNT Theorem concerns the asymp-
totic behavior of the prime-counting function π(x) = |{p ≤ x, p prime}|. Using
asymptotic notation the PNT can be restated as

π(x) ∼ x

lnx
.

The behavior of π(x) has been the object of intense study by many celebrated
mathematicians ever since the eighteenth centry. Inspection of tables of primes
led Gauss (1792) and Legendre (1798) to conjecture the PNT. In 1808 Legendre
published the formula π(x) = x/(logx+ A(x)), where A(x) tends to a constant
B = −1.08366 as x −→ +∞, which means that π is Ω(x/log(x)).
According to Bateman and Diamond [12], The first person to establish the true
order of π(x) was P. L. Chebyshev. Indeed, in two papers from 1848 and 1850,
Chebychev prove that π(x) is θ(x/log(x). This result is known in nowadays as
Chebychev Theorem.
Finally, in 1896 the PNT was first proved by Hadamard and de la Vallée Poussin.
Their proofs were long and intricate. A simplified modern presentation is given
on pages 41-47 of Titchmarsh’s book on the Riemann Zeta function [14].
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