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Real-Time 3D Image Segmentation by

User-Constrained Template Deformation

Benoit Mory, Oudom Somphone, Raphael Prevost, and Roberto Ardon

Medisys, Philips Research, Suresnes, France

Abstract. We describe an algorithm for 3D interactive image segmenta-
tion by non-rigid implicit template deformation, with two main original
features. First, our formulation incorporates user input as inside/outside
labeled points to drive the deformation and improve both robustness
and accuracy. This yields inequality constraints, solved using an Aug-
mented Lagrangian approach. Secondly, a fast implementation of non-
rigid template-to-image registration enables interactions with a real-time
visual feedback. We validated this generic technique on 21 Contrast-
Enhanced Ultrasound images of kidneys and obtained accurate segmen-
tation results (Dice> 0.93) in less than 3 clicks in average.

1 Introduction

In medical applications, segmentation of anatomical structures in difficult condi-
tions such as tissue inhomogeneities, noise, loss-of-contrast, can be significantly
facilitated by the incorporation of prior knowledge. This approach has been ex-
tensively studied in terms of shape prior by constraining the solution to remain
close to a predefined shape. For instance, statistical methods have been proposed
to model shapes, such as the active shape models [1]. In the level-set frame-
work, shape priors have also been used, penalizing the dissimilarity between the
implicit object representation and the one embedding the prior shape, via an
additive shape constraint [2–5]. These two approaches have been combined by
embedding training shapes in distance functions and defining a statistical model
for the shape term [6–9].

Template-to-image registration is a possible alternative, recently applied to
medical applications such as liver segmentation in CT [10], in which segmentation
is performed by geometrically deforming a binary template towards the image
[10–12]. The prior is the template itself and the shape constraint consists in a
regularization of the deformation.

Shape priors may be helpful but insufficient in pathological cases with ex-
treme variability in image features and organ shapes; expert input is then es-
sential to guide the segmentation. Few attempts to combine shape priors and
interactivity have been made in 2D [13]. In 3D, the design of intuitive and fast
interactive tools remains a key challenge. We propose a formulation of non-
rigid template deformation that incorporates user constraints in the form of
inside/outside labels and enables a live visual feedback of the surface evolution.
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2 Implicit Template Deformation

Region-based variational formulations of image segmentation consist in finding a
partitioning of an image I that provides the best trade-off between classification
error and boundary regularity. In the case of two regions, the optimal boundary
is the surface S solution of:

min
S







R(S) +

∫

inside S

r1 (x) dx+

∫

outside S

r2 (x) dx







(1)

R(S) is a regularization term, commonly chosen as the surface area. r1 and
r2 are classification error functions in the foreground and background regions,
respectively. For instance, maximum-likelihood principles suggest the choice of
log-likelihood terms ri(x) = − log pi(I(x)) for known intensity distributions p1
and p2 [14].

An equivalent formulation can be derived for an implicit representation of
S, with a function Φ : Ω → R, positive inside S and satisfying Φ−1(0) = S. Let
H denote the Heaviside function (H(a) = 1 if a > 0, 0 otherwise); H(Φ) is the
characteristic function of the region enclosed by S and (1) is equivalent to:

min
Φ

{

R(Φ) +

∫

Ω

H(Φ(x))r (x) dx

}

with r(x) = r1 (x)− r2 (x) (2)

Regularization R(Φ) can be complemented with an additional shape prior term
that enforces the solution to remain close to a predefined implicit representation.
For instance, if Φ is a distance function, the shape term can penalize the L2-
distance to a globally transformed template [2]. However, this technique does
not guarantee that the zero level-set of the solution preserves the topology of
the prior shape. Moreover, penalizing the surface area inevitably smooths out
possible important details of the prior shape.

To cope with these problems, alternative approaches have been proposed [10–
12] to define Φ as the deformation of a given implicit template Φ0, defined in a
referential Ω0, with a geometric transformation ψ (see Fig. 1):

Φ = Φ0 ◦ ψ (3)

The unknown becomes the transformation ψ and R(Φ) in (2) is substituted
with a shape term R(ψ), consisting in a regularization constraint acting on ψ.

Thus, a general formulation of image segmentation by implicit template de-
formation reads:

min
ψ

{

E (ψ) = R(ψ) +

∫

Ω

H(Φ0 ◦ ψ(x))r (x) dx

}

(4)

Compliance with the shape prior is determined by both the deformation
model ψ and its associated constraint R(ψ). In the non-rigid case, Saddi et al.
represented the deformation with a diffeomorphic fluid model [10], Somphone et
al. proposed deformations based on finite elements [11], and Huang and Metaxas
adopted Free Form Deformations in their Metamorphs [12].
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implicit template Φ0 Φ = Φ0 ◦ ψ Φ satisfying constraints.

Fig. 1. Deformation of a star-shaped template (white contour) implicitly represented
with a signed distance function Φ0, with inside (blue) and outside (red) constraints.

3 Proposed Formulation

The aforementioned approaches of template-to-image registration do not con-
sider possibilities for user interactions. Moreover, they are adapted from exist-
ing non-rigid image-to-image registration methods. Therefore, they inherit an
algorithmic complexity that is incompatible with real-time feedback in 3D.

3.1 User Interactions as Inequality Constraints

Additional control can be obtained by letting the user locate specific points
that lie inside/outside the object. Denoting {xk} a set of N labeled points, this
translates into N constraints on the sign of the transformed template at xk:

∀k ∈ {0, . . . , N − 1} γkΦ0 ◦ ψ(xk) ≥ 0 (5)

where γk = 1 (resp. −1) for inside (resp. outside) points, as illustrated in Fig. 1.
Note that the surface {Φ0 ◦ψ = 0} can also be enforced to go through a specific
point by adding both inside and outside constraints at the same location.

3.2 Transformation Model

In the context of template-to-image registration, the choice of a transformation
model ψ in (4) relates to the notion of shape. In particular, a shape should be
invariant to geometric transforms such as rotation and scaling. We refer to such
a global transformation as the pose. To separate pose from subsequent shape
deformation, we define ψ as a composition of a global transformation G and a
local transformation L [15]:

ψ = L ◦ G (6)

Pose. G : Ω → Ω0 is chosen as a parametric transform that globally aligns
the template with the target in the image. For anatomical structures, similari-
ties (preserving aspect ratio) are particularly adapted. Thus, G is defined by a
matrix in homogeneous coordinates, with 7 parameters p = {pi}i=1···7.
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Deformation. L : Ω0 → Ω0 is defined by a displacement field u in the template
referential L = u + Id, where u should be smoothly-varying in space. To take
advantage of fast Gaussian filtering, the displacement u is defined as a smoothed
version of an auxiliary displacement field v (Kσ is a Gaussian of scale σ):

u(x) = [Kσ ∗ v] (x) =

∫

Ω0

Kσ(x− y)v(y)dy (7)

3.3 Shape Term

Decomposing ψ = L◦G allows to define a shape term as a function of the shape
deformation L only, regardless of the pose G. Using the L2 norm, we choose to
constrain L towards the identity Id:

R(L) =
λ

2
‖L − Id‖22 =

λ

2

∫

Ω0

‖u(x)‖2dx (8)

where λ is a positive scalar parameter. R quantifies the deviation of the seg-
mentation from the prior shape by a displacement magnitude in the template
referential Ω0. Finally, the constrained optimization problem to solve reads:

min
p,v

{

E(ψp,v) =
λ

2

∫

Ω0

‖Kσ ∗ v‖2 +

∫

Ω

H(Φ0 ◦ ψp,v)r

}

subject to γkΦ0 ◦ ψp,v(xk) ≥ 0, ∀k ∈ 0..N − 1

(9)

4 Augmented Lagrangian Scheme

To minimize the non-convex functional E(ψp,v) under a set of N non-linear
inequality constraints, we follow an Augmented Lagrangian methodology [16]
and define an equivalent unconstrained problem. Problem (9) is equivalent to:

min
ψp,v

{

Ẽ(ψp,v) = max
α≥0

{

E(ψp,v)−

N−1
∑

k=0

αkck(ψp,v)

}}

with ck(ψp,v) = γkΦ0 ◦ ψp,v(xk)

(10)

where αk is the Lagrange multiplier associated to the kth constraint. (10) has the
same set of solutions as the original Problem (9): if ψp,v satisfies all constraints

ck, then Ẽ(ψp,v) = E(ψp,v), otherwise Ẽ(ψp,v) = +∞. To avoid jumps of

Ẽ from finite to infinite values, a practical minimization requires to rely on a
smooth approximation Ê. In order to constrain the maximizers α = {αk} to
finite values during the iterative process, a quadratic penalty parameter µ and
a set of multipliers αj (at the jth iteration) are explicitly introduced to define:

Êµ(ψp,v,α
j) = max

α≥0

{

E(ψp,v)−
N−1
∑

k=0

αkck(ψp,v)−
1

2µ

N−1
∑

k=0

(

αk − α
j
k

)2
}

(11)
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In (11), optimal Lagrange multipliers associated to each constraint ck(ψp,v) can
be found as a function of previously estimated values:

α
j+1
k =

{

0 if αjk − µck(ψp,v) ≤ 0

α
j
k − µck(ψp,v) otherwise.

(12)

Substituting (12) in (11) yields the expression of the smooth approximation Êµ:

Êµ(ψp,v, α
j) = E(ψp,v) +

N−1
∑

k=0

Ψµ

(

ck(ψp,v), α
j
k

)

(13)

with Ψµ(a, b) =







−ab+
µ

2
a2 if µa ≤ b

−
1

2µ
b2 otherwise.

(14)

Finally, the alternate scheme below provides at convergence a local minimizer of
(9) that satisfies all inequality constraints.

given starting penalty parameter µ0, and α0 = 0,
repeat

choose µt > µt−1,
repeat

(A) ψp,v fixed, update α
j+1 as in (12)

(B) αj fixed, update ψp,v by minimizing (13)
until convergence;

until a local minimum of E(ψp,v) satisfying ∀k, ck(ψp,v) ≥ 0 is found ;

In our application, the effect of each interaction is visualized with a real-time
display of the surface evolution. This relies on fast iterations of the minimization
of (13) involved in step (B), jointly performed with respect to p and v by gradient
descent of:

Ê(p,v) = E(ψp,v) +

N−1
∑

k=0

Ψµ

(

ck(p,v), α
j
k

)

(15)

Evolution equations for each pose parameter pi and the displacement field v are:

∂pi

∂t
= −

∂Ê

∂pi
= −

∫

Ω0

δ(Φ0 ◦ L)r ◦ G
−1Ai −

N−1
∑

k=0

bkAi ◦ G(xk)

∂v

∂t
= −

∂Ê

∂v
= −Kσ ∗

[

λu +

(

δ(Φ0 ◦ L)r ◦ G
−1 +

N−1
∑

k=0

bkδG(xk)

)

∇Φ0 ◦ L

]

shape image force constraints

(16)
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where bk = γk
∂Ψµ

∂a
, Ai(x) =

〈

∇Φ0 ◦ L(x),
(

I+ Ju(x)

) ∂G

∂pi
◦ G−1(x)

〉

with I the

Identity matrix and Ju the Jacobian matrix of u, and δG(xk)(x) = δ (x− G(xk)).
Let us now emphasize key properties of (16) that enable a fast implementa-

tion. First, interpolating Φ0 ◦L and ∇Φ0 ◦L over the whole domain Ω0 would be
extremely time-consuming. Nevertheless, since it is multiplied either by δ(Φ0◦L)
or δG(xk), the warped gradient∇Φ0◦L is only needed on the set {Φ0 ◦ L = 0} and
at points {xk} (Fig. 2.a) which highly reduces warped gradient computations.

Moreover, precise knowledge of the warped template Φ0 ◦L is only necessary
near its zero level. Setting Φ0 to a distance function to the prior shape allows a
coarse-to-fine approach using octrees. At each level, decision is made to further
refine each cell based on the distance value (Fig. 2.b) which also significantly
reduces the warping complexity.

Finally, a benefit of the displacement model (7) is that image forces and
constraints extrapolate to the whole space with a convolution with Kσ (Fig. 2.c).

Our 3D implementation supports about 100 time steps per second when dis-
cretizing Ω0 on a lattice of 483 points, which allows a live response to constraints.

(a) surface/point forces (b) hierarchical warp φ0 ◦ L (c) convolved deformation

Fig. 2. Fast deformation of a distance function with hierarchical warp and convolution.

5 Segmenting Kidneys in Contrast-Enhanced Ultrasound

We validated this method on 3D contrast-enhanced ultrasound (CEUS) images
of kidneys. CEUS is a recent imaging modality that allows to visualize blood
flow in real-time without any risk for the patient. However, segmenting kidneys
in CEUS images is difficult : contrast agents generate noisy data, limited field
of view of probes often prevents the acquisition of the whole kidney and lesions
induce variations from the usual shape. Unlike in conventional ultrasound, very
few methods have been reported for 3D CEUS segmentation.

Validation was performed on a representative dataset of 21 CEUS volumes
acquired on a Philips iU22 ultrasound system with different probes (V6-2 and
X6-1), resolutions and fields of view. Typical size of the images is 512×320×256.
For each case, ground truth segmentation was provided by a radiologist.
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Template Φ0 is set to an ellipsoid. Segmentation criterion is the image gradi-
ent flux across the boundary, which is equivalent to a region-based formulation
such as (4) with r(x) = ∆I(x) where ∆ is the Laplacian operator. The scale σ
of the deformation field in (7) is set to 25 mm.

(a) (b) (c) (d)

Fig. 3. Top: automatic segmentation (blue) and ground truth (green) for 2 patients.
Bottom: segmentation with user interactions. (a) slice of the CEUS volume. (b) ground
truth (green) and automatic segmentation (red). (c) corrected segmentation (blue) with
3 clicks. (d) ground truth (green), automatic (red) and after corrections (blue).

While automatic segmentation is successful in some cases, difficult cases with
cysts and partial visibility of the kidney (Fig. 3) inevitably require corrections.
Fig. 4 summarizes the results obtained by a trained user and quantifies how
segmentation performance improves with the number of interactions. In most
cases, three clicks are sufficient to obtain a satisfactory result (Dice 0.93± 0.04).

6 Conclusion

Although proven a solid approach for medical image segmentation, template
deformation is still unable to cope with the variety of shapes that pathologies
generate. Reliable interactions are essential add-ons to these segmentation tools.
In this context, we introduced user corrections in a template deformation frame-
work with simple clicks inside/outside the object, with special care devoted to
algorithmic efficiency to enable real-time 3D visualization and intuitive control.
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Dice Mean Std.

init 0.67 0.14
auto 0.83 0.10

3 clicks 0.93 0.04

Dice(A,B) = 2 |A∩B|
|A|+|B|

Fig. 4. Comparison with ground truth, as a function of the number of interactions.
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