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Abstract - Switched Affine Systems (SAS) involve
control inputs of mixed nature. Thus Model Pre-
dictive Control (MPC) of SAS requires suitable
algorithms to compute the optimal control inputs
which are applied to the system at each time step.
An efficient algorithm is developed in this paper
which consists in finding a first suboptimum and
applying a branch cutting strategy to prune the
tree of switching possibilities. As a result, the size
and the number of Quadratic Programming (QP)
subproblems to solve is considerably reduced.
The proposed algorithm is illustrated on voltage
stability control of a small power system example.

Keywords—Predictive control, Mixed optimization,
Switched affine systems, Power systems.

I. INTRODUCTION

Most of the literature about advanced control involves
optimality aspects. Thus a lot of problem formulations
include something of kind: ‘find the control which
minimizes the cost function...’ and call for suitable
optimization methods. To deal with complex con-
strained control problems, Model Predictive Control
(MPC) has become a standard in the process industry
although the on-line optimization required can become
computationally expensive. To deal with hybrid sys-
tems which involve variables of mixed nature, the op-
timization methods needed by the MPC algorithm are
confronted to combinatorial aspects. Using the Mixed
Logical Dynamical (MLD) framework, the system to
control is modeled by discrete time dynamical equa-
tions and a set of inequality constraints involving real
and binary variables [1]. The application of MPC to
hybrid systems when using this framework requires the
solving of a Mixed Integer Linear or Quadratic Pro-
gram (MILP/MIQP) problem which is very time con-
suming. This optimization method involves Branch
and Bound (B&B) and Linear Programming (LP) or
Quadratic Programming (QP) algorithms. For Piece-
wise Affine (PWA) systems whose equivalence with
MLD has been proved under mild assumptions in [2],
some research has been engaged in the way of reducing
the combinatorial complexity. In [3], the concepts of

reachable set, one step controllable set and State Tran-
sition Graph (STG) are used. In this kind of approach,
the state and input space is divided into polyhedral
partitions where the system evolution is described by
an affine model. Switched Affine Systems (SAS) are a
subclass of PWA systems that involve either discrete
or continuous valued control inputs. From the model-
ing point of view, a change in discrete valued control
inputs can be viewed as a switching between models.
The switching possibilities which can be represented
as a tree shape lead to strong combinatorial problems
for control.
In this paper, an efficient algorithm (which does not
belong to B&B kind of algorithm) is proposed to ad-
dress the mixed optimization problem induced by the
application of MPC to SAS. The basic ideas of this
algorithm are: first to find a first suboptimum and
secondly to prune the tree of switching possibilities by
cutting the branches that are not able to lead to the
optimum. Thus the proposed approach leads to reduce
considerably the number and the size of QP subprob-
lems to solve.

Current research involves developing models, theory,
and computational techniques for hybrid systems, see
[4]. Nevertheless the use of a hybrid approach to deal
with the power system voltage stability issue is quite
recent. In the framework of voltage stability control,
power systems can be modeled using SAS. However
power systems are strongly non-linear and non-linear
MPC method is limited to those problems for which
a globally optimal solution can be found [5]. Previ-
ous research has provided a suitable off-equilibrium
linearizing procedure which allows the application of
MPC to voltage stability control of power systems [6].

The paper is organized as follows: in section II, SAS
and MPC concepts are introduced and the mixed op-
timization issue is addressed. In section III the Mixed
Pruning algorithm is presented and developed. An
application example coming from the area of voltage
stability control of power systems is addressed in IV
and conclusions are given in section V.



II. PROBLEM FORMULATION

The class of systems which are addressed in this paper
are defined by the following equations:

x (k + 1) = Aix (k) + Biuc (k) + fi

y (k) = Cix (k) + Diuc (k) + gi
(1)

and are commonly called discrete time SAS.
These systems own two kinds of control inputs, either
continuous or discrete valued. Continuous valued ones
are denoted as uc whereas discrete valued ones are de-
noted as ud and the couple (uc, ud) is the complete
input vector which is denoted as u. A particular com-
bination of the discrete valued control inputs defines
an operating mode i in which the system stands.
Let x (k) ∈ R

n, uc (k) ∈ R
m and y (k) ∈ R

p de-
note the state, continuous valued input and output
vector, respectively. Matrices of (1) have appropriate
dimensions: Ai ∈ R

n×n, Bi ∈ R
n×m, Ci ∈ R

p×n,
Di ∈ R

p×m, fi ∈ R
n and gi ∈ R

p with i ∈ N. The pair
(Ai, Bi) is assumed to be controllable.

A. Model Predictive Control

MPC consists in a control algorithm based on solv-
ing an on-line optimization problem using a receding
horizon approach. In [7], this is summarized in the
following steps:

• At time k and for the current state x (k) an open-
loop optimal control problem over a future time inter-
val is on-line solved taking into account the current
and future constraints.
• The first step in the optimal control sequence so ob-
tained is applied and then the procedure is repeated
at time (k + 1) using the current state x (k + 1).

The solution is converted into a closed-loop strategy
by using the measured value of x (k) (or else an esti-
mate provided by some form of observer) as the current
state. Stability of the resultant feedback system can
be established by using the fact that the cost function
acts as a Lyapunov function for the closed-loop system
[8].
Consider the following model:

x (l + 1) = f (x (l) , u (l)) (2)

and the cost function:

JN (x (k) , uN) =
k+N−1∑

l=k

L (x (l) , u (l)) (3)

where L(·) ∈ R
+ and

uN = {u (k) , u (k + 1) , · · · , u (k + N − 1)} (4)

is the control sequence over the prediction horizon of
length N .
In the particular setting of affine systems and
quadratic cost functions, the MPC problem can be for-
mulated by considering the model (1) and the following
cost function:

JN (x (k) , uN) =
k+N−1∑

l=k

∥∥y (l) − yref (l)
∥∥

Qy
+‖u (l)‖Qu

(5)
where yref is the output reference trajectory. 2-Norm
is used, i.e. ‖v‖Q = vT Qv. Qy and Qu are weighing
matrices such that Qy ≥ 0 and Qu > 0.
The MPC algorithm needs to solve the optimization
problem:

Jo
N (x (k)) = min

uN

JN (x (k) , uN) (6)

subject to model constraints (1) as well as current and
future input and state constraints:

u (l) ∈ U

x (l) ∈ X
(7)

where U and X are the set of constraints corresponding
to u and x.

B. Mixed Optimization

A particular feature of the optimization problem pre-
viously formulated is that it has a mixed nature. The
presence of either continuous (uc) or discrete (ud) val-
ued control inputs leads to consider the searched opti-
mal control sequence as a sequence of continuous (ucN )
as well as discrete (udN) valued control inputs over the
prediction horizon. Then the optimization problem (6)
can be written as follows:

Jo
N (x (k)) = min

udN

(
min
ucN

JN (x (k) , (ucN , udN))
)

. (8)

Given a discrete valued control sequence udN ,

J∗
N (x (k) , udN) = min

ucN

JN (x (k) , (ucN , udN)) (9)

is the optimal cost found by solving the correspond-
ing QP subproblem. The associated continuous valued
control sequence denoted as u∗

cN is optimal regarding
to udN .
To find the optimal control sequence over the predic-
tion horizon, all the possible discrete valued control
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Fig. 1. Brute force strategy for mixed optimization

sequences have to be enumerated. Figure 1 shows a
tree-shaped graphical representation of this brute force
strategy. The depth of the tree is fixed by the length
of the receding horizon whereas the width of the tree
is fixed by the number of possibilities for the discrete
valued control inputs (branching factor). For each dis-
crete valued control sequence, i.e. at each leaf of the
tree (represented by a small circle on the figure), a QP
subproblem still remains to be solved in order to find
the associated optimal continuous control sequence.
Then the sequence of discrete and continuous valued
control inputs which minimizes the cost function (5)
is the searched optimal control sequence.
The advantage of this strategy is that it guarantees to
find the searched optimum but unfortunately, and it is
its main drawback, it leads to a combinatorial explo-
sion with a possible huge number of QP subproblems
to solve. Moreover it should be noted that QP sub-
problem solving is time consuming, of course depend-
ing on the size of this subproblem.

III. MIXED PRUNING ALGORITHM

In this section, an efficient algorithm is proposed to
address the mixed optimization problem (6). The pur-
pose of the proposed approach is to reduce the num-
ber and the size of QP subproblems to solve in order
to reach the optimum. Whereas the brute force strat-
egy previously exposed requires to completely cover
the tree of operating mode possibilities represented on
figure 1, the basic idea of this algorithm is to prune
the tree by cutting the branches that are not able to
lead to the optimum.

A. Branch cutting

The following notations are used. u N
dP is the discrete

valued control subsequence of length P ≤ N extracted
from the discrete valued control sequence udN . The
same notation is used for continuous valued ones. The
superscript * denotes optimality as for u∗

cN . However
u∗N

cP is the subsequence of length P extracted from u∗
cN

and then is non-optimal over a horizon of length P .

Consider the following proposition. Given a discrete
valued control sequence udN , for any P ≤ N ,

J∗
N (x (k) , udN) ≥ J∗

P

(
x (k) , u N

dP

)
. (10)

In the tree of operating mode possibilities (cf. fig-
ure 1), on a path from the root to a leaf, cost function
(5) still increases.

Proof: Split the cost (9) in two terms, one for
the cost from time step k to k + P − 1 and one for
time step k + P to k + N − 1:

J∗
N (x (k) , udN) =

JP

(
x (k) ,

(
u∗N

cP , u N
dP

))

+
N∑

j=P+1

L
(
x (k + j − 1) ,

(
u∗N

cP (j) , u N
dP (j)

))
.

(11)

For any l ∈ {k, · · · , k + N − 1}, L (x (l) , u (l)) is posi-
tive or null, thus

J∗
N (x (k) , udN) ≥ JP

(
x (k) ,

(
u∗N

cP , u N
dP

))
. (12)

The right hand expression of (12) is the cost given by
using the continuous valued control subsequence u∗N

cP

which is extracted from u∗
cN . This cost is necessarily

greater than the optimal cost J∗
P

(
x (k) , u N

dP

)
obtained

by solving a QP subproblem over a horizon of length
P . Thus the following statement stands:

JP

(
x (k) ,

(
u∗N

cP , u N
dP

)) ≥ J∗
P

(
x (k) , u N

dP

)
. (13)

Assume to be at a depth P ≤ N in the tree of pos-
sibilities and that the associated cost is greater than
a known suboptimum of (5). According to proposi-
tion (10) all the remaining branches starting from the
considered node can be cut.

B. First suboptimum

To improve the efficiency of this branch cutting strat-
egy, it is suitable to begin with a good candidate for
the suboptimum. The proposed approach consists in
the following basic steps:

• Enumerate at one time step the possibilities for the
discrete valued control inputs,
• Solve associated QP subproblems over the prediction
horizon according to the current depth in the tree of
possibilities,
• Choose the best candidate.

By starting again this procedure, continue the explo-
ration until to reach the end of the prediction horizon,
i.e. a suboptimal solution has been found.
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Fig. 2. Pruning strategy for mixed optimization

C. Implementation

A tractable approach is to proceed in two steps:

1) Find a suboptimum by using the procedure de-
scribed above.
2) A suboptimal cost is known. Go one time step
backwards to either consider the following best candi-
date or cut the branches whose cost is already greater
than the known suboptimal one.

This pruning strategy is graphically illustrated on fig-
ure 2. At bottom, the leaves (symbolized by small
circles) are the set of QP sub-problems to solve in or-
der to find the optimum by enumeration (cf. section
II-B). The proposed approach consists in going di-
rectly towards the suboptimum that is obtained by
the series of the optima at one time step enumeration
(symbolized by shaded bold circles). Then all the con-
trol sequences not yet explored but that are not good
candidates (symbolized by empty circles) regarding to
the suboptimum are cut (symbolized by crosses) un-
til to find a better suboptimum (symbolized by empty
bold circle) or to reach the root of the tree. Only the
QP subproblems associated to the nodes marked out
by a circle have been needed to be solved. The control
sequence obtained that way (symbolized by a square)
is the one which minimizes the cost function (5) over
the prediction horizon.

IV. ILLUSTRATIVE EXAMPLE

To illustrate the strategies described in the previous
sections, a small size application belonging to the re-
search area of power systems is considered. Voltage
control and stability problems are receiving special at-
tention since recently, several major network collapses
have occurred around the world, e.g. in North America
and Europe in 2003. Power system components con-
tain some interesting mechanisms that makes it suit-
able for our study. More details about power system
components can be found in [9]. Due to the presence
of either continuous or discrete valued variables, inter-
esting on voltage stability control issue, power systems

V1 V2

G1 G2

V3

T

L1

L3 L2

C

V4

l

sC V ref
4

sl

nT

Fig. 3. Four-bus power system

belong to the class of SAS.

In the following, the power system example is briefly
described and simulation results are given, including
efficiency of the used algorithms. All the numerical
values are given using the per unit (p.u.) system which
is commonly used to deal with this kind of system.

A. Four-bus power system

Consider the power system shown on figure 3 which is a
case study proposed to the control and power engineer-
ing community, see [10]. Even though the power sys-
tem considered here is trivially small from the power
engineer’s point of view, the main components of a real
power system are present:

• G1 is a generator modelling the surrounding network
which is assumed to be strong,
• G2 is a generator equipped with a voltage regulator
and a field voltage limit,
• L1, L2 and L3 are transmission lines,
• C is a capacitor bank,
• T is a transformer equipped with a secondary volt-
age regulator called Load Tap Changer (LTC),
• l is a voltage dependent dynamic load modelling a
set of consumers.

Line L3 can be faulted which corresponds to the dis-
connection of two of its three parallel lines.

The LTC controls the transformer ratio nT tap by tap
within bounds to regulate the secondary voltage. How-
ever, since the size of a tap step is quite small (usually
in the range of 0.5%–1.5% of the nominal ratio), to
simplify the control design, nT is considered as a con-
tinuous variable with nT ∈ [0.9, 1.1].

Considered from the viewpoint of power restoration,
the load behavior is described by a smooth non-linear



differential equation [11]:

Tp ẋlp + xlp = Ps(Vl) + Pt(Vl)
Pl = (1 − sl sstep) (xlp + Pt(Vl))

(14)

where xlp is a continuous state variable, Vl the load
voltage magnitude (i.e. Vl ≡ V4), Ps(Vl) = P0V

αs

l

and Pt(Vl) = P0V
αt

l are the steady-state and transient
voltage dependencies respectively, Pl is the actual ac-
tive load power and Tp is the active power recovery
time constant. sstep is a constant load shedding step
and sl is a discrete control variable. A similar model
is used for the reactive load power.
The control inputs are the following:

• V ref
4 is the voltage reference of the LTC (V ref

4 ∈
[0.8, 1.2]),
• sC ∈ {0, 1, 2, 3} is the capacitor bank control input
(up to 3 parts of 0.1 p.u.),
• sl ∈ {0, 1} is the load shedding input (sl = 1 corre-
sponds to the disconnection of 5% of the load).

V ref
4 is a continuous valued control input whereas sC

and sl are discrete valued ones. V1, V2, V3 and V4 are
the voltage magnitude of the corresponding buses and
are considered as the outputs.
For this example, the branching factor is equal to 8.
To allow some comparisons, a branching factor equal
to 4 will be considered too by restricting sC ∈ {2, 3}.
On figure 4, two scenarii are considered to illustrate
the system behavior. The first one is the response
to a fault that occurs on line L3 at time t = 150 s
and no control is applied to the system: the voltages
collapse. The second one is the response to the same
fault when the remaining part of the capacitor bank is
connected at time t = 200 s as an emergency action:
the stability is recovered but the bus voltage V3 level
is still unacceptable for power systems operators.

B. Simulation results

The MPC based method detailed in this paper has
been applied to this case study. The control objec-
tives are to keep the voltages close to the nominal value
with acceptable levels, i.e. within an interval of ± 10%
centered around 1 p.u. Power systems are strongly
non-linear and in the framework of voltage stability,
they can be modeled using a non-linear multimodel
approach. A symbolic off-equilibrium linearizing pro-
cedure previoulsy developped allows to abtain a SAS
model which is valid around the operating point. Time
is discretized and using Euler method to approximate
the derivative, a discrete time SAS model of power
system is so obtained.
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Fig. 4. Responses to the fault without automatic control

The cost function (5) is used with quadratic
terms on yT (l) = (V2(l)V3(l)V4(l))T and uT (l) =
(nT (l) sC(l) sl(l)). Note that for the sake of simplic-
ity the transformer ratio nT is used rather than the
secondary voltage reference V ref

4 in the optimization
problem induced by MPC. Thus the implementation
of the controller requires an inversion of the transfer
between V ref

4 and nT which has been realised by using
the prediction of V4 computed by the predictor.
For the control design, the following choices have been
made: the time scale of phenomena such as voltage col-
lapse is typically about several minutes and tap chang-
ing is subject to the limitation that the transformer
ratio can only be changed every 30 s also the sample
period has been chosen equal to 30 s; time constants
of the load dynamics are about 60 s then the length N
of the prediction horizon has been chosen equal to 3.
The controller has been tuned by using the following
weighing matrices:

Qy =


 0 0 0

0 1 0
0 0 0.5


 , Qu =


 0 0 0

0 0 0
0 0 0.1


 (15)

Note that due to the presence of bounds on the con-
trol inputs, Qu does not need to be strictly positive
defined.
Figure 5 shows that control objectives are achieved:
after the occurrence of the fault, the voltage stabil-
ity is recovered and all the voltages still remain above
0.9 p.u. The remaining part of the capacitor bank has
been connected at time t = 180 s as shown on fig-
ure 6. There has been no need to have resort to load
shedding. Furthermore the controller has prevented
harmful actions of the LTC on the faulted system by
locking it at his current tap which is a well known
strategy of power systems operators.
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C. Discussion

Brute Force and Mixed Pruning algorithms have
been implemented on a common desktop computer
running at 2.8 GHz featuring Matlab R© R13. The
QP solver which is used in the above simulations is
quadprog coming from the associated Optimization
Toolbox. However powerful commercial solvers are
available to deal with quadratic programming. Table
I shows average quantities obtained with the four-bus
power system example. In the case of the brute force
strategy, all the QP subproblems to be solved have
the same size that is equal to the dimension of the
continuous control input vector multiplied by the
length of the prediction horizon: dim (uc) × N . On
the contrary, for the mixed pruning strategy, the
size of the QP subproblems starts from dim (uc) and
increases with the depth in the tree of possibilities
until to reach dim (uc) × N at the first suboptimum
(cf. III-B).

TABLE I
Algorithm efficiency

Strategy Branching QP Computation
Factor solving time (s)

Brute Force 4 64 10.8
8 512 77.8

Pruning 4 16 2.7
8 32 5.3

V. CONCLUSIONS

The mixed optimization strategies presented in this
paper deal with MPC applied to discrete time SAS.
As expected, the Brute Force strategy which is
simple to implement only suits for (very) small case
studies due to the combinatorial explosion and the
number of associated QP subproblems that need to
be solved in order to reach the optimum. The Mixed
Pruning strategy proposed in this paper allows to
significantly reduce the size as well as the number of
QP subproblems needed to be solved.
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