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Abstract : This paper presents a methodology based on Multiobjective Genetic Algorithms (MOGA’s) for 

the design of electrical engineering systems. MOGA’s allow to optimize multiple heterogeneous criteria in 

complex systems, but also simplify couplings and sensitivity analysis by determining the evolution of 

design variables along the Pareto-optimal front. A rather simplified case study dealing with the optimal 

dimensioning of an inverter – permanent magnet motor – reducer – load association is carried out to 

demonstrate the interest of the approach. 
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I. INTRODUCTION 

The existence of strong coupling levels in complex heterogeneous electrical devices leads to study the system 

design as a whole. The best architecture and the corresponding dimensioning have to be determined in order to 

minimize (or maximize) number of performance criteria (global losses, harmonic distortion, masses, economical 

cost…) with respect to several constraints. The resulting mathematical optimization problem is usually difficult 

since it involves mixed variables (continuous variables related to the real dimensioning parameters and 

combinatorial variables associated with architecture characteristics and discrete dimensioning parameters), 

various constraints and multiple objectives. Using traditional optimization approaches like gradient based 

methods is not suitable because of these combinatorial features and the difficulty to obtain analytically constraint 

and objective derivatives in case of numerical simulation. Genetic Algorithms (GA’s) are well suited to treat this 

kind of problem. Because of their ability to explore multiple solutions in parallel, standard GA’s can be easily 

extended to solve multiobjective problems and find the set of best trade-offs. This paper illustrates the 

application of MOGA’s to the optimal design of a “simple” electromechanical system based on an inverter –

 permanent magnet motor – reducer – load association.  

II. MULTIOBJECTIVE OPTIMIZATION WITH GENETIC ALGORITHMS 

II.1. Multiobjective Optimization Problem and Pareto Optimality 

The multiobjective optimization seeks to simultaneously minimize n objectives where each of them is a function 

of a vector X of m parameters (or design variables). These parameters may also be subject to k inequality 

constraints, so that the optimization problem may be expressed as :  
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For this kind of problem objectives are typically conflicting with each other. Thus, in most of cases, it is 

impossible to obtain the global minimum at the same point for all objectives. Therefore, the problem has no 

single optimal solution but a set of efficient solutions representing the best objective trade-offs.  These solutions 

consist of all design variable vectors for which the corresponding objective vectors cannot be improved in any 

dimension without degradation in another. They are known as Pareto-optimal solutions in reference to the 

famous economist [1]. Mathematically, Pareto-optimality can be expressed in terms of Pareto dominance. 

Consider two vectors X and Y from the design variable space. Then, X is said to dominate Y if and only if [2]-

[5] :   

 )()(...1   and     )()(    ...1 YXYX jjii ffnjffni   (2) 

All design variable vectors which are not dominated by any other vector of a given set are called non-dominated 

regarding this set. The design variable vectors that are non-dominated over the entire search space are Pareto-

optimal solutions and constitute the Pareto-optimal front.  
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II.2. Multiobjective Optimization Approaches and Decision Making 

Multiobjective optimization methods aim at finding one or multiple Pareto-optimal solutions to a particular 

optimization problem. Various multiobjective approaches can be used to guide the Decision Maker towards a 

final solution among the Pareto-optimal set. A classification of these approaches is depicted in Fig. 1. 
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Figure 1: Classification of Multiobjective Optimization Approaches 

We choose to classify Multiobjective Optimization approaches as many researchers [2], [6] defining three 

variants of the decision making :  

A priori approaches (Decide  Search) – The Decision Maker combines the differing objectives into a global 

quality function. Thus, the multiobjective problem is transformed into a standard scalar optimization problem 

which can be solved using traditional optimization methods. This approach includes aggregation based methods 

such as weighting-sum or fuzzy logic techniques, –constraint procedure and goal attainment method. Although 

they have been widely used in the past, a priori techniques suffer from various drawbacks. In particular, in one 

optimization run, they provide a single Pareto-optimal solution. Moreover, this investigated Pareto-optimal 

solution is very sensitive to the scalarization of the objectives and the choice of parameters (e.g. weighting 

coefficients, target values...) associated with the preferences of the Decision Maker. 

Progressive and sequential approaches (Decide  Search) – The Optimization Process and the Decision 

Making are intertwined. The preferences of the Decision maker are sequentially updated in function of the result 

of the Optimization Process. Note that a priori approaches can be iteratively used as progressive approaches as 

well as traditional techniques such as lexicographic method. The main drawback of these approaches resides in 

the fact that they require multiple optimization runs to provide multiple Pareto-optimal solutions to the Decision 

Maker.  

A posteriori approaches (Search  Decide) – These approaches provide in a single optimization run a set of 

Pareto-optimal solutions to the Decision Maker who can choose among that set. They essentially include 

population based optimization methods such as Multiobjective Evolutionary Algorithms (e.g. Genetic 

Algorithms) [2]-[5] or Multiobjective Particle Swarm Optimizers [7].  

II.3. Multiobjective Genetic Algorithms 

Since the mid-1990s, there has been a growing interest in solving multiobjective problems by Genetic 

Algorithms. In particular, elitist MOGA’s based on Pareto approaches have become more and more popular 

because of their capabilities to approximate the set of optimal trade-offs in a single run [2]-[4]. Elitist MOGA’s 

use an external population, namely archive, which preserves non-dominated individuals in the population. At 

each generation, individuals (parents) selected from the archive (and/or from the population) following Pareto 

domination rules (typically expressed by (1)) are crossed and mutated to create new individuals (children). The 

population of children and the archive are merged to assess the non-dominated set of the next generation. If the 

number of non-dominated individuals is higher than the size of the archive, a clustering method is used to 

preserve most representative solutions and eliminate others in order to keep a constant archive size. Note that 

niching is used in the selection scheme when individuals involved in a tournament have the same Pareto 

domination rank. The structure of an elitist MOGA is displayed in Fig. 2. 

The second version of the Non-dominated Sorting Genetic Algorithm (NSGA-II) [4] is based on the principles 

previously exposed. NSGA-II determines all successive fronts in the population (the best front corresponding to 

the non-dominated set). Moreover, a crowding distance is used to estimate the density of solutions surrounding 

each individual on a given front. In a tournament, if individuals belong to the same front, the selected one is that 

with the greater crowding distance. This niching index is also used in the clustering operator to uniformly 



 

distribute the individuals on the Pareto front. All details of the algorithm can be found in [4]. Note that some 

adaptations have been made with the introduction of a self-recombination procedure to increase the robustness of 

the NSGA-II [8] and by means of an extended Pareto-dominance criterion [10] to include all constraints. In our 

work, this algorithm is taken as reference for the design of heterogeneous systems in electrical engineering.   
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Figure 2: Structure of an Elitist MOGA (one step generation) 

III. OPTIMIZATION AND ANALYSIS OF A SIMPLE ELECTROMECHANICAL SYSTEM 

III.1. Problem statement and optimization results 

To illustrate the use of MOGA’s in electrical engineering, the optimal design of an electromechanical system has 

been investigated. The corresponding device is based on an inverter–permanent magnet motor–reducer–load 

association (see Fig. 3).  

 The purpose is to simultaneously minimize two objectives: the global losses f1(X) and the mass of the system 

f2(X). Each objective is composed of partial criteria : f1(X) is the sum of the inverter losses Pinv (switching losses 

and conduction losses) and motor losses Pmot (iron and Joule losses) and f2(X) is the sum of the motor mass Mmot 

and  the inverter heat skin mass Minv. The whole system behavior is described by means of analytical models. All 

the details dealing with the associated modeling issues can be found in [9]-[11]. The resulting optimization 

problem can be expressed by (1) with 2 objectives (n=2), 8 design variables (m=8) and 7 constraints (k=7). The 

design variable vector X  and the set of technological and working constraints gk(X) associated to the system are 

displayed in Table 1 and 2 respectively. Note that the IGBT family represented by aswitch[0,5] corresponds to 

Six Pack modules of IXIS with different range of voltage and current (600V/16A-45A-90A and 1200V/30A-

52A-90A). Finally, the whole optimization procedure is displayed in Fig. 4. 

The optimization of the system is carried out using the NSGA-II run for 500 generations with a population size 

of 100. The archive size is also set to 100 individuals and the crossover and mutation rates are respectively 1.0 

and 1/m. 10 independent runs are made to take into account the stochastic nature of the GA. The Pareto-optimal 

front resulting from these runs is displayed in Fig 5. The global losses evolve from 628W to 984W which leads 

to a global efficiency, in relation to the operating point of the machine (15 kW), varying from 96% to 93.8%. 

The corresponding system mass is between 94.9 kg and 39.4 kg. The design variables of the boundary solutions 

shown in Fig. 5 illustrate the diversity of the system configurations along the front.  

By providing to the designer a set of optimal solutions, this a posteriori multiobjective approach can help him to 

understand the main relationships between design variables, constraints, and objectives in the system. In 

particular, we will illustrated this point in the following sections, through the study of partial objectives, the 

analysis of couplings, the investigation of parametric sensitivity, and the choice of a final solution in the case of 

the previously exposed system.       

III.2. Partial objective analysis 

The evolution of the partial objectives along the Pareto-optimal front is displayed in Fig. 6 and Fig. 7. A 

symmetric variation between iron and joules losses of the permanent magnet machine can be shown in Fig. 6, 

which illustrates a compensation phenomenon. Concerning the variations of the system mass, we observe in Fig. 

7 that the inverter heat skin mass is constant. Its part of the global mass does no exceed 10%. The most 

significant mass in the system is that of the electrical machine. 



 

~

=
Torque = 100 Nm

Speed = 150 rad/s

E : Voltage Level

R rl : Radius / Length Ratio

JS : Current Density

p : Number of pole pairs 
Fsw : Switching frequency 

Heat Skin

Weight

: IGBT familyaswitch

Inverter

Losses

Motor

Losses

Motor

Weight

Thermal and 

Harmonic Distortion

 Constraints

Technological and 

Thermal Constraints

N : Reducer  Ratio  

 

Smooth pole 

PMSM
analytical model

design

Smooth pole 

PMSM
analytical model

design

Inverter model
Inverter model

Torque-Speed

Specifications

Torque-Speed

Specifications

Objective ComputingObjective Computing

Constraint ComputingConstraint Computing

Pareto Genetic
Algorithm

(NSGA-II)

Pareto Genetic
Algorithm

(NSGA-II)

N.m 100loadT

-1rad.s 150load

dimT

dim

N

p

rlR

SJ

E

dimV

motI

jP

ironP

motM

invP

eppN

swF

 switcha

invM

 

Figure 3: Electromechanical system design problem Figure 4: Optimization procedure  

 

TABLE I : DESIGN VARIABLES  

Design variables Nature Definition range 

Slot current density [A/mm²] Continuous 1 < Js < 10 

Number of pole pairs Discrete p  [1,10] 

Bore radius / length ratio Continuous 0.1 < Rrl < 10 

Number of slots / pole /phase Discrete Nepp[1,3] 

Switching frequency [Hz]  Continuous 1 < Fsw  < 50 000 

IGBT family Discrete aswitch  [0,5] 

Voltage level [V] Continuous 1 < E < 1 000 

Reduction ratio Continuous 1 < N < 10 

 

 

TABLE II :  CONSTRAINTS ASSOCIATED TO THE OPTIMIZATION PROBLEM  

g1(X) Minimal number of conductor slots 

g2(X) Maximal number of conductor slots 

g3(X) Demagnetization magnet limit  

g4(X) Maximal winding temperature 

g5(X) Voltage supply harmonic distortion 

g6(X) Fulfillment of IGBT Voltage range  

g7(X) Maximal IGBT junction temperature  
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Figure 5: Pareto-optimal front of the problem and associated boundary solutions 
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Figure 6: Variation of partial losses along the  

Pareto-optimal front 

Figure 7: Variation of partial masses along the  

Pareto-optimal front 

According to these observations, the permanent magnet machine appears as the central element of the system. 

Indeed, it causes the main mass variations and includes the most important part of the global losses (over 85%). 

This conclusion was expectable with regard to the complexity of this sub-system which presents some important 

multi-physical field characteristics.   

 

III.3. Coupling analysis 

 

One of the main difficulties in the system design is to identify couplings between design variables, constraints 

and objectives in case of a complex multi-physical model. The knowledge of these interactions is valuable with 

regard to the system behavior understanding. In this context, the global formulation of the problem and the set of 

solutions obtained with the MOGA allow to characterize and underline these couplings. In order to help the 

designer in this way, we propose to use two methods : a qualitative graphical analysis of variables along the 

Pareto-optimal front and an original quantitative method based on correlation coefficients.  

A classical coupling analysis can be performed in a graphical way by studying design variable variations of 

Pareto-optimal solutions in relation to the considered objectives. For example, we show, in Fig. 8 and Fig. 9 a 

coupling between the number of pole pairs (discrete design variable) and the reducer ratio (continuous design 

variable) for non-dominated solutions of the Pareto-optimal front. It can be observed that each variation of the 

number of pole pairs is related to an inverse variation of the reducer ratio. This phenomenon results from the 

variations of the iron losses in the machine, which are strongly linked to the electrical pulsation pNload of 

the motor (iron losses increase when  increases). Increasing the number of pole pairs p leads to a growth of  

which consequently increases iron losses. To avoid an excessive value of iron losses, the reducer ratio N reacts to 

the increase of p by a simultaneous decrease. Other interesting analysis can be performed by studying different 

couples of design variables in relation to constraints [9]. This graphical approach is interesting because of its 

simplicity but it only provides qualitative information about the coupling levels. 

 

Because of this main drawback, we propose to use a correlation coefficient in order to assess quantitatively the 

influence of couplings. Consider for example two coupled design variables X1 and X2 (see Fig 10). The 

correlation coefficient between the corresponding variations of these variables X1 and X1 (see Fig. 11) is 

defined by (3) [12].  
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Figure 8: Variation of the reducer ratio along the 

Pareto-optimal front 

Figure 9: Variation of the pole pair number along the  

Pareto-optimal front 
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where N denotes the number of considered points, Xi the standard deviation of Xi, and cov(X1,X2) the 

covariance between X1 and X2. Nevertheless, note that this coefficient has no signification with the discrete 

design variables. In the example of Fig. 10 and Fig. 11, the correlation coefficient equals –1 which signifies that 

each variation of X1  is always related to an inverse variation of X2. Therefore, these two design variables are 

strongly coupled. Fig. 12 presents the correlation coefficients of the current density with the other design 

variables for Pareto-optimal solutions in the case of the previous investigated system. It shows that the 

correlation coefficient between the current density Js and the radius/length ratio Rrl of the motor is about –0.9. 

Thus, the global system performances are particularly sensitive to these two parameters. Correlation coefficients 

can also be computed between design variables and partial objectives. For example, Fig. 13 illustrates the 

correlation coefficients between the current density Js  and the partial objectives. In particular, as expected, it can 

be observed that Js affects Joule losses Pj (the corresponding correlation coefficient is equal to 0.7) so that an 

increase of Js induces an increase of Pj for Pareto-optimal solutions. Similarly, we verify that the inverter losses 

strongly depend on the inverter switching frequency since the corresponding correlation coefficient is equal to 

0.83. We see here the interest of correlation coefficients which can help the designer to detect the main coupling 

mechanisms governing the whole system performances. 

 

III.4. Parametric sensitivity analysis 

 

This optimization approach could also be very useful to investigate the influence of parametric variations and 

especially the restrictions resulting from technological limits on the efficiency of optimal solutions. As an 

example, we choose to modify the cooling system of the permanent magnet machine (from natural convection to 

forced ventilation) in order to study the corresponding impact on the global system performances. 
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Figure 10: Evolution example of two coupled design 

variables X1 and X2  

Figure 11: Corresponding variations of the coupled 

design variables X1 and X2  
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Figure 12 : Example of correlation coefficients  

between design variables 

Figure 13 : Example of correlation coefficients between 

design variables and partial objectives 



 

Fig 14 shows the comparison between the two Pareto-optimal fronts. The improvement of the cooling system 

allows to favor the decrease of the system mass. In fact, thanks to the forced ventilation, the size of the motor 

can be reduced without reaching the thermal limit of the stator winding. The effect of this technological 

modification can also be observed on the design variables (see Fig. 15). With a natural convection, the reducer 

ratio N does not exceed 2.2. Even if the increase of N favors the decrease of the motor mass, it involves in the 

same time an increase of the iron losses and the motor temperature. Therefore, the reducer ratio is limited by the 

maximum acceptable thermal constraint. The forced ventilation allows to extract more heat from the motor and 

permits the reducer ratio to grow without an excessive increase of the motor temperature. 

 

III.5. Choice of a final solution 

 

The final choice between all Pareto-optimal configurations can be a posteriori done in relation to other issues 

which have not been considered in the optimization process. In this paper, we illustrate this point by considering 

the cogging torque for the final decision.  

The cogging torque is computed by using the finite element method from the selected solutions of the Pareto-

optimal front. In our example, solution 4 of Fig. 16 presents the lowest value of the cogging torque and can be 

extracted a posteriori in relation to this added criterion. Note that every solution can be locally optimized by a 

modification of slot or rotor magnet shape in order to improve the cogging torque value. Once again, the interest 

of multiobjective a posteriori approaches which provide a set of solutions instead of a single one, has been put 

forward. Results can be discussed with experts of each sub-system to explore the possible actions to enhance the 

performance of a particular element and to evaluate with the system designer the impact of the modification on 

the whole system efficiency. 
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Figure 14 : Influence of the cooling system on  

Pareto-optimal solutions 

Figure 15 : Reducer ratio evolution of the Pareto-

optimal solutions with regard to the cooling system  
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Figure 16: Cogging torque of five Pareto-optimal solutions 

 



 

IV. CONCLUSION 

 

In this paper, we have presented a global approach based on MOGA’s devoted to the design of heterogeneous 

devices in electrical engineering. It has been shown that MOGA’s are well suited to improve global system 

efficiency and also to help the designer in the understanding of the relationships between design variables, 

constraints, and objectives. In particular, from the extraction of Pareto-optimal solutions, MOGA’s facilitate the 

investigation of parametric sensitivity and the analysis of couplings in the system. For this purpose, we have 

proposed an original quantitative methodology based on correlation coefficients to characterize the system 

interactions. Through a simple but typical academic problem dealing with the optimal dimensioning of a inverter 

– permanent magnet motor – reducer – load association, it has been shown that this multiobjective a posteriori 

approach could offer interesting outlooks in the global optimization and design of complex heterogeneous 

systems.  
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