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ON SINGULAR EQUIVALENCES OF MORITA TYPE

GUODONG ZHOU AND ALEXANDER ZIMMERMANN

Abstract. Stable equivalences of Morita type preserve many interesting properties and is proved
to be the appropriate concept to study for equivalences between stable categories. Recently the
singularity category attained much attraction and Xiao-Wu Chen and Long-Gang Sun gave
an appropriate definition of singular equivalence of Morita type. We shall show that under
some conditions singular equivalences of Morita type have some biadjoint functor properties and
preserve positive degree Hochschild homology.

Introduction

For a Noetherian algebra A over a commutative ring its singularity category Dsg(A) is defined
to be the Verdier quotient of the bounded derived category of finitely generated modules over
A by the full subcategory of perfect complexes. This notion was introduced in an unpublished
manuscript [5] by Ragnar-Olaf Buchweitz under the name of stable derived category. He related
this category to maximal Cohen-Macaulay modules. Later Dmitri Orlov [22] rediscovered this
notion independently in the context of algebraic geometry and mathematical physics, under the
name of singularity category. The derived category of an algebra is replaced there by the derived
category of coherent sheaves over a scheme. Orlov’s notation for this object seems now to become
the standard one, also in the case of the derived category of an algebra, and we shall concentrate
here on this case.

If A is a selfinjective algebra, then Dsg(A) is equivalent to the stable category of A (cf [15, 25]).
By definition Dsg(A) is always triangulated and it is easy to see that Dsg(A) is trivial if and only
if A has finite global dimension. From this point of view Dsg(A) seems to have advantages with
respect to the stable category of an algebra, in case the algebra is not selfinjective, and may be
an appropriate replacement. Recently much work was undertaken to understand the structure
of Dsg(A) under various conditions on A. We mention in particular Xiao-Wu Chen’s work here
[7, 8, 9, 10], but also Bernhard Keller, Daniel Murfet and Michel Van den Bergh [16] as well as
Osamu Iyama, Kiriko Kato and Jun-Ichi Miyachi [14].

Abstract equivalences between stable categories of algebras are very ill-behaved, even in case
the algebras are selfinjective. Very few properties of the algebras are preserved. However, if the
equivalence is induced by an exact functor of the module categories, much more can be said and
a rich structure is available. The concept developed for this purpose is Broué’s concept of stable
equivalence of Morita type [4]. Since the singularity category generalises the stable category, we
cannot expect better properties in the singularity case than we have in the stable case.

Very recently analogous to the notion of stable equivalences of Morita type, Xiao-Wu Chen and
Long-Gang Sun defined in [11] the concept of singular equivalences of Morita type. The purpose
of the present note is to study this new concept of singular equivalences of Morita type. We obtain
two main results. First, we shall prove in Theorem 3.1 that under mild conditions a singular
equivalence of Morita type gives rise to a bi-adjoint pair. This section is inspired by an analogous
approach by Alex Dugas and Roberto Martinez-Villa [12]. Then we shall investigate Hochschild
homology and show in Theorem 4.1 that Hochschild homology of a finite dimensional algebra over
a field and in strictly positive degrees is invariant under a singular equivalence of Morita type.
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2 GUODONG ZHOU AND ALEXANDER ZIMMERMANN

The main tool here is Serge Bouc’s generalisation [3] of the Hattori-Stallings trace to Hochschild
homology.

The paper is organised as follows. We recall the notion and some properties of singularity
categories in Section 1. Section 2 is devoted to the definition and some of the results of Chen and
Sun on singular equivalences of Morita type. We prove the biadjoint property in Section 3 and we
study Hochschild homology in Section 4.

Acknowledgement: We are very grateful to Xiao-Wu Chen and Long-Gang Sun for sending us
their preprint [11].

We thank the two referees for their careful reading of this paper, and in particular for mentioning
to us an error in the proof of Theorem 3.1 which lead to a modification of the notion of being
strongly right nonsingular.

1. Singularity categories and singularly stable categories

Let A be a right Noetherian ring. We denote by mod(A) the category of finitely generated
right A-modules, by Db(mod(A)) the bounded derived category of mod(A), by P<∞(A) the full
subcategory of mod(A) consisting of modules of finite projective dimension, and by Kb(proj(A))
the homotopy category of bounded complexes of finitely generated projective A-modules.

Definition 1.1 ([5]). Let A be a right Noetherian ring. Then the Verdier quotient category

Dsg(A) := Db(mod(A))/Kb(proj(A))

is called the singularity category of A.

It is well-known that Kb(proj(A)) is a full triangulated subcategory of Db(A). We briefly recall
the construction of the Verdier quotient. We refer to Gabriel and Zisman’s book [13, Chapter 1]
for more ample details, and give only the basic construction here for the convenience of the reader.

The objects of Dsg(A) are the same as those of Db(A). Let X and Y be objects of Dsg(A).
Then a morphism in HomDsg(A)(X,Y ) is represented by triples (ν, Z, α) where Z is an object in

Db(A), where α ∈ HomDb(A)(Z, Y ) and where ν ∈ HomDb(A)(Z,X) so that the mapping cone of

ν is isomorphic to an object in Kb(proj(A)). A triple (ν, Z, α) is covered by a triple (ν′, Z ′, α′)
if there is a morphism ψ ∈ HomDb(A)(Z

′, Z) so that ν′ = ν ◦ ψ and α′ = α ◦ ψ. Two triples
(ν, Z, α) and (ν′′, Z ′′, α′′) are equivalent if both are covered by some triple (ν′, Z ′, α′). This way
the category of triples is directed, and the morphisms from X to Y is the limit of this category.

The construction of the singularity category as Verdier quotient implies that Dsg(A) is always
triangulated.

Let A be any right Noetherian ring. Denote by mod(A) the stable category of (finitely generated
right) A-modules, with objects being the same as mod(A) and morphisms HomA(M,N) being
the equivalence classes of morphisms of A-modules modulo those factoring through a projective
module. Recall that the category mod(A) admits an endo-functor Ω, the syzygy functor, defined
as ker(πX), where for every object X in mod(A) we choose a projective object PX in mod(A) and

an epimorphism PX
πX−→ X in mod(A).

By the very construction there are natural functors

mod(A)
F

−→ mod(A)

Db(A)
G
−→ Dsg(A)

mod(A)
H
−→ Dsg(A)

so that the diagram
mod(A) −→ Db(A)
↓ F ↓ G

mod(A)
H
−→ Dsg(A)
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commutes. Moreover, H(M) = 0 if and only if M is of finite projective dimension. Finally H
commutes with syzygies in the sense that

H ◦ Ω ≃ [−1] ◦H.

A consequence of this relation is an important observation, namely that the singularity category
is in general not Hom-finite [9] and is in general not a Krull-Schmidt category. An example is
given by the 3-dimensional local algebra A = K[X,Y ]/(X2, Y 2, XY ) over a field K. Indeed, for
the simple A-module S one gets Ω(S) ≃ S ⊕ S and this implies isomorphisms

H(S) ≃ H(Ω(S))[1] ≃ H(S)[1] ⊕H(S)[1] ≃ (H(S)[2])4 ≃ · · · ≃ (H(S)[n])2
n

in Dsg(A). Moreover, H(S) 6= 0 since S is of infinite projective dimension. Therefore,

dimKEndDsg(A)(H(S)) = dimKEndDsg(A)((H(S)[n])2
n

) ≥ 2n

for all n ≥ 0 and this implies that dimKEndDsg(A)(H(S)) = +∞.
As we have seen, M is an A-module of finite projective dimension if and only if H(M) = 0.

Hence, it is natural to consider the following category modP<∞(A).

Definition 1.2. Let A be a finite dimensional algebra. The singularly stable category is by defini-
tion the quotient category of mod(A) by P<∞(A), denoted by modP<∞(A) := mod(A)/P<∞(A).

More precisely, the objects of modP<∞(A) are the same objects as those in mod(A) and for
two A-modules X and Y define Hommod

P<∞ (A)(X,Y ) to be the equivalence classes of A-module

homomorphisms X −→ Y modulo those factoring through an object in P<∞(A).

It is clear that H factors through the natural functor

mod(A)
Π

−→ modP<∞(A)

in the sense that there is a natural functor

modP<∞(A)
L

−→ Dsg(A)

so that
H = L ◦ Π.

Remark 1.3. Observe that L is not an embedding in general. Let Q be the quiver

• •
1 2

�

&%
'$

6
α

β

and let A = KQ/〈α2, βα〉. Let S1 and S2 be the two simple A-modules. Then H(S1) ≃ H(S2)
since Ω2(S2) ≃ S1 ≃ Ω2(S1), but S1 6≃ S2 in modP<∞(A) since there is no non zero homomorphism
of A-modules between these objects.

Remark 1.4. We could consider modules of finite projective dimension as “smooth” objects.
Then the singularly stable category measures the singularity of A. Clearly the algebra A has finite
global dimension if and only if the singularly stable category has only one object with only one
endomorphism. However, the singularly stable category is only an additive category, and in general
it is not triangulated. If A is selfinjective, H is an equivalence (cf [15, 25]) and an A-module of
finite projective dimension is actually projective. Hence also Π is an equivalence in this case.

Remark 1.5. Let A be the algebra introduced in Remark 1.3. Then it is easy to see that
Dsg(A) ≃ Dsg(K[X ]/X2). However, these two algebras are not stably equivalent. In fact, if they
were stably equivalent, then there would be a one to one correspondence between the isomorphism
classes of non-projective indecomposable modules. However, up to isomorphisms, A has more than
two non-projective indecomposable modules and K[X ]/(X2) has only one such module.

We are grateful to one of the referees who suggested the above proof which is simpler than our
original argument.
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2. Singular equivalences of Morita type

As mentioned in the introduction, general stable equivalences have very poor properties, even
for selfinjective algebras. A richer concept is given by Broué [4]. Broué defined stable equivalences
of Morita type as equivalences between stable module categories induced by tensor product with
bimodules. This concept was highly successful in the understanding of equivalence between stable
categories of self-injective algebras and was a subject of numerous studies.

We consider the question when the singularly stable categories of two algebras are equivalent.
Since equivalences between singular categories of selfinjective algebras coincide with stable equiva-
lences, we need a richer concept than just an equivalence between triangulated categories. Recently
Xiao-Wu Chen and Long-Gang Sun introduced singular equivalences of Morita type [11] on the
model of Broué’s concept of stable equivalences of Morita type.

Let K be a commutative ring. For a K-algebra A, we denote by Ae = Aop ⊗K A its enveloping
algebra.

Definition 2.1. (cf [11]) Let A and B be two K-algebras for a commutative ring K. Let AMB

and BNA be two bimodules so that

• M is finitely generated and projective as Aop-module and as B-module;
• N is finitely generated and projective as A-module and as Bop-module;
• AM ⊗B NA ≃ AAA ⊕ AXA for a module X ∈ P<∞(Ae);
• BN ⊗A MB ≃ BBB ⊕ BYB for a module Y ∈ P<∞(Be).

We then say that the pair (AMB,BNA) induces a singular equivalence of Morita type.
We say that A and B are singularly equivalent of Morita type if there is a pair of bimodules

(AMB,BNA) which induces a singular equivalence of Morita type.

Remark 2.2. • It is immediate from the definition that a pair of bimodules inducing a
stable equivalence of Morita type induces a singular equivalence of Morita type as well.

However, a singular equivalence of Morita type will not be a stable equivalence of Morita
type in general since the property of X to be in P<∞(Ae) is in general much weaker than
the condition to be projective as bimodule.

Nevertheless, if A is selfinjective (and thus so is any algebra singularly equivalent of
Morita type to A, as is remarked in [11]), any module with finite projective resolution is
actually projective, and hence a singular equivalence of Morita type is actually a stable
equivalence of Morita type. The concept of a singular equivalence of Morita type and of a
stable equivalence of Morita type coincide for selfinjective algebras.

• Let (AMB,BNA) induce a singular equivalence of Morita type and let M⊗BN ≃ A⊕X and
N ⊗AM ≃ B⊕ Y . Then X is projective as A-left module and as A-right module. Indeed,
M is projective as B-right module, hence a direct factor of some Bn. Hence M ⊗B N
is a direct factor of Bn ⊗B N ≃ Nn. Now, X is by definition a direct factor of Nn and
since N is projective as A-right module, X is projective as A-right module. Similarly X is
projective on the left. Likewise Y is projective as B-left module and as B-right module.

From now on to the end of the present section and in Section 3 fix a field K and K-algebras
will always be supposed to be finite dimensional and modules will be always finitely generated.

The following result is a direct consequence of Definition 2.1.

Proposition 2.3. Let (AMB,BNA) be a pair of bimodules inducing a singular equivalence of
Morita type between two K-algebras A and B. Then

−⊗A MB : Dsg(A) −→ Dsg(B)

is an equivalence of triangulated categories with quasi-inverse

−⊗B NA : Dsg(B) −→ Dsg(A).

Moreover, the same functors establish an equivalence of additive categories between modP<∞(A)
and modP<∞(B).
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The following result is an adaptation to the singular situation of a proof of Yu-Ming Liu for
stable equivalences of Morita type (cf [18, Lemma 2.2]). The proof carries over verbatim.

Proposition 2.4. (cf [11]) Let A and B be K-algebras. Suppose (AMB,BNA) induces a singular
equivalence of Morita type. Then AM is a progenerator in mod(Aop), and likewise for MB, BN
and NA.

The following fact is proved in [11] analogous to [19, Proposition 2.1 and Theorem 2.2].

Proposition 2.5. (cf [11]) Let A and B be two K-algebras without direct summands which have
finite projective dimension as bimodules. Assume that two bimodules AMB and BNA induce a
singular equivalence of Morita type between A and B.

(1) Then A and B have the same number of indecomposable summands. In particular, A is
indecomposable if and only if B is indecomposable.

(2) Suppose that A = A1 ×A2 × · · · ×As and B = B1 ×B2 × · · · ×Bs, where all Ai and all Bi

are indecomposable algebras. Then, there is a permutation σ of the set {1, . . . , s} so that
Ai and Bσ(i) are singularly equivalent of Morita type for all i ∈ {1, . . . , s}.

In analogy of what is known to hold for stable equivalences of Morita type, Chen and Sun also
show the following lemma.

Lemma 2.6. (cf [11]) Let K be a field and let A and B be finite dimensional K-algebras. Assume
that bimodules AMB and BNA define a singular equivalence of Morita type between A and B,
and suppose that A or B is indecomposable as an algebra. Then M and N each have a unique
indecomposable bimodule summand of infinite projective dimension. If we denote these summands
asM1 and N1 respectively, then (M1, N1) also induces a singular equivalence of Morita type between
A and B.

Let K be a field, and let A and B be finite dimensional K-algebras without direct summands
having finite projective dimension as bimodules. Proposition 2.5 and Lemma 2.6 imply that for a
singular equivalence of Morita type induced by (AMB,BNA) we can always suppose that A and B
are indecomposable algebras and that AMB and BNA are indecomposable bimodules.

Remark 2.7. During the ICRA 2012 in Bielefeld, Chang-Chang Xi raised the question whether
there are algebras which are singularly equivalent of Morita type, but which are not stably equiv-
alent of Morita type. This remark answers this question.

For any algebra A denote by T2(A) :=

(

A A
0 A

)

the algebra of upper 2×2 triangular matrices

over A. In a forthcoming paper, Yu-Ming Liu and the first author give two indecomposable K-
algebras A and B which are stably equivalent but not Morita equivalent, but for which T2(A) is
not stably equivalent to T2(B). However, Chen and Sun ([11]) show that if A and B are singular
equivalent of Morita type, then also T2(A) and T2(B) are singular equivalent of Morita type.

3. Singular equivalences of Morita type give adjoint pairs

Our aim is to prove analogous result of Dugas and Martinez-Villa [12, Theorem 2.7] for singular
equivalences of Morita type. For a K-algebra A, denote by J(A) its Jacobson radical.

Theorem 3.1. Let K be a field and let A and B be finite dimensional indecomposable K-algebras.
Suppose A and B are not of finite projective dimension as bimodules and suppose that A/J(A)
and B/J(B) are separable over K. Let (AMB,BNA) be a pair of bimodules inducing a singular
equivalence of Morita type between A and B. Suppose that AMB is indecomposable as a bimodule,
and suppose that HomAop(AMB,AAA) is projective as a Bop-module.

Then

BNA ≃ HomAop(AMB,AAA)

as Bop ⊗K A-modules, and (− ⊗B N,− ⊗A M) is a pair of adjoint functors between the module
categories mod(B) and mod(A).
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Remark 3.2. Since a singular equivalence of Morita type induces an equivalenceDsg(A) ≃ Dsg(B)
and modP<∞(A) ≃ modP<∞(B) it is clear that (− ⊗A M,− ⊗B N) is a pair of adjoint functors
between Dsg(A) and Dsg(B), as well as between modP<∞(A) and modP<∞(B). Theorem 3.1
states that the functors form an adjoint pair between the module categories.

In order to prove Theorem 3.1, we shall use the following technical notion, motivated by Dugas
and Martinez-Villa [12].

Definition 3.3. An Aop ⊗K B-module AUB is called strongly right nonsingular, if for each A-
module TA, the B-module Ωn

A(T ) ⊗A UB is projective for n >> 0.

Lemma 3.4. Let K be a field and let A and B be finite dimensional K-algebras.

(i) Let AUB be a bimodule which is projective as a left and as a right module. Then AUB

is strongly right nonsingular if and only if for each A-module TA, T ⊗A UB has finite
projective dimension.

(ii) Objects in P<∞(Aop ⊗K B) which are projective as a left and as a right modules are
strongly right nonsingular. In particular, for a singular equivalence of Morita type induced
by the pair of bimodules (AMB,BNA), so that M ⊗B N ≃ A⊕X in mod(A⊗K Aop) and
N ⊗AM ≃ B⊕ Y in mod(B⊗K Bop), the two bimodules AXA and BYB are strongly right
nonsingular bimodules.

(iii) Let A be an algebra such that A/J(A) is separable over K. If the Ae-module A is not in
P<∞(Ae), then the bimodule AAA is not strongly right nonsingular.

(iv) Let A and B be finite dimensional indecomposable K-algebras which are not of finite projec-
tive dimension as bimodules and such that A/J(A) and B/J(B) are separable over K. Let
(AMB,BNA) be a pair of bimodules inducing a singular equivalence of Morita type between
A and B. Then the two bimodules AMB and BNA are not strongly right nonsingular.

(v) A direct summand of a strongly right nonsingular bimodule is also strongly right nonsin-
gular. The direct sum of two right strongly non singular bimodules is also strongly right
nonsingular.

Proof (i). Suppose that for each A-module TA, T ⊗A UB has finite projective dimension. Then
for an A-module TA, take a minimal projective resolution

· · · → Pn → Pn−1 → · · · → P1 → P0 → TA → 0

and apply −⊗A UB. The result is a complex of B-modules

· · · → Pn ⊗A UB → Pn−1 ⊗A UB → · · · → P1 ⊗A UB → P0 ⊗A UB → T ⊗A UB → 0.

This complex is actually exact, as AU is projective. For n ≥ 1, we have an exact sequence

0 → Ωn
A(TA) ⊗A UB → Pn−1 ⊗A UB → · · · → P1 ⊗A UB → P0 ⊗A UB → T ⊗A UB → 0.

Note that for 0 ≤ i ≤ n− 1, Pi ⊗A UB is projective, as UB is projective. Since T ⊗A UB has finite
projective dimension, by Schanuel’s Lemma, for n >> 0 we get that Ωn

A(T )⊗A UB is projective as
a B-module. This proves that AUB is strongly right nonsingular.

Conversely, suppose that AUB is strongly right nonsingular. Take a minimal projective resolution

· · · → Pn → Pn−1 → · · · → P1 → P0 → TA → 0

and apply −⊗A UB to get a complex

0 → Ωn
A(T ) ⊗A UB → Pn−1 ⊗A UB → · · · → P1 ⊗A UB → P0 ⊗A UB → T ⊗A UB → 0

ofB-modules. This complex is exact, as AU is projective. As for n >> 0, we have that Ωn
A(T )⊗AUB

is projective, T ⊗A UB has finite projective dimension.
We shall use (i) in the proof of (ii)-(iv).

(ii). Let AUB be a bimodule of finite projective dimension which is projective as left and as
right module. Then there exists an exact sequence of Aop ⊗K B-modules

0 → Pn → Pn−1 → · · · → P0 → U → 0,
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where for any 0 ≤ i ≤ n, Pi is a projective Aop ⊗K B-module. As AU is projective, the above
sequence splits as exact sequence of left modules. So if we apply TA ⊗A −, it remains exact.
Observe that all the B-modules (T ⊗A Pi)B are projective and thus the B-module (T ⊗A U)B
has finite projective dimension. We have proved that AUB is strongly right nonsingular. The
second statement follows from the first one by observing that the two bimodules AXA and BYB
are projective as left and as right modules.

(iii). Suppose AAA is strongly right nonsingular. Then by (i) for each right A-module TA, the
module TA ≃ T ⊗A AA is of finite projective dimension. Therefore A has finite global dimension
and by [6, Section 1], we have A ∈ P<∞(Ae). This proves the statement. Note that the relevant
conclusion from [6, Section 1] is shown only under the hypothesis that A/J(A) is separable.

(iv). For each right B-module TB we get isomorphisms of B-modules

T ⊗B N ⊗A MB ≃ T ⊗B (BBB ⊕ BYB) ≃ TB ⊕ (T ⊗B YB).

If AMB is strongly right nonsingular, by (i) T ⊗B N ⊗A MB has finite projective dimension as
a right B-module, and thus TB has finite projective dimension. As in (iii), this implies that the
Be-module B is an object of P<∞(Be), which is a contradiction to the hypothesis on B.

The case of BNA is similar.

(v) is trivial.

�

Remark 3.5. In [6, Section 1] an example is given showing that we do need the hypothesis in (ii)
and (iii) that A/J(A) and B/J(B) are separable over K.

Proof of Theorem 3.1 Denote BM̌A := HomAop(AMB,AAA) to simplify the notation. Then
(− ⊗B M̌A,−⊗A MB) is an adjoint pair of functors between mod(B) and mod(A), because

HomA(BM̌A,AAA) = HomA(HomA(AMB,AAA),AAA) ≃ AMB,

as AM is finitely generated projective. This pair of adjoint functors can be defined on Db(mod(B))
and Db(mod(A)), as BM̌ and AM are finitely generated projective modules. They induce functors
between Dsg(A) and Dsg(B) since −⊗AMB maps Kb(proj(A)) to Kb(proj(B)), and since −⊗BM̌A

maps Kb(proj(B)) to Kb(proj(A)).
Moreover, −⊗AMB and −⊗B M̌A induce functors between modP<∞(A) and modP<∞(B) since

P<∞(A) ⊗A MB belongs to P<∞(B) and likewise for −⊗B M̌A.
Let η : idmod(B) −→ −⊗BM̌⊗AMB be the unit of the adjoint pair (−⊗BM̌A,−⊗AMB) between

mod(B) and mod(A) and let ηB : B → BM̌ ⊗A MB be its evaluation on B. As BM̌ ⊗A MB ≃
EndA(AMB) as Be-modules, ηB identifies with the structure map of the right B-module structure
of M . By Lemma 2.4, ηB is injective and we can form a short exact sequence as follows:

0 → BBB
ηB
→ BM̌ ⊗A MB → BUB → 0 (∗).

Applying AMB ⊗B − to the exact sequence (*) gives the exact sequence

0 → AMB
IdM⊗ηB

→ AM ⊗B M̌ ⊗A MB → AM ⊗B UB → 0.

Now it is easy to see that the monomorphism IdM ⊗ ηB is split by the bimodule map

AM ⊗B M̌ ⊗A M ≃ AM ⊗B EndA(AMB) → AMB

where the second map is the evaluation map. Hence

AM ⊗B M̌ ⊗A MB ≃ AMB ⊕ (AM ⊗B UB).

Claim 1: UB is projective and BUB is strongly right nonsingular.
We shall use this claim for the moment and and give the proof of Claim 1 just after having

finished the proof of Theorem 3.1.
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Applying −⊗B N to the isomorphism

AM ⊗B M̌ ⊗A MB ≃ AMB ⊕ (AM ⊗B UB)

gives

AM ⊗B M̌ ⊗A M ⊗B NA ≃ (AMB ⊕ (AM ⊗B UB)) ⊗B NA

≃ (AM ⊗B NA) ⊕ (AM ⊗B U ⊗B NA)
≃ AAA ⊕ AXA ⊕ (AM ⊗B U ⊗B NA).

But we also get

AM ⊗B M̌ ⊗A M ⊗B NA ≃ AM ⊗B M̌ ⊗A (M ⊗B NA)
≃ AM ⊗B M̌ ⊗A (AAA ⊕ AXA)
≃ (AM ⊗B M̌A) ⊕ (AM ⊗B M̌ ⊗A XA).

Claim 2: AM ⊗B U ⊗B NA and AM ⊗B M̌ ⊗A XA are strongly right nonsingular.
Again we shall use this claim for the moment and give the proof of Claim 2 just after having

finished the proof of Theorem 3.1.

The indecomposable Ae-module A is not strongly right nonsingular by Lemma 3.4 part (iii).
The Krull-Schmidt theorem shows that the Ae-module A is a direct factor of M ⊗B M̌ or of

AM ⊗B M̌ ⊗AXA. Claim 2 shows that AM ⊗B M̌ ⊗AXA is strongly right nonsingular, and hence
all of its direct factors. Hence the Ae-module A is a direct factor of M ⊗B M̌ . This shows that
there is an Ae-module X̃ such that

AM ⊗B M̌A ≃ AAA ⊕ AX̃A (∗∗).

The bimodule AX̃A is strongly right nonsingular by Lemma 3.4 (ii) and (v), as AX̃A is a direct
summand of AXA ⊕ (AM ⊗B U ⊗B NA).

Now we apply N ⊗A − to (**) and get

BN ⊗A M ⊗B M̌A ≃ BNA ⊕ (BN ⊗A X̃A),

but

BN ⊗A M ⊗B M̌A ≃ (BBB ⊕ BYB) ⊗B M̌A ≃ BM̌A ⊕ (BY ⊗B M̌A).

So

BNA ⊕ (BN ⊗A X̃A) ≃ BM̌A ⊕ (BY ⊗B M̌A).

Claim 3: BN ⊗A X̃A and BY ⊗B M̌A are strongly right nonsingular; the Bop ⊗K A-module BM̌A

is indecomposable.
Again we shall use this claim for the moment and give the proof of Claim 3 just after having

finished the proof of Theorem 3.1.

As in Lemma 3.4 (iv) the module BNA is not strongly right nonsingular. We hence obtain that
the two indecomposable bimodules BNA and BM̌A are isomorphic.

�

Proof of Claim 1 As in the paragraph preceding the statement of Claim 1, we have an isomor-
phism of bimodules

AM ⊗B M̌ ⊗A MB ≃ AMB ⊕ (AM ⊗B UB).

Since MB and M̌A are projective, M ⊗B UB is projective as a right B-module and since MB is a
progenerator by Proposition 2.4, we see that UB is projective.

Given a right B-module TB, we apply T ⊗B − to (*) and we get an exact sequence

TB
ηT
→ T ⊗B M̌ ⊗A MB → T ⊗B UB → 0,

where ηT = idT ⊗B ηB .
As ηT is an isomorphism in Dsg(B), there exists n >> 0 such that Ωn(ηT ) is an isomorphism

in mod(B). In fact, by [15, Example 2.3] or [2, Corollary 3.9(1)], given two B-modules V and W ,
we have

HomDsg(B)(V,W ) = lim−→ HomB(ΩiV,ΩiW ).
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Suppose that a module homomorphism f : V → W is invertible in the singularity category.
Then its inverse is induced from a module homomorphism g : Ωi(W ) → Ωi(V ). We see that
Ωi(f) ◦ g coincides with IdW (resp. g ◦ Ωi(f) coincides with IdV ) in the singularity category, so
Ωn−i(Ωi(f)◦g) = Ωn(f)◦Ωn−i(g) coincides with IdΩn(N) in HomB(Ωn(V ),Ωn(W )) for big enough
n.

Let P∗ be the minimal projective resolution of TB and let Q∗ be the minimal projective resolution
of T ⊗B M̌ ⊗A MB. As P∗ ⊗B M̌ ⊗A MB is also a projective resolution of T ⊗B M̌ ⊗A MB, the
Comparison Lemma gives a chain map f∗ : P∗ ⊗B M̌ ⊗A MB → Q∗. Therefore, we have a
commutative diagram

P∗
//

ηP∗

��

TB

ηT

��

P∗ ⊗B M̌ ⊗A MB
//

f∗

��

T ⊗B M̌ ⊗A MB

=

��

Q∗
// T ⊗B M̌ ⊗A MB

Note that the induced map

Ωn
B(TB)

ηΩn
B

(TB)

→ Ωn
B(TB) ⊗B M̌ ⊗A MB

fn
→ Ωn

B(T ⊗B M̌ ⊗A MB)

is just Ωn(ηT ), which is an isomorphism as n is supposed to be large enough, as we have seen.
As fn induces an isomorphism between Ωn

B(T ⊗B M̌ ⊗A MB) and Ωn
B(T ) ⊗B M̌ ⊗A MB in

mod(B), we obtain that ηΩn
B
(T ) : Ωn

B(TB) → Ωn
B(T ) ⊗B M̌ ⊗A MB is an isomorphism in mod(B).

As we have an exact sequence of B-modules

Ωn
B(TB)

ηΩn
B

(TB)

→ Ωn
B(TB) ⊗B M̌ ⊗A MB → Ωn

B(TB) ⊗B UB → 0,

we deduce that ηΩn
B
(TB) has projective cokernel. In fact, let SB be an indecomposable direct

summand of Ωn
B(TB). Then ηΩn

B
(TB) is the direct sum of such ηS and ηS is an isomorphism in

mod(B). If SB is projective, ηS is injective and ηS has projective cokernel, since ηB is injective with
projective cokernel UB by Claim 1. If SB is not projective, then the fact that ηS is an isomorphism
in mod(B) implies that ηS has projective cokernel.

Since ηΩn
B
(TB) has projective cokernel, Ωn

B(TB) ⊗B UB is projective and the module BUB is
strongly right nonsingular.

�

Proof of Claim 2 Let TA be an A-module. For n ≥ 1, Ωn
A(TA) ⊗A MB ≃ Ωn

B(T ⊗A MB) ⊕ PB

with PB projective. Then

Ωn
A(T ) ⊗A M ⊗B U ⊗B NA ≃ (Ωn

B(T ⊗A MB) ⊗B U ⊗B NA) ⊕ (P ⊗B U ⊗B NA).

The A-module Ωn
B(T ⊗AMB)⊗B U ⊗BNA is projective for n big enough, as BUB is strongly right

nonsingular and that BNA is projective as a left and right module; the module P ⊗B U ⊗B NA is
projective since UB is projective. We have proved that Ωn

A(T )⊗AM ⊗B U ⊗BNA is projective for
n >> 0 and that AM ⊗B U ⊗B NA is strongly right nonsingular.

The fact that AM ⊗B M̌ ⊗AXA is strongly right nonsingular follows from the fact that AXA is
in P<∞(Ae) and that AM ⊗B M̌ ⊗A XA is projective as a left and right module.

�

Proof of Claim 3 The fact that BN ⊗A X̃A is strongly right nonsingular follows from that BNA

is projective as a left and right module and that AX̃A is strongly right nonsingular.
The fact that BY ⊗B M̌A is strongly right nonsingular follows from that BYB is in P<∞(Be)

and that BM̌A is projective as a left and right module.
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Suppose M̌ = M̌1 ⊕ M̌2 as Bop ⊗K A-modules. Then HomA(BM̌A,AAA) ≃ AMB is indecom-
posable as Bop⊗K A-module implies that HomA(M̌1,AAA) = 0 or HomA(M̌2,AAA) = 0. But MB

is projective, and so this happens only if M1 = 0 or M2 = 0. Therefore BM̌A is indecomposable.

�

We obtain the analogous result to [12, Corollary 3.1].

Corollary 3.6. Under the same assumption of Theorem 3.1, suppose further that HomB(AMB,BBB)
is projective as an A-module, or HomBop(BNA,BBB) is projective as a left A-module. Then

BNA ≃ HomAop(AMB,AAA) ≃ HomB(AMB,BBB)

and

AMB ≃ HomA(BNA,AAA) ≃ HomBop(BNA,BBB).

Moreover (M ⊗B −, N ⊗A −) and (N ⊗A −,M ⊗B −) are adjoint functors between mod(Aop) and
mod(Bop), which induce pairs of equivalences of the corresponding singularity categories.

Finally (−⊗A MB,−⊗B NA) and (−⊗B NA,−⊗A MB) are adjoint functors between mod(A)
and mod(B), which induce pairs of equivalences of the corresponding singularity categories.

Proof As a left (resp. right) adjoint to a given functor is unique up to isomorphisms, Theorem 3.1
shows that HomA(BNA,AAA) ≃ AMB and in particular, HomA(BNA,AAA) is projective as a right
B-module.

On the other hand, if we suppose in Theorem 3.1 that HomA(BNA,AAA) is projective as a right
B-module instead of being projective for HomAop(AMB,AAA) as a left B-module, a dual proof as
that of Theorem 3.1, by considering the functors (HomA(BNA,AAA) ⊗B −, N ⊗A −) between left
module categories mod(Bop) and mod(Aop), gives that

AMB ≃ HomA(BNA,AAA)

as Aop ⊗K B-modules, and (M ⊗B −, N ⊗A −) is a pair of adjoint functors between the module
categories mod(Aop) and mod(Bop). As in the first paragraph, we see that HomAop(AMB,AAA) ≃

BNA and in particular, HomAop(AMB,AAA) is projective as a left B-module.
This shows that the the condition that HomAop(AMB,AAA) is projective as a left B-module

and the condition that HomA(BNA,AAA) is projective as a right B-module are equivalent. Fur-
thermore, under these two equivalent conditions, we know that

(i) BNA ≃ HomAop(AMB,AAA) and AMB ≃ HomA(BNA,AAA).
(ii) (M ⊗B −, N ⊗A −) is a pair of adjoint functors between mod(Bop) and mod(Aop), which

induce pairs of equivalences of the corresponding singularity categories.
(iii) (− ⊗B NA,− ⊗A MB) is a pair of adjoint functors between mod(B) and mod(A), which

induce pairs of equivalences of the corresponding singularity categories.

A dual proof of the above argument shows that the condition that HomB(AMB,BBB) is pro-
jective as an A-module, and the condition that HomBop(BNA,BBB) is projective as an A-module,
are equivalent; under these two conditions, we have

(i) BNA ≃ HomB(AMB,BBB) and AMB ≃ HomBop(BNA,BBB).
(ii) (BN⊗A−,AM⊗B−) is a pair of adjoint functors between mod(Aop) and mod(Bop), which

induce pairs of equivalences of the corresponding singularity categories.
(iii) (− ⊗A MB,− ⊗B NA) is a pair of adjoint functors between mod(A) and mod(B), which

induce pairs of equivalences of the corresponding singularity categories.

�

Let νA := HomK(HomA(−, A),K) be the Nakayama functor on mod(A). If QA is a projective
A-module, then ν(QA) is an injective A-module, and if IA is an injective A-module, then ν(IA) is
a projective A-module.

Lemma 3.7. Under the same assumption of Theorem 3.1, if I is injective as a B-module, then
M ⊗B I is injective as an A-module. Moreover (M ⊗B −) ◦ νB ≃ νA ◦ (M ⊗B −).
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Proof We know that N ≃ HomA(M,A) and that N ⊗A − is (left and) right adjoint to M ⊗B −.
Hence for an injective A-module I we get

HomB(−, N ⊗A I) ≃ HomA(M ⊗B −, I)

by Corollary 3.6. Moreover M ⊗B − is exact since M is projective as a B-module. HomA(−, I)
is exact since I is injective as an A-module. Therefore HomB(−, N ⊗A I) is exact as a functor
B −mod −→ (A−mod)op, and we get therefore that N ⊗A I is injective.

We have

HomA(M ⊗B −, A) ≃ HomB(−, HomA(M,A))

≃ HomB(−, N)

≃ HomB(−, B) ⊗B N

as right A modules, since N is projective as B-module. Hence,

νA(M ⊗B −) = HomK(HomA(M ⊗B −, A),K)

≃ HomK(HomB(−, B) ⊗B N,K)

≃ HomB(N,HomK(HomB(−, B),K))

≃ HomB(N,B) ⊗B HomK(HomB(−, B),K)

≃ M ⊗B νB(−)

This shows the lemma.

�

Corollary 3.8. Under the same assumption of Theorem 3.1, the functor −⊗AMB sends projective
injective A-modules to projective injective B-modules.

4. Singular equivalences of Morita type and Hochschild homology

In this section, we consider invariant property of Hochschild homology under singular equiva-
lences of Morita type. For stable equivalences of Morita type, in [20], Yu-Ming Liu and Chang-
Chang Xi proved that a stable equivalence of Morita type preserves Hochschild homology groups
of positive degrees. Remark that by [21, Theorem 1.1] the invariance of degree zero Hochschild
homology group under a stable equivalence of Morita type is equivalent to the famous Auslander-
Reiten conjecture on the invariance of the number of non projective simple modules under stable
equivalence.

We shall now prove that a singular equivalence of Morita type induces an isomorphism of
Hochschild homology in positive degrees.

Theorem 4.1. Let K be a Noetherian commutative ring and let A and B be Noetherian K-algebras
which are projective as K-modules. Suppose that (AMB,BNA) induce a singular equivalence of
Morita type.

(1) Then there is n0 ∈ N so that HHn(A) ≃ HHn(B) for each n > n0.
(2) If K is a field, and if A and B are finite dimensional, then HHn(A) ≃ HHn(B) for each

n > 0.

Our proof of the first statement, inspired by [27, Section 1.2], is similar to that of [20, Theorem
4.4], which uses a change-of-rings argument. Notice that our argument is simpler than the proof
in [20] and in fact works also for stable equivalences of Morita type. Our proof of the second
statement makes use of transfer maps and is similar to that of [21, Remark 3.3].

Proof of Theorem 4.1.(1). Let BA be the bar resolution of A, that is

BA : . . . −→ A⊗5 −→ A⊗4 −→ A⊗3 −→ A⊗2(−→ A −→ 0).

Then, we my apply N ⊗A −⊗A M and obtain an exact sequence N ⊗A BA⊗A M of Be-modules:

. . . −→ N ⊗A A
⊗4 ⊗A M −→ N ⊗A A

⊗3 ⊗A M −→ N ⊗A A
⊗2 ⊗A M(−→ N ⊗A M −→ 0).
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of Be-modules, since M and N are projective on the right, resp. on the left.
The key observation is the following isomorphism of complexes

(AM ⊗B NA) ⊗Ae BA ≃ B ⊗Be (BN ⊗A BA⊗A MB)
(m⊗ n) ⊗ u 7→ 1 ⊗ (n⊗ u⊗m).

which is easily verified. Taking homology groups gives

HHn(A) ⊕ TorA
e

n (X,A) ≃ TorA
e

n (M ⊗B N,A) ≃ TorB
e

n (B,N ⊗A M) ≃ HHn(B) ⊕ TorB
e

n (B, Y )

for each n ≥ 0. When n is large, TorA
e

n (X,A) ≃ 0 ≃ TorB
e

n (B, Y ), as X ∈ P<∞(Ae) and
Y ∈ P<∞(Be), we obtain that HHn(A) ≃ HHn(B) for n >> 0.

�

For the proof of Theorem 4.1.(2), let us recall some properties of transfer maps in Hochschild
homology.

Let A and B be two algebras over a commutative ring k. Let M be an A-B-bimodule such
that MB is finitely generated and projective. Then we can define a transfer map tM : HHn(A) →
HHn(B) for each n ≥ 0. As we don’t need the construction of this map, we refer the reader to
Bouc [3] (see also [21, 17] for a summary of Bouc’s results).

Proposition 4.2. [3, Section 3] Let A, B and C be k-algebras over a commutative ring k.

(1) If M is an A-B-bimodule and N is a B-C-bimodule such that MB and NC are finitely
generated and projective, then we have tN ◦ tM = tM⊗BN : HHn(A) → HHn(C), for each
n ≥ 0.

(2) Let
0 → L→M → N → 0

be a short exact sequence of A-B-bimodules which are finitely generated and projective as
right B-modules. Then tM = tL + tN : HHn(A) → HHn(B), for each n ≥ 0.

(3) Suppose that k is an algebraically closed field and that A and B are finite dimensional
k-algebras. Then for a finitely generated projective A-B-bimodule P , the transfer map
tP : HHn(A) → HHn(B) is zero for each n > 0.

(4) Consider A as an A-A-bimodule by left and right multiplications, then tA : HHn(A) →
HHn(A) is the identity map for any n ≥ 0.

Proof of Theorem 4.1.(2). For n ≥ 0, we have transfer maps tM : HHn(A) → HHn(B) and
tN : HHn(B) → HHn(A). By the above result,

tN ◦ tM = tM⊗BN = tA + tX = Id+ tX

as maps from HHn(A) to itself.
Let K be the algebraic closure of K and write

A = A⊗K K,

B = B ⊗K K,

M = M ⊗K K,

N = N ⊗K K,

X = X ⊗K K,

Y = Y ⊗K K.

Then one verifies easily that (AMB,BNA) induces a singular equivalence of Morita type between

A and B, because

AM ⊗B NA ≃ AAA ⊕ AXA

with X ∈ P<∞(A
e
);

BN ⊗A MB ≃ BBB ⊕ BY B

with Y ∈ P<∞(B
e
). We also have tM = tM ⊗K idK .
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Since X ∈ P<∞(A
e
), there is an exact sequence of A

e
-modules

0 → Pn → · · · → P 0 → X → 0

with P 0, · · · , Pn projective. By the point (2)(3) of Proposition 4.2, for n > 0, we have tX =
∑n

i=0(−1)itP i
= 0 as a homomorphism from HHn(A) → HHn(A), and thus tX = 0 : HHn(A) →

HHn(A) for n > 0. This shows that

tN ◦ tM : HHn(A) → HHn(A)

and
tM ◦ tN : HHN (B) → HHn(B)

are isomorphisms for n > 0. We deduce that

tM : HHn(A) → HHn(B)

is an isomorphism for n > 0.

�

Remark 4.3. Finally we briefly mention what is known in this context about invariance of
Hochschild cohomology under stable equivalence of Morita type and under singular equivalence
of Morita type.

Chang-Chang Xi prove in [26, Theorem 4.2] that a stable equivalence of Morita type between
Artin algebras preserves the Hochschild cohomology groups of positive degrees, generalising a
previous result of Zygmunt Pogorza ly [24, Theorem 1.1] for selfinjective algebras. Sheng-Yong Pan
and the first author further showed in [23] the invariance of stable Hochschild cohomology rings
under stable equivalences of Morita type.

Chen and Sun prove in [11] that Tate-Hochschild cohomology rings of Gorenstein algebras are
preserved under singular equivalences of Morita type. A careful study of the proof of [26, Theorem
4.2] shows that the proof of [26, Theorem 4.2] works for singular equivalences of Morita type. We
obtain from this study that a singular equivalence of Morita type preserves Hochschild cohomology
groups of large degrees. However, we don’t know the algebra structure.
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