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Modeling and Identification of Rosen-Type 
Transformer in Nonlinear Behavior

François Pigache and Clément Nadal

Abstract—This paper is about the modeling of piezoelectric 

transformer in nonlinear behavior conditions. In the frame of 

applications with high output loads, nonlinear behavior be-

comes non-negligible. First, the origins of nonlinearities and 

theoretical approaches are preliminarily discussed. Then, the 

model is developed for a typical Rosen-type transformer and 

experimental investigations are presented. The results are used 

to confirm the validity of the analytical model and the meth-

odology to express the terms added to the typical constitutive 

piezoelectric relations.

I. I

T modeling of piezoelectric devices is generally in-
discriminately confined to their linear behavior for 

motors, sensors, or transformers. However, divergent ap-
plication domains and power requirements require more 
accurate knowledge regarding the modeling of their non-
linear properties. Concerning piezoelectric transformers 
(PT), the nonlinearities generally become non-negligible 
when the secondary side is connected to high impedance 
(or an open-circuit condition) or in a strong electric field. 
This is typically the case when piezoelectric transformers 
are used for the generation of plasma discharge.

Indeed, during the last ten years, several studies have 
demonstrated the capacity and interest to produce vari-
ous kinds of plasma discharges [e.g., dielectric barrier dis-
charge (DBD) or glow discharge], by using piezoelectric 
materials for corona discharge for a long time (e.g., gas 
lighter), leading to innovative applications such as steril-
izers, ozonizers, and so on. Typical glow discharge or DBD 
by the ferroelectric effect have been highlighted by differ-
ent studies [1]–[3], often using the Rosen-type transformer 
because of its high voltage ratio. However, the growing 
field of these applications is partially blocked because 
there is insufficient knowledge of the nonlinear electrome-
chanical behavior of Rosen-type transformers inherent to 
their operating conditions.

Indeed, to obtain a glow discharge with a surrounding 
pressure of several tens of Torr, the electrical potential 
developed on the transformer’s secondary surface should 
be as high as possible. In consequence, the output load 
should be very high and the secondary part is often sim-
ply left in an open-circuit condition. Independently of the 

plasma discharge’s impact on the electromechanical be-
havior, the simple lack of the electric load leads the trans-
former to a condition of high internal electric field and 
high displacement, resulting in nonlinear behavior. This 
behavior has been commonly observed and modeled by 
various methods for single ceramics, but it has been less 
frequently modeled for transformers and especially for this 
new applications field.

Experimental investigations presented in [4] have em-
phasized the existing relation between the load value and 
the nonlinear electromechanical behavior of a Rosen-type 
transformer. They have shown the input current jumping 
phenomenon when the operating frequency range is near 
the resonance frequencies of the transformer. Addition-
ally, by analyzing the voltage waveform obtained with a 
sinusoidal current supply, it has been observed that the 
distorted voltage waveform included second and third har-
monics. This recognition has led to expressing the electric 
field with additional higher-order coefficients in the con-
stitutive piezoelectric relations. In the present study, the 
experimental investigations are based on common admit-
tance measurements with a sinusoidal voltage supply.

The presented model of a Rosen transformer relies on 
the theoretical method preliminarily introduced by [5] for 
a thickness-mode transformer, taking into account addi-
tional square and cubic terms in the piezoelectric relations. 
Equations are modified and developed for the considered 
Rosen-type PT and completed by the required definition 
of input admittance. After the definition of a set of equa-
tions, in the face of the ignorance of the parameter values 
describing the nonlinear effects, a specific identification 
method is presented, based on the simple measurement of 
the input admittance by Bode transfer functions with a 
signal analyzer.

Section II provides a brief review of the different non-
linearities observed in piezoelectric devices and the as-
sociated modeling approaches. Subsequently, specific 
experimental investigations and measurements of a test 
transformer will be presented in Section III, to empha-
size the corresponding phenomena. Analytical modeling is 
developed in Section IV and the identification of undeter-
mined parameters is carried out in Section V. Finally, the 
model and experimental results are compared in Section 
VI, leading to further observations and comments.

II. T N  P-D

Nonlinearities are inherent in piezoelectric materials, 
mainly attributed to the ferroelectric domain walls in 
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the materials and the relation between polarization and 
electric fields. Although the linear approximation is suf-
ficiently accurate in most cases, specific operating con-
ditions may lead to the appearance of various nonlinear 
behaviors. Many studies have dealt with the different non-
linearities observed in piezoelectric materials according to 
the manufacturing process or the operating conditions, re-
vealed in microscopic and macroscopic scales.

To briefly summarize the reviews [6], [7], the remainder 
of this section discusses the origins of nonlinear properties.

A. Dielectric Nonlinearities

Concerning the nonlinear dielectric properties of ceram-
ics, much experimental data and many theoretical studies 
have proven that the ferroelectric domain walls’ motion 
and pinning defects are at the origin of the variations (re-
versible or not) in dielectric constants. Considering hard 
ceramics, the evolution of permittivity is clearly divided 
into 3 zones by increasing electric field: constant value 
(low electric field), linear dependence (medium electric 
field), and finally an exponential increase (highest electric 
field). In a general way, this variation is conveniently ap-
proximated by a polynomial function despite its complex 
physical origin.

B. Piezoelectric Nonlinearities

According to different studies, the ferroelectric domain 
walls’ motions also imply the variation of the piezoelec-
tric constants. They present specific dependences on the 
electric field and the mechanical pressure. There are few 
studies about the definite identification of these variations 
compared with those about permittivity because of the 
inherent technical difficulties. Moreover, note that the 
piezoelectric effect is intimately connected to the pyro-
electric effect in ferroelectric materials and consequently, 
the thermal condition (with internal or external origins) is 
another influential parameter.

C. Elastic Nonlinearities

It has been proven that an excessive mechanical stress 
may lead to a complete or partial depolarization of a fer-
roelectric sample, and according to extrinsic relations, it 
may simultaneously modify the dielectric and piezoelec-
tric constant values. The origin of these variations is at-
tributed to the forced rearrangement of the ferroelectric 
domains.

Many analytical studies in the literature have had the 
goal of describing the complex physical dependencies of all 
parameters. They essentially use two different approaches: 
the thermodynamic approach, with different models de-
picted according to their degree of complexity, or empiri-
cal methods, relying on the initial definition of complex or 
polynomial parameters [8].

In addition, models using hysteretic functions have also 
been undertaken to take into account the reversible and 

irreversible cycles resulting from the domain wall motions 
and switching (impacting polarization and strain hyster-
esis loop characteristics, moving into equilibrium states). 
Depending on the acceptable complexities of modeling, 
the mathematical and physical forms can be reconciled 
by using a microscopic or mesoscopic scale close to the 
distance of grain-to-grain interaction or ferroelectric do-
mains. Although this micro-mechanical approach implies 
heavy computation costs, it provides an interesting way to 
define macroscopic laws. For more details regarding refer-
ences and authors for this discussion, please refer to [6], 
[7].

Many mechanisms are responsible for nonlinear behav-
ior; consequently, efficient and convenient modeling should 
be adopted by selecting the most significant mechanisms 
in accordance with restricted operating conditions. With 
this goal in mind, several assumptions in the present paper 
are considered in the following which leads us to neglect 
some nonlinear effects to focus on the most significant 
ones in PT configuration.

In conformity with the PT structure under test (i.e., 
a Rosen-type transformer), several preliminary assump-
tions can be made, leading to a reduced number of non-
linearities under consideration. First, the effects of fre-
quency range, temperature, and aging (or de-ageing) are 
not considered. Repeated measurements under identical 
experimental conditions have vindicated this assumption.

Furthermore, the PT is supplied on the primary side by 
a low-voltage source, corresponding to a low electric field 
applied to the PT (<20 V/mm). Therefore, it is consid-
ered that the input dielectric behavior essentially comes 
from the primary clamped capacitance. As a consequence, 
permittivity variation can be reasonably neglected.

Finally, it should be remembered that for the full ana-
lytical study in this paper, the piezoelectric constitutive 
laws are expressed assuming isothermal conditions.

Ishii et al. have carried out studies relying on analysis 
of harmonic generation in polycrystalline ceramics since 
1998. Initially, they studied the influence of load resistance 
values on electric input quantities of a PT. Resulting from 
the current supply, it has been emphasized in [4] and [9] 
that the essential nonlinear behavior can be described by 
the electric field (E) dependence on current displacement 
(D) as

 E hS D D D= − + + +β γ ξ2 3. (1)

These preliminary investigations showed that the current-
jumping phenomenon is correlated with the strain jump-
ing around the resonant frequency, as well as the appear-
ance of higher-order harmonics of current and hysteresis 
phenomena. Then, several experimental studies were dedi-
cated to showing the dependence of high-order terms with 
temperature, grain size, current-bias, or the ceramic’s ma-
terial composition [10], [11].

It is essential to note that the existence of nonlinear 
behavior can also be observed and described as a purely 
mechanical event, which was theoretically treated by Lan-



dau and Lifchitz as anharmonic oscillations [12]. Indeed, 
a low mechanical damping leads to high mechanical dis-
placements, which may imply invalidation of the approxi-
mation to the first term of Green’s relation. According to 
[12], the dynamic equilibrium equation is 

 ɺɺu u f u u+ = − −ω α β0
2 2 3, (2)

where u, ω0, and f are, respectively, the displacement, nat-
ural mechanical frequency, and external force. In Section 
IV, it will be shown that the dynamic equilibrium equa-
tion of the piezoelectric device will take the same form as 
(2).

From this discussion, the essential nonlinear behavior 
is assumed to be from a mechanical origin. Obviously, this 
mechanical behavior impacts the PT input current by the 
piezoelectric property. The following experimental charac-
terization underlines this electromechanical relation.

III. T E M

The Rosen PT used for the modeling validation is distrib-
uted by Noliac A/S (model CMT/HDE/A/25/5/1,7/2,0, 
Kvistgaard, Denmark) with well-known electromechanical 
properties and dimensions as shown in Table I.

The experimental measurements have been made to 
emphasize the electrical nonlinear behavior of the device. 
The measurements are obtained with the secondary part 
load-free, so it is not damped, promoting the nonlinear 
effect.

The admittance measurement is obtained with a two-
channel signal analyzer (HP3562A, Agilent Technologies, 
Santa Clara, CA), which restores the fundamental part 
of the input current, considering the voltage supply am-
plitude as constant. It should be noted that this latter 
assumption is not obvious because of the influence of reso-
nance behavior on the supply source. Indeed, the device’s 
resonance induces very low input impedance, which may 
be less than the output impedance of the supply’s linear 
amplifier. Consequently, it may imply a slight variation 

of the voltage amplitude. In the present characterization 
process, this variation has been weak and was considered 
insignificant as a first approximation.

Several admittance measurements are presented in Fig. 
1 according to the voltage supply amplitude. All of the 
characterizations concern the first longitudinal vibratory 
mode (i.e., λ/2 mode). Because of the presumed hysteretic 
behavior, the same admittance measurements were made 
for an up-sweeping [Fig. 1(a)] and down-sweeping [Fig. 
1(b)] frequency. The hysteresis effect is more clearly illus-
trated in Fig. 2 with the superimposition of the up- and 
down-sweeping frequency curves.

As a first assessment, it clearly appears that an in-
crease in voltage supply amplitude leads to distortion of 
the characteristics and a downward drift of the resonance 
frequency. The maximal admittance amplitude is also af-
fected.

TABLE I. P   S R T. 

Symbol Definition Value Unit

L1 Primary length 12 mm
L2 Secondary length 13 mm
w Width 5 mm
t Thickness 1.7 mm
m Number of primary layers 16
ρ Mass density 7600 kg/m3

s
E

11 Transversal compliance at constant E 1.256 × 10−11 m2/N

s
E

33 Longitudinal compliance at constant 
E

1.610 × 10−11 m2/N

d31 Transversal piezoelectric coefficient −1.329 × 10−10 m/N
d33 Longitudinal piezoelectric coefficient 3.086 × 10−10 m/N
ε33
T Permittivity at constant T 1454ε0 F/m

k31 Transversal coupling factor 0.330
k33 Longitudinal coupling factor 0.678

Fig. 1. The admittance measurements according to the different voltage 
amplitudes with (a) up-sweeping and (b) down-sweeping frequency.



This resonance frequency drift is also noticeable on the 
phase graph, whereas the anti-resonant frequency remains 
constant as confirmed in [8]. This remark tends to confirm 
the preliminary assumption of not taking account of the 
permittivity variation of the primary side.

Finally, the verification of the thermal influence has 
also been carried out by using different sweep-rate fre-
quencies from some millihertz per second to several hertz 
per second. The result of this different self-heating con-
dition has given the opportunity to neglect the thermal 
influence compared with the main nonlinear effects. More 
details about the thermal effect experimentally observed 
are available on [13], [14].

IV. T M

The modeling developed below relies on a classical 
Rosen-type geometry, as shown by Fig. 3, which shows a 
schematic of a multilayer Rosen PT of length L0, width w, 
and thickness t. The transformer consists of a transversal-
ly poled driving part and a longitudinally poled receiving 
part of lengths L1 and L2, respectively. The origin of the 
coordinate system is chosen at the center of the interface 
between the primary and secondary portions. The driv-
ing section −L1 < x1 < 0 is made of m layers with t/m 
thickness. In the receiving section 0 < x1 < L2, the output 
electrode at the end x1 = L2 is potentially connected to a 
load resistance, RL.

A. General Model Formulation

The analytical modeling of the Rosen transformer with 
nonlinear behavior mainly relies on theoretical studies in 
[5]. In conformity with the typical one-dimensional ap-
proximation of the λ/2 longitudinal vibratory mode along 

a thin beam, the displacement field u = [u1 u2 u3]T and 
the electric potential ϕ can be suitably approximated by

 

u x t

u x t

u x t

x t

u x tk

k

k

k

1

2

3

1 1

0
0

( , )
( , )
( , )
( , )

( , )

(φ φ





















=

xx x t1 3, , )

.





















 (3)

Furthermore, the longitudinal component of the displace-
ment field is approximated along the whole transformer 
length by a sine function as

 u x t U k x t

k
L L

L L
1 1 0 1

1 2

2 1

2

( ) ( ),� sin[ ] ( )
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= −
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−
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π

δ
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


 (4)

where η is the generalized coordinate variable attached 
to the vibratory mechanical amplitude. The U0 constant 
depends on the normalization chosen for the generalized 
coordinate variable η. In the present case, it is chosen to 
be equal to 1, as in [5]. The accurate approximation of 
the free vibration waveform is essential for precision of 
the final model. By way of comparison, (4) is graphically 
compared in Fig. 4 to the mechanical waveform obtained 
by considering the anisotropic property of the transformer 

Fig. 2. Emphasis of the hysteresis effect at sufficient voltage supply am-
plitude.

Fig. 3. The structure of a classical Rosen-type transformer.

Fig. 4. Different waveforms according to authors Yang [2] and Nadal [3].



along the length as described in [15]. For all the analytical 
expressions presented throughout this article, (4) is used.

To describe the mechanical deformations near reso-
nance, the cubic theory for weak nonlinearity is consid-
ered. This latter is obtained by expansion and truncation 
of the fully nonlinear theory into a cubic theory [17]. Con-
cretely, this means that all terms up to the third power of 
the displacement and electric gradients or their products 
are included. In the present case, because the mechani-
cal effects are the most significant, the terms up to cubic 
terms of the displacement gradient are considered and the 
only linear terms of the electric gradient are kept. As a 
consequence, the piezoelectric constitutive relations lead 
to the (5) and (6), distinctly expressed for the driving and 
receiving parts of the Rosen PT.

For the driving part,

 K c u e u u11 11 11 31 3 31 11
2

31 11
3= + + +, , , ,φ ξ γ  (5a)

 D e u3 31 11 33 3., ,= − ε φ  (5b)

For the receiving part,

 K c u h D u u11 33 11 33 1 11 11
2

11 11
3= + + +, , ,ξ γ  (6a)

 φ β, , ,1 33 11 33 1= −h u D  (6b)

where K11 and Di are, respectively, the component along 
the axis (Ox 1) of the first Piola stress tensor and the elec-
tric displacement. εij and γij are the constants, respec-
tively, associated to the square and cubic terms of me-
chanical displacement. The bar symbol on the coefficients 
of the piezoelectric material is a note to use the specific 
values of the transversal and longitudinal coupling modes 
for the primary and secondary sections, respectively. The 
constants are summarized in Table II.

Furthermore, the equilibrium equations relative to each 
part of the transformer must be added to the constitutive 
relations. They classically take the following form [17]: for 
the driving part,

 K u L x111 1 1 1 0, = − < <ρ ɺɺ for  (7a)

 D3 3 0, .=  (7b)

For the receiving part,

 K u x L111 1 1 20, = < <ρ ɺɺ for  (8a)

 D11 0, .=  (8b)

Eqs. (7b) and (8b) can be integrated to yield to an expres-
sion of the electrical potential along the PT length. We 

distinctly obtain expressions for the primary and second-
ary sections. For −L1 < x1 < 0,

 φ φ φ( , ) ( ) ( ).x t A t x B t3 3= +  (9)

For 0 < x1 < L2,

 φ φ φ( , ) ( , ) ( ) ( ),x t h u x t C t x D t1 33 1 1 1= + +  (10)

where Aϕ, Bϕ, Cϕ, and Dϕ are four integration constant 
functions of time.

The Hamiltonian principle in [16], applied to the dy-
namic equilibrium equations (7a) and (8a), gives
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Eq. (11) must satisfy the free-free boundary conditions 
and the displacement continuity at the two-part intersec-
tion:
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The resolution of the dynamic equation by substituting 
(5) and (6) into (11) leads to the dynamic equation

 ɺɺη ω η ξη γη φ+ − + + + =0
2 2 3 0e

V
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Note that in case of a laminated driving element, the 
equivalent input voltage must be multiplied by the num-
ber of layers m, as in

 ɺɺη ω η ξη γη φ+ + + + = =0
2 2 3

e C e V e
me

t
R

D

in in inwith .  

  (14)

Defining the displacement, the electric potential and 
voltages as a combination of cosine and sine functions, 
(14) can be further developed:

TABLE II. P M C. 
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As an approximation, the effect of the second-order co-
efficient will be neglected, as well as the effect of higher 
harmonics. This simplification is in conformity with the 
experimental measurement method explained previously 
(i.e., the measurement of fundamental parts of the elec-
trical quantities). Consequently, considering this simpli-
fication and the previously provided definition of terms 
leads to
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According to the electric potential definition along the 
length by (9) and (10), the expression distinctly given in 
the driving and the receiving parts is, for −L1 < x < 0,

 V tin
′ cos( ),ω  (17a)

and for 0 < x1 < L2,
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The boundary conditions and relations of continuity must 
be specified:
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The output voltage is deduced from the relation depend-
ing on an output resistive load, RL:
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To complete the system of equations for comparison with 
the experimental characterization, the expression of the 
input admittance is deduced from
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which yields to
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where the following relation is verified:

 ψ δ ρin in /= − = +U mwe k U e L L wt0 31 0
2

1 21 2[ sin( )] ( ) . 

The parameter ψin corresponds to the electromechanical 
conversion factor of the primary section.

The calculated capacitances of the primary and second-
ary parts are

 C m
L w

t
C

wt

L
in out= =

2 1
33

2 33

1
ε

β
, . (23)

The actual equation system from (16) to (19) can be 
easily reduced to two equations based on variables η1 and 
η2 for a numerical solving process.

This model is quite acceptable in the case of a conve-
nient output load, leading to the conclusion that the main 
damping element is due to the output load. However, it be-
comes unsatisfactory in the case of an open output circuit.

B. Considering an Open Output Circuit  

or High Impedance

In the case of plasma discharge applications, the output 
is considered to be free of electrical load before the ap-
pearance of a plasma discharge. As a consequence of this 
condition of use, the electrical displacement expression on 
the receiving part (6b) can be simplified by setting the 
term Cϕ equal to 0. However, without an output load, it 
becomes essential to include the mechanical damping to 
express a realistic behavior of the PT. The introduction 
of this damping coefficient (relative to the resonant fre-
quency ω0) is obtained by introducing a mechanical qual-
ity factor, Qm. Consequently, (16) becomes
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 (24)

Thus, from (22) and (24), the admittance can be analyti-
cally simulated. However, the values of Qm and γ are re-
quired to make this possible. Therefore, the identification 
of these two parameters is carried out using the method 
described in the following section.

V. T I  U 
P

A. The Identification of the Mechanical Quality Factor

If the transformer is supplied by a low input voltage 
amplitude, the square and cubic terms in (24) become 



negligible, leading to ignoring the influence of γ (in low 
signal conditions). As a consequence, the mechanical qual-
ity factor can easily be measured by common methods 
(quadrantal frequencies, or −3-dB bypass). After admit-
tance measurement and calculation, the mechanical qual-
ity factor Qm can be deduced from

 Q
wt

R U L L
m

m

=
+

ω

ρ

0

0
2

1 22 ( )
, (25)

where Rm is the equivalent motional resistor deduced from 
the common equivalent circuit RLC//C (Mason’s model).

B. The Identification of the Cubic Term Constant Factor

The identification of the parameter γ is far less trivial, 
and it requires some analytical simplifications. A method 
is introduced in [17] from the input current measurement. 
By manipulating (24) according to trigonometrical prop-
erties and the definition of η η η= +1

2
2
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Then, if the frequency ω is considered in the vicinity of 
resonant frequency ω0 as ω = ω0 + ∆ω and by neglecting 
the term (∆ω)2,
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Then, substituting (22) into (27) by neglecting the term 
C Vin inω ′  in the vicinity of the resonance and assuming the 
relation I in = j Qω in ≈ jω ψ η0 in , the result is
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Despite all of these approximations, it is still difficult to 
analytically express the dependence of the input current 
flow on the frequency range. As a consequence, the param-
eter γ is deduced from a numerical method with a least-
squares method at ∆ω = 0, giving
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  (29)

Note that in (29), only parameters γ and ψin are sensitive 
to the model’s precision. Consequently, the choice is to 
consider ψin as an undefined parameter in the least-squares 
resolution in the same manner as γ.

The identification of γ from (29) requires the measure-
ment of the current peak values as a function of ∆ω. Thus, 
the peak current is obtained from the admittance mea-
surements presented in Fig. 1.

Moreover, because the parameter is identified at ∆ω 
= 0 and this value is on the right side of the resonance 
peak, it appears more suitable to choose the characteris-
tics using the down-sweeping frequency rather than the 
up-sweeping alternative. Thus, Fig. 5 is experimentally 
deduced.

Finally, the numerical resolution of (29) allows one to 
obtain the curve in Fig. 6 and

 γ ψ= − × = −27 335 10 1 50420 2. , . , N/m  N/Vin  

with the squared 2-norm of the residual |res| = 0.210.
Despite the analytical simplifications and simplicity of 

the experimental protocol, (29) appears to have a satisfac-
tory accuracy.

The method presented here gives access to the γ pa-
rameter, but not the γ11 and γ 31 terms distinctly, as ini-

Fig. 5. The current peak as a function of ∆ω and voltage amplitude.

Fig. 6. Results of least-squares resolution for identification of the γ  pa-
rameter.



tially expressed in (13). Additional experimental charac-
terizations should be undertaken with single ceramics to 
obtain these parameters and also to confirm the expres-
sion of γ obtained in Section IV. Obviously, like all other 
parameters, the third-order constant is dependent on the 
sample temperature. Thus, if the experimental measure-
ments are not undertaken with specific precautions, a 
moderate tolerance rate must be considered for the nu-
meric values.

All required parameters are now available to simulate 
the model developed here and, thus, to discuss the results 
in the following section.

VI. D  R

The current peak is simulated from (22) and (24), 
which gives the characteristics in Fig. 7(a). Fig. 7(a) is 
compared with the experimental curves obtained in Fig. 5. 

For an easier comparison with the experimental measure-
ments, the nonlinear model is illustrated in Fig. 7 by the 
hysteretic areas rather than by the exact multi-solution 
of the equation (24). The unstable frequency ranges are 
indicated for each characteristic by filled surfaces.

As a result, the model clearly presents an acceptable 
rate of accuracy regarding the current peak as a function 
of ∆ω. The influence of the nonlinearity can also be ob-
served on the phase shift as demonstrated in Fig. 7(b) and 
experimentally in Fig. 1.

However, the accuracy is less obvious regarding the ad-
mittance simulation according to the absolute frequency 
value. In fact, the most significant difference between the-
oretical and experimental characteristics may be attrib-
uted to the approximations considered at the beginning of 
the model development. Indeed, more than the one-dimen-
sional approximation, the mechanical waveform chosen in 
free-vibration conditions implies less precision. Remember 
that the waveform equation (4) has been used to formu-
late simpler expressions of the parameters in (13).

Consequently, an illustration of a more precise (but 
more computationally demanding) analytical resolution 
is carried out by using the expression of waveform for-
mulated in [15]. The waveform equation is obtained by 
considering the realistic anisotropic properties resulting 
from the different polarization axes along the primary and 
secondary lengths. Thus, a brief comparison is undertaken 
according to the numerical values assembled in Table III.

If the capacitances are calculated by the same method, 
the electromechanical factor ψin and especially the reso-
nance frequency ω0 are slightly different and more in ac-
cordance with experimental results. Consequently, the 
model’s precision can be significantly improved by taking 
into account the anisotropic property along the main di-
rection, as in [15], but at the cost of more complex equa-
tions.

Be that as it may, the analytical method presented 
here and the model developed finally lead to a satisfac-
tory approximation of the experimental observations on 
the admittance measurements, despite the simplicity of 
the experimental characterization method (Bode trans-
fer function of the input admittance). This finally dem-
onstrates the possibility of accounting for the nonlinear 
aspect in modeling from the beginning of transformer 
pre-design. However, this modeling only concerns the fun-
damental part of the nonlinear behavior of the transform-
er. To fully identify and validate this cubic formulation, 

Fig. 7. Simulation of (a) current peak as a function of ∆ω and voltage 
amplitude, and (b) phase admittance.

TABLE III. T C P A T 
D A. 

Parameter Unit
According to 
J. Yang [2]

According to 
C. Nadal [3]

ω0 rad/s 452.72 × 103 443.40 × 103

( f0) kHz 72.052 70.570
ψin N/V −0.790 −0.908
Cin nF 103.63 103.63
Cout pF 4.550 4.550



additional characterization and validation must be carried 
out concerning the electrical and mechanical higher har-
monics.

VII. C

In this paper, an analytical method to model a piezo-
electric transformer has been presented, taking into ac-
count the most significant nonlinearities appearing in no-
load condition, as in the configuration of a glow plasma 
discharge generator. The developed method is illustrated 
with a typical Rosen-type transformer and concerned the 
fundamental input current and the associated equivalent 
admittance. After a brief presentation of the different ori-
gins of nonlinearity in piezoelectric ceramics, the operat-
ing conditions of the transformer and its preliminary char-
acterization have led to only considering the mechanical 
origin.

The modeling is based on the Hamiltonian principle by 
considering additional third-order terms in the piezoelec-
tric constitutive equations. As a result, a system of two 
polynomial third-order equations was formulated. Addi-
tionally, the input current and equivalent admittance were 
formulated analytically.

Specific experimental measurements were carried out 
on a test transformer with a signal analyzer to emphasize 
the hysteresis phenomenon of the fundamental part of the 
input admittance.

To simulate the analytical model, the unknown pa-
rameter values—the damping factor and the third-order 
term coefficient—must be deduced from the measure-
ments. Their identification only requires electrical input 
measurements in different configurations (under low- and 
high-signal conditions). The method is explained and the 
theoretical model is finally simulated and compared with 
the experiments.

As a result, the model developed has shown a satisfying 
rate of accuracy with the measurements when the com-
parison is done relatively to the resonant frequency. More-
over, it has been shown that the accuracy of the analytical 
model can be significantly improved by using a more reli-
able expression of the mechanical waveform, leading to a 
more accurate value of the resonant frequency.

The method presented has proven the capacity to mod-
el the nonlinear behavior of a piezoelectric transformer 
from simple constant voltage supply measurements in up- 
and down-sweeping frequencies. Finally, this methodology 
provides the opportunity to estimate the output voltage 
operating range of the transformer as well as the bound-
ary frequencies of the unstable range.
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