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Abstract: 
 
 This paper describes the development of an infant-directed speech discrimination system for 
parent-infant interaction analysis. Different feature sets for emotion recognition were investigated 
using two classification techniques: supervised and semi-supervised. The classification experiments 
were carried out with short pre-segmented adult-directed speech and infant-directed speech 
segments extracted from real-life family home movies (with durations typically between 0.5 s and 4 
s). The experimental results show that in the case of supervised learning, spectral features play a 
major role in the infant-directed speech discrimination. However, a major difficulty of using natural 
corpora is that the annotation process is time-consuming, and the expression of emotion is much 
more complex than in acted speech. Furthermore, interlabeler agreement and annotation label 
confidences are important issues to address.  To overcome these problems, we propose a new semi-
supervised approach based on the standard co-training algorithm exploiting labelled and unlabelled 
data. It offers a framework to take advantage of supervised classifiers trained by different features. 
The proposed dynamic weighted co-training approach combines various features and classifiers 
usually used in emotion recognition in order to learn from different views. Our experiments 
demonstrate the validity and effectiveness of this method for a real-life corpus such as home movies. 
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Abstract

This paper describes the development of an infant-directed speech discrimination system for parent-infant inter-
action analysis. Different feature sets for emotion recognition were investigated using two classification techniques:
supervised and semi-supervised. The classification experiments were carried out with short pre-segmented adult-
directed speech and infant-directed speech segments extracted from real-life family home movies (with durations
typically between 0.5 s and 4 s). The experimental results show that in the case of supervised learning, spectral
features play a major role in the infant-directed speech discrimination. However, a major difficulty of using natural
corpora is that the annotation process is time-consuming, and the expression of emotion is much more complex than in
acted speech. Furthermore, interlabeler agreement and annotation label confidences are important issues to address.
To overcome these problems, we propose a new semi-supervised approach based on the standard co-training algo-
rithm exploiting labelled and unlabelled data. It offers a framework to take advantage of supervised classifiers trained
by different features. The proposed dynamic weighted co-training approach combines various features and classifiers
usually used in emotion recognition in order to learn from different views. Our experiments demonstrate the validity
and effectiveness of this method for a real-life corpus such as home movies.

Keywords: Infant-directed speech, emotion recognition, face-to-face interaction, data fusion, semi-supervised
learning

1. Introduction

Parent-infant interactions play a major role in the de-
velopment of the cognitive, perceptual and motor skills
of infants, and this role is emphasised for developmen-
tal disorders. Typically developing infants gaze at peo-
ple, turn toward voices and express interest in commu-
nication. In contrast, infants who will later become
autistic are characterised by the presence of abnormali-
ties in reciprocal social interactions and by a restricted,
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stereotyped and repetitive repertoire of behaviours, in-
terests and activities (autism pathology is defined by
ICD 10: International classification of diseases and re-
lated health problems1 and DSM IV: Diagnostic and sta-
tistical manual of mental disorders2 )[1]. The quality of
parent-infant interaction depends on a reciprocal pro-
cess, an active dialogue between parent and child based
on the infant’s early competencies and the mother’s (or
father’s) stimulations. In addition, the infant’s develop-
ment depends on social interaction with a caregiver who
serves the infant’s needs for emotional attachment.

Researchers in language acquisition and researchers

1http://www.who.int/classifications/icd/en/
2http://www.psych.org/mainmenu/research/dsmiv.aspx

http://ees.elsevier.com/specom/viewRCResults.aspx?pdf=1&docID=1962&rev=4&fileID=47679&msid={F9EF6E93-CD7F-45D8-AEAA-06F38E0B7092}
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in early social interactions have identified an important
peculiarity that affects both the language and social de-
velopment of infants; i.e., the way adults speak to in-
fants. The special kind of speech that is directed to-
wards infants, called infant-directed speech or “moth-
erese” is a simplified language/dialect/register [2] that
has recently been shown to be crucial for engaging in-
teractions between parents and infant and very impor-
tant for language acquisition [3]. Moreover, this speech
register has been shown to be preferred by infants over
adult-directed speech [4] and might assist infants in
learning speech sounds [5]. From an acoustic point of
view, infant-directed speech has a clear signature (high
pitch, exaggerated intonation contours) [5] [6]. The
phonemes, and especially the vowels, are more clearly
articulated [7].

The importance of infant-directed speech has also
been highlighted by recent research on autism [8] [9]
[10]. Manual investigations (i.e., manual annotations)
[11], of parent-infant interactions in home movies have
shown that most positive sequences (i.e., multimodal re-
sponses of the infant: vocalisation, gaze, facial expres-
sion) were induced by infant-directed speech. To study
more specifically the influence on engagement in an
ecological environment, we followed a method usually
employed for the study of infant development: home
movie analysis [12].

The study of home movies is very important for fu-
ture research, but the use of this kind of database makes
the work very difficult and time-consuming. The man-
ual annotation of these films is very costly, and the au-
tomatic detection of relevant events would be of great
benefit to longitudinal studies. For the analysis of the
role of infant-directed speech during interaction, we de-
veloped an automatic infant-directed speech detection
system [10] [13] [14], to enable emotion classification.

Motherese or infant-directed speech has been highly
studied by psychological community. However, in
our knowledge there are no studies of infant-directed
speech, in real-life interaction, employing machine
learning techniques. In the literature, researchers in af-
fective computing and in emotion recognition have stud-
ied infant-directed speech from acted databases [15];
the speech samples were recorded in laboratory. Re-
cently, Inoue et al. [16] have developed a novel ap-
proach to discriminate between infant-directed speech
and adult-directed speech by using mel-frequency cep-
strum coefficient and a hidden Markov model-based
speech discrimination algorithm. The average discrim-
ination accuracy of the proposed algorithm is 84.34%,
but still in laboratory conditions (acted data). Paralin-
guistic characteristics of motherese motivate several re-

searchers to employ recognition systems intially devel-
opped for emotion processing [15][17].

In this paper, we implemented a traditional super-
vised method. We tested different machine learning
techniques, both statistical and parametric, with dif-
ferent feature extraction methods (time/frequency do-
mains). The GMM classifier with cepstral MFCC (Mel-
frequency cepstral coding) features was found to be
most efficient.

However, the supervised methods still have some sig-
nificant limitations. Large amounts of labelled data
are usually required, which is difficult in real-life ap-
plications; manual annotation of data are very costly
and time consuming. Therefore, we investigate a
semi-supervised approach that does not require a large
amount of annotated data for training. This method
combines labelled and unlabelled utterances to learn to
discriminate between infant-directed speech and adult-
directed speech.

In the area of classification, many semi-supervised
learning algorithms have been proposed, one of which
is the co-training approach [18]. Most applications of
co-training algorithm have been devoted to text clas-
sification [19] [20] and web page categorisation [18]
[21]. However, there are a few studies related to
semi-supervised learning for emotional speech recog-
nition. The co-training algorithm proposed by Blum
and Mitchell [18] is a prominent achievement in semi-
supervised learning. It initially defines two classifiers
on distinct attribute views of a small set of labelled data.
Either of the views is required to be conditionally inde-
pendent to the other and sufficient for learning a clas-
sification system. Then, iteratively the predictions of
each classifier on unlabelled examples are selected to in-
crease the training data set. This co-training algorithm
and its variations [22] have been applied in many ar-
eas because of their theoretical justifications and exper-
imental success.

In this study, we propose a semi-supervised algorithm
based on multi-view characterisation, which combines
the classification results of different views to obtain a
single estimate for each observation. The proposed al-
gorithm is a novel form of co-training, which is more
suitable for problems involving both classification and
data fusion. Algorithmically, the proposed co-training
algorithm is quite similar to other co-training methods
available in the literature. However, a number of novel
improvements, using different feature sets and dynamic
weighting classifier fusion, have been incorporated to
make the proposed algorithm more suitable for multi-
view classification problems.

The paper is organised as follows. Section 2 presents
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the longitudinal speech corpus. Section 3 presents
the different feature extraction methods. Sections 4
and 5 present the supervised and the semi-supervised
methods. Section 6 presents the details of the pro-
posed method of semi-supervised classification of emo-
tional speech with multi-view features. Section 7 re-
ports experimental comparisons of supervised and semi-
supervised methods on a discrimination task. In the last
section, some concluding remarks and the direction for
future works are presented.

2. Home movie: speech corpus

The speech corpus used in our study contains real
parent/child interactions and consists of recordings of
Italian mothers as they addressed their infants. It is a
collection of natural and spontaneous interactions. This
corpus contains expressions of non-linguistic communi-
cation (affective intent) conveyed by a parent to a pre-
verbal child.

We decided to focus on the analysis of home movies
(real-life data) as it enables longitudinal study (months
or years) and gives information about the early be-
haviours of autistic infants long before the diagnosis
was made by clinicians. However, this large corpus
makes it inconvenient for people to review. Addition-
ally, the recordings were not made by professionals
(they were made by parents), resulting in adverse con-
ditions (noise and camera and microphones limitations,
etc). In addition, the recordings were made randomly in
diverse conditions and situations (interaction situation,
dinner, birthday, bath, etc.), and only parents and other
family members (e.g., grand-parent, uncle) are present
during the recordings.

All sequences were extracted from the Pisa home
movies database, which includes home movies from the
first 18 months of life for three groups of children (typ-
ically developing, autistic, mentally retarded) [23].

The home movies were recorded by the parents them-
selves. Each family uses his personal camera with only
one microphone. Due to the naturalness of home movies
(uncontrolled conditions: TV, many speakers, etc.), we
manually selected a set of videos with at least under-
standable audio data. The verbal interactions of the
infant’s mother were carefully annotated by two psy-
cholinguists, independently, into two categories: infant-
directed speech and adult-directed speech. To estimate
the agreement between the two annotators, we com-
puted the Cohen’s kappa [24] as a measure of the in-
tercoder agreement. Cohen’s kappa agreement is given

by the following equation:

kappa =
p(a) − p(e)

1 − p(e)
(1)

where p(a) is the observed probability of agreement be-
tween two annotators, and p(e) is the theoretical proba-
bility of chance agreement, using the annotated sample
of data to calculate the probabilities of each annotator.
We found a Cohen’s kappa equal to 0.82 (CI for Confi-
dence Interval: [95%CI: 0.75-0.90]), measured on 500
samples, which corresponds to good agreement between
the two annotators.

From this manual annotation, we randomly extracted
250 utterances for each category. The utterances are
typically between 0.5 s and 4 s in length. Figure 1
shows a distribution of infant-directed speech and adult-
directed speech utterances from 3 periods of the child’s
life (0-6 months, 6-12 months and 12-18 months).
The total duration of utterances is about 15 minutes.
Figure 2 shows the duration distribution of infant-
directed speech and adult-directed speech utterances. It
shows that there is no significant difference between the
durations of infant-directed speech and adult-directed
speech utterances.

We randomly divided the database into two parts: un-
labelled data U (400 utterances balanced between moth-
erese and adult-directed speech) and labelled data L
(100 utterances balanced between motherese and adult-
directed speech).

3. Emotional Speech Characterisation

Feature extraction is an important stage in emo-
tion recognition, and it has been shown that emotional
speech can be characterised by a large number of fea-
tures (acoustics, voice quality, prosodic, phonetic, lexi-
cal) [25]. However, researchers on speech characterisa-
tion and feature extraction show that is difficult to have
a consensus for emotional speech characterisation.

In this study, we computed temporal and frequen-
tial features, which are usually investigated in emotion
recognition [26] [17]. Moreover, different statistics are
applied, resulting in 16 cepstral ( f 1), 70 prosodic ( f 2,
f 3, f 4 and f 5) and 96 perceptive features ( f 6, f 7, f 8
and f 9), all of which have been shown to be the most
efficient [26] [27] [13]. We obtained 9 different feature
vectors with different dimensions, which are presented
in Table 1.

3.1. Cepstral features
Cepstral features such as MFCC are often success-

fully used in speech and emotion recognition. The
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Table 1: Different features sets
f 1 16 MFCCs
f 2 Pitch (Min, Max, Range) + Energy (Min, Max, Range)
f 3 35 statistics on the pitch
f 4 35 statistics on the energy
f 5 35 statistics on the pitch + 35 statistics on the energy
f 6 Bark TL + SL + MV (96 statistics)
f 7 Bark TL (32 statistics)
f 8 Bark SL (32 statistics)
f 9 Bark MV (32 statistics)

short-term cepstral signatures of both infant-directed
speech and adult-directed speech are characterised by
16 MFCC features (often used for emotion recognition)
and are extracted each 20 ms, so the number of the re-
sulting feature vectors is variable and depends on the
length of the utterance (Frame-level).

3.2. Prosodic features

Several studies have shown the relevance of both
the fundamental frequency (F0) and energy features for

emotion recognition applications [26]. F0 and energy
were estimated every 20 ms [28], and we computed
3 statistics for each voiced segment (segment-based
method) [29]: the mean, variance and range, for both
F0 and short-time energy, resulting in a 6-dimensional
vector.

In addition, 32 statistical features, presented in Table
2, are extracted from the pitch contour and the loudness
contour. Three other features are also extracted from
these contours with a histogram and by considering the
maximum, the bin index of the maximum and the centre
value of the corresponding bin. These 3 features are
relevant for pitch and energy contour characterisation.

3.3. Perceptive features
Infant-directed speech and adult-directed speech

sound perceptually different, [30], and in this work bark
filters spectral representation are employed to investi-
gate these perceptual differences.

The features based on the bark scale are considered
to provide more information by characterising the hu-
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Table 2: 32 statistics
Maximum, minimum and mean value
Standard deviation
Variance
Skewness
Kurtosis
Interquartile range
Mean absolute deviation (MAD)
MAD based on medians, i.e. MEDIAN(ABS(X-MEDIAN(X)))
First and second coeficients of linear regression,
First, second and third coefficients of quadratic regression
9 quantiles corresponding to the following cumulative probability values: 0.025, 0.125,
0.25, 0.375, 0.50, 0.625, 0.75, 0.875, 0.975
Quantile for cumulative probability values 1% and 9% and interquantile range between
this two values
Absolute and sign of time interval between maximum and minimum appearances

man auditory system [31] [32]. We extracted the bark
time/frequency representation using an analysis window
duration of 15 ms and a time step of 5 ms with filters
equally spaced by 1 bark (first filter centred on first bark
critical band) [33]. This computation on the full spec-
trum results in 29 filter bands. This representation can
be described as a discrete perceptive representation of
the energy spectrum, which can be qualified as a per-
ceptive spectrogram. We then extracted statistical fea-
tures from this representation either along the time axis
or along the frequency axis, as shown in Figure 3. We
also considered the average of energy of the bands (a
perceptive Long Term Average Spectrum) and extracted
statistical features from it. Thirty-two statistical features
were used and applied a) along the time axis (Approach
TL), b) along the frequency axes (Approach SL) and c)
on the average perceptive spectrum to obtain a first set
of 32 features (Approach MV).

a) Approach TL (for ‘Time Line’) Figure 3. a.: (step 1)
extracting 32 features on the spectral vector of each
time frame, then (step 2) averaging the values for
each of 32 features along the time axis to obtain a
second set of 32 features.

b) Approach SL (‘for Spectral Line’) Figure 3. b.: (step
1) extracting 32 features along the time axis for each
spectral band and (step 2) averaging the 32 features
along the frequency axis to obtain a third set of 32
features.

c) Approach MV (for ‘Mean Values’): (step 1) aver-
aging the energy values of the bark spectral bands
along the time axis to obtain a long term average
spectrum using 29 bark bands and (step 2) extract-
ing the 32 statistical features from this average spec-
trum.

The 32 statistical features, presented in Table 2, were
computed to model the dynamic variations of the bark
spectral perceptive representation.

4. Supervised Classification

The supervised classification assumes that there is al-
ready an existing categorisation of the data. In this clas-
sification form, the training data D are presented by an
ensemble X of feature vectors and their corresponding
labels Y:

D = {(xi, yi)|x ∈ X, y ∈ Y}ni=1 (2)

Supervised classification consists of two steps: fea-
ture extraction and pattern classification. The features
extraction step consists of characterising the data. Af-
ter the extraction of features, supervised classification
is used to categorise the data into classes correspond-
ing to user-defined training classes. This can be imple-
mented using standard machine learning methods. In
this study, four different classifiers, Gaussian mixture
models (GMM) [34], k-nearest neighbour (k-NN) [35]
classifiers), SVM [36] [37] and Neural networks (MLP)
[38], were investigated.

In our work, all the classifiers were adapted to pro-
vide a posterior probability to maintain a statistical clas-
sification framework.

4.1. Gaussian mixture models
A Gaussian Mixture Model is a statistics based model

for modelling a statistical distribution of Gaussian Prob-
ability Density Function (PDF). A Gaussian mixture
density is a weighted sum of M component densities
[34] given by:

p(x|Cm) =

M∑
i=1

ωig(µi,Σi)(x) (3)

where p(x|Cm) is the probability density function of
class Cm evaluated at x. Due to the binary classifica-
tion task, we define C1 as the “infant-directed speech”
class and C2 as “adult-directed speech”. The vector x is
a d-dimensional vector, g(µ,Σ)(x) are the component den-
sities, and ωi are the mixture weights. Each component
density is a d-variate Gaussian function:

g(µ,Σ)(x) =
1

(2π)d/2
√

det(Σ)
e−1/2(x−µ)T Σ−1((x−µ)) (4)

with mean vector µi and covariance matrix Σi. The mix-
ture weights ωi satisfy the following constraint:

M∑
i=1

ωi = 1 (5)

The feature vector x is then modelled by the following
posterior probability:

Pgmm(Cm|x) =
p(x|Cm)P(Cm)

p(x)
(6)
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Figure 3: Method for Extraction of bark-based features: along time axis (a) and along frequency axis (b)

where P(Cm) is the prior probability for class Cm, as-
suming equal prior probabilities, and p(x) is the overall
PDF evaluated at x.

4.2. k-nearest neighbours
The k-NN classifier [35] is a non-parametric tech-

nique that classifies the input vector with the label of
the majority of the k-nearest neighbours (prototypes).
To maintain a common framework with the statistical
classifiers, we estimate the posterior probability that a
given feature vector x belongs to class Cm using k-NN
estimation [35]:

Pknn(Cm|x) =
km

k
(7)

where km denotes the number of prototypes that belong
to the class Cm among the k nearest neighbours.

4.3. Support vector machines
The support vector machine (SVM) is the opti-

mal margin linear discriminant trained from a sample
of l independent and identically distributed instances:
(x1, y1), · · · , (xl, yl), where xi is the d-dimensional input
and yi ∈ {−1,+1} its label in a two-class problem is
yi = +1 if is a positive (+) example, and yi = −1 if xi is
a negative example.
The basic idea behind SVM is to solve the following
model:

min
1
2
||ω||2ω + C

l∑
i=1

ξi (8)

∀i, yi (ωxi + b) ≥ 1 − ξi (9)

which is a C-soft margin algorithm where ω and b are
the weight coefficients and bias term of the separating

hyperplane, C is a predefined positive real number and
ξi are slack variables [39]. The first term of the objective
function given in (8) ensures the regularisation by min-
imising the norm of the weight coefficients. The sec-
ond term tries to minimise the classification errors by
introducing slack variables to allow some classification
errors and then minimising them. The constraint given
in (9) is the separation inequality, which tries to locate
each instance on the correct side of the separating hy-
perplane. Once ω and b are optimised, during the test,
the discrimination is used to estimate the labels:

ŷ = sign(ωx + b) (10)

and we choose the positive class if ŷ = +1 and the neg-
ative class if ŷ = −1. This model is generalised to learn
nonlinear discriminants with kernel functions to map x
to a new space and learning a linear discriminant there.

The standard SVM does not provide posterior prob-
abilities. However, to maintain a common frame-
work with other classifiers, the output of a classifier
(SVM) should be a posterior probability to enable post-
processing. Consequently, to map the SVM outputs into
probabilities, as presented in [40], we must first train an
SVM, and then train the parameters of an additional sig-
moid function. In our work, we used LIBSVM [36] with
posterior probabilities outputs Psvm(Cm|x).

4.4. Neural network

The Neural Network structure used in this paper was
the Multilayer Perceptron (MLP). An MLP is a network
of simple neurons called perceptrons. The perceptron
computes a single output from multiple real-valued in-
puts by forming a linear combination according to its
input weights and then possibly transforming the output
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by some nonlinear activation function. Mathematically
this can be written as:

y = ϕ(
n∑

i=1

ωixi + b) = ϕ(wT x + b) (11)

where w denotes the vector of weights, x is the vector of
inputs, b is the bias and ϕ is the activation function.

It is proved in [41] that for various parameter opti-
misation strategies (such as gradient descent) with min-
imisation of the Mean Square Error function or Cross-
Entropy Error function and the back-propagation tech-
nique used to compute derivatives of the error function
with respect to each of the free parameters, the trained
network estimates the posterior probabilities of class
membership Pmlp(Cm|x) directly.

5. Semi-Supervised Classification

Supervised methods require a large number of la-
belled utterances to enable efficient learning in real
emotional speech classification systems. However, the
manual annotation of data is very costly and time con-
suming, so an extensive manual annotation of all the
home movies is unrealistic. Therefore, a learning al-
gorithm with only a few labelled data is required; i.e.,
a semi-supervised learning algorithm. In this section,
we briefly describe two techniques for semi-supervised
learning, namely, self-training and co-training. Self-
training and co-training algorithms allow a classifier to
start with a few labelled examples to produce an initial
weak classifier and later to combine labelled and unla-
belled data to improve the performance. In the follow-
ing, let us assume that we have a set L (usually small) of
labelled data, and a set U (usually large) of unlabelled
data.

5.1. Self-training

The definition of self-training can be found in differ-
ent forms in the literature; however, we adopted the def-
inition of Nigam and Ghani [42]. In this method, we
need only one classifier and then only one feature set.
For several iterations, the classifier labels the unlabelled
data and converts the most confidently predicted exam-
ples of each class into a labelled training example.

Table 3 shows the pseudo-code for a typical self-
training algorithm. The self-training starts with a set of
labelled data L, and builds a classifier h, which is then
applied to the set of unlabelled data U. Only the n best
classified utterances are added to the labelled set. The
classifier is then retrained on the new set of labelled ex-
amples, and the process continues for several iterations.

Table 3: Self-training algorithm
Given:

a set L of Labelled examples
a set U of Unlabelled examples
a number n of examples to be added to L in each iteraction

Loop:
Use L to train the classifier h
Allow h to label U
Let T be the n examples in U on which h makes the most confident predictions
Add T to L
Remove T from U

End

Table 4: Co-Training algorithm
Given:

a set L of Labelled examples
a set U of Unlabelled examples

Loop:
Use L to train each classifier h1
Use L to train each classifier h2
Allow h1 to label p1 positive and n1 negative examples from U
Allow h2 to label p2 positive and n2 negative examples from U
Add these self-labelled examples to L
Remove these self-labelled examples from U

End

Notice that only one classifier is required, with no split
of the features.

5.2. Co-training

The co-training algorithm proposed in [18] is a
prominent achievement in semi-supervised learning.
This algorithm and the related multi-view learning
methods [43] assume that various classifiers are trained
over multiple feature views of the same labelled exam-
ples. These classifiers are encouraged to make the same
prediction on any unlabelled example.

As shown in Table 4, the method initially defines two
classifiers (h1 and h2) on distinct attribute views of a
small set of labelled data (L). Either of the views is re-
quired to be conditionally independent of the other and
sufficient for learning a classification system. Then, it-
eratively, each classifier’s predictions on the unlabelled
examples are selected to increase the training data set.
For each classifier, the unlabelled examples classified
with the highest confidence are added to the labelled
data set L, so that the two classifiers can contribute to
increase the data set L. Both classifiers are re-trained on
this augmented data set, and the process is repeated a
given number of times. The rationale behind co-training
is that one given classifier may assign correct labels to
certain examples, while it may be difficult for others to
do so. Therefore, each classifier can increase the train-
ing set by adding examples that are very informative for
the other classifier.
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This method can be generalised to be used with a
large number of views. Figure 4 shows the general
architecture of a generalised co-training method based
on multi-view characterisation. It considers v differ-
ent views. For each iteration, we select an ensemble
of pi positive examples and ni negative examples that
are classified with the highest confidence. Then, we add
the ensemble T =

∑v
i=1 pi + ni to the labelled data set L.

These semi-supervised algorithms and their varia-
tions [22] have been applied in many application ar-
eas because of their theoretical justifications and exper-
imental success.

6. Co-Training Algorithm Based On Multi View
Characterisation

Many researchers have shown that multiple-view al-
gorithms are superior to single-view method in solv-
ing machine learning problems [18] [44] [45]. Differ-
ent feature sets and classifiers (views) can be employed
to characterize speech signals, and each of them may
yield different prediction results. Therefore, the best so-
lution is to use multiple-characterisation (views= fea-
ture + classifier) together to predict the common class
variable. Thus, the generalised co-training algorithm
shown in Figure 4 uses different views for classification.
In the multi-view approach, the labelled data are repre-
sented by {(x1

1, ..., x
v
1, y1), ..., (x1

m, ..., x
v
m, ym)}, where v is

the number of views and yi are the corresponding labels,
m is the number of labels.

However, the standard co-training algorithm does not
allow the fusion of different views in the same frame-
work to produce only one prediction per utterance. It
takes the prediction of each classifier separately. To
overcome this problem, we propose a co-training proce-
dure that iteratively trains a base classifier within each
view and then combines the classification results to ob-
tain a single estimate for each observation. The pro-
posed algorithm is a novel form of co-training, which
is more suitable for problems involving both semi-
supervised classification and data fusion.

The goal of the proposed co-training method is to
incorporate all the information available from the dif-
ferent views to accurately predict the class variable.
Each group of features provides its own perspective, and
the performance improvements are obtained through the
synergy between the different views. The co-training
framework is based on the cooperation of different clas-
sifiers for the improvement of classification rates. Each
of them gives an individual prediction weighted by its
classification confidence value. This problem has a

strong similarity to data fusion, which involves incorpo-
rating several disparate groups of views into a common
framework for modelling data.

This algorithm is designed to improve the perfor-
mance of a learning machine with a few labelled ut-
terances and a large number of cheap unlabelled utter-
ances.

Given a set L of labelled utterances, a set U of un-
labelled utterances, and a set of different feature views
Vi, the algorithm works as described in Table 5 and Fig-
ure 5. First, to initialise the algorithm, we found the
best feature set for each classifier, as presented in Ta-
ble 7. Second, we set all of the initial weights equally
so that ωk = 1/v, where v is the number of views (9 in
our case). Third, while the unlabelled database U is not
empty, we repeat the following:

• Classification: to classify all the unlabelled utter-
ances, the class of each utterance is obtained using
a decision function. In our case we compute the
maximum likelihood; otherwise we can use other
decision functions.

• Update the labelled and unlabelled databases: first
we take as U1 the utterances from U classified on
Class 1 and U2 classified on Class 2, after that we
calculate the classification confidence for each ut-
terance that we called margin. This step consists
of cooperating all the classifiers to have once pre-
diction by combining the classifiers outputs using
a simple weighted sum.

p(C j|zi) =

∑v
k=1 ωk × hk(C j|zk

i )∑v
k=1 ωk

(12)

margin j =

∑n j

1 p(C j|zi)
n j

(13)

where zk
i is the feature view to be classified on the

class C j, ωk is the weight of the classifier hk, v is
the number of views and n j is the number of seg-
ments classified on class C j. The margin value is in
the interval [0,1]. This number can be interpreted
as a measure of confidence, as is done for SVM
[46]. Then we take T j to be the utterances from U j

that were classified on Class j with a probability
greater than the mean value of classification confi-
dence (margin) of the Class j.

• Update weights: finally, we update the weights of
each view, as described in Table 5. The new weight



  

A. Mahdhaoui and M. Chetouani / Speech Communication 00 (2011) 1–15 9

h1

h2

hv

L
(labelled data)

U
(unlabelled data)

training

training

test

test

T: examples which are classified with the 
highest confidence:

.

.

.

.

test

La
b

el
le

d
ex

am
p

le
s

p1+n1

p2+n2

pv+nv

1

v

i

T pi ni


 

classifier 1

feature 1

classifier 2

feature 2

classifier v

feature v
training

Figure 4: Standard existing co-training algorithm based on multi-view characterization

of each classifier is proportional to its contribu-
tion to the final classification. In other words, the
weights of efficient classifiers will be increased.

7. Experimental Results

7.1. Experimental setup

Motherese detection is a binary classification prob-
lem and from given confusion matrix we have differ-
ent decisions: true/false positive (TP,FP), and true/false
negative (TN,FN). For supervised classification, we
evaluated, from a 10 folds cross validation, the accu-
racy rate to compare the performances of different sep-
arate classifiers: (TP+TN)/(TP+TN+FP+FN). We opti-
mized the parameters of the different classifiers; such as
M component densities for GMM, k optimal number of
neighbours for k-NN, optimal kernel for SVM and the
number of cells for MLP.

For the semi-supervised classification, the perfor-
mance of the classification system is given for differ-
ent data set. First we randomly selected an ensemble U

containing 400 examples and an ensemble L containing
100 examples balanced between motherese and adult-
directed speech. Then, in order to study the implication
of the quantity of supervised learning data, we perform
several experiments with different number of labelled
data; from 10% (10 examples) to 100% (100 examples).

Notice that for the standard co-training algorithm,
first we compute the standard algorithm with only two
classifiers (the two best classifiers) such as proposed in
[18] (Table 4), then we perform this algorithm using all
the classifiers as shown in the Figure 4.

The supervised and semi-supervised classifica-
tion systems were performed on multi-speaker data
(speaker-independent). The speech segments were ran-
domly extracted from 10 home movies (10 different
mothers). In addition, as shown in Figure 1, the speech
segments were extracted from three different periods of
time (semester 1, semester 2, semester 3), which will
augment the data diversity since the voice of the moth-
ers changes from one semester to another.
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Table 5: The proposed Co-Training algorithm
Given:

a set L of m Labelled examples {(l11, ..., l
v
1, y1), ..., (l1m, ..., l

v
m, ym)} with labels yi = {1, 2}

a set U of n Unlabelled examples {(x1
1, ..., x

v
1), ..., (x1

n, ..., x
v
n)}

v = number of view (classifier)
Initialization:
ωk (weights of classifier)= 1/v for all the view

While U not empty
A. Classify all the example of the test database:

Do for k = 1, 2, ..., v
1. Use L to train each classifier hk

2. Classify all examples of U by each hk

3. Calculate the probability of classification for each example xi from U,
p(C j|xi) =

∑v
k=1 ωk × hk(C j|xk

i )
4. Labels(xi) = argmax(p(C j|xi))

End for
B. Update the training (L) and test (U) databases:

U j = {z1, ..., zn j} the ensemble of example classified C j

Do for i = 1, 2, ..., n j

p(C j|zi) =
∑v

k=1 ωk×hk(C j |zk
i )∑v

k=1 ωk

End for

margin j =
∑n j

1 p(C j |zi)
n j

Take T j from U j the examples which has classified on C j with a probability
upper to margin j.
T =
∑

T j

Add T to L and remove it from U

C. Update weights: ωk =
∑size(T )

i=1 hk(zk
i )∑v

k=1
∑size(T )

i=1 hk(zk
i )

End While

Table 6: Accuracy of separate classifier using 10 folds cross validation
Feature set GMM k-NN SVM MLP

Cepstral feature f 1 72.8 57.7 59.4 61.4

Prosodic features

f 2 59.5 55.7 54.7 50.2
f 3 54.7 55.0 50.0 50.0
f 4 67.0 68.5 65.5 58.5
f 5 62.1 65.5 65.5 54.5

Perceptive features

f 6 61.0 50.5 49.0 54.5
f 7 55.5 51.0 52.0 58.5
f 8 65.0 52.0 50.5 55.5
f 9 58.8 50.5 50.5 64.0

7.2. Results of supervised classifiers

The performance of the different classifiers, each
trained with different feature sets ( f 1, f 2, ... , f 9), were
evaluated on the home movies database.

Table 6 shows the best results of all the classifiers
trained with different feature sets. The best result
was obtained with GMM trained with cepstral MFCC
(72.8% accuracy), and second best result was obtained
with k-NN trained with f 4 (35 statistics on energy).
Therefore, Table 6 shows that cepstral MFCC outper-
forms the other features. Regarding the prosodic fea-

tures, best results are not obtained with a GMM classi-
fier but with k-NN and SVM classifiers. In addition to
the GMM, perceptive features provide satisfactory re-
sults using the MLP classifier.

To summarise, comparing the results of different fea-
ture sets and taking into account the different classi-
fiers, the best performing feature set for infant-directed
speech discrimination appears to be the cepstral MFCC.
Regarding the classifiers, we can observe that GMMs
generalise better over different test cases than the other
classifiers do.

7.3. Results of semi-supervised classifiers

The algorithm works as described in Figure 5. To ini-
tialise the co-training algorithm, we consider the best
configuration of each features trained with all super-
vised classifiers, using 10 folds cross validation. We
obtained 9 classifiers (views) h1 to h9 as described in
Table 7.

The classification accuracy of the co-training algo-
rithm using multi-view feature sets with different num-
ber of annotations is presented in Figure 6 and Table
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Figure 5: Structure of the proposed Co-training algorithm

8. It can be seen that our method can achieve efficient
results in infant-directed speech discrimination.

To further illustrate the advantage of the proposed
method, Table 8 and Figure 6 show a direct comparison
between our co-training algorithm and the standard co-
training algorithm. It shows that our method performs
better results, 75.8% vs. 71.5%, using 100 labelled ut-
terances. In addition, Figure 6 and Table 8 show that the
performance of the standard co-training algorithm that
uses all the classifiers is worse than the performance
of the algorithm using only two classifiers, especially
when we dispose of few labelled data for training. Al-
though, the standard co-training algorithm was shown
promising for different classification problems, it suf-
fers from issues of divergence, where errors in the newly
classified data could cause the system to run off track
[47]. One approach to overcome this problem is com-
bining the different predictions given by the different
classifiers; such as all the classifiers cooperate to ob-
tain only one prediction per utterance. The proposed
co-training algorithm offers a framework to take advan-
tage of co-training learning and data fusion. It com-
bines the various features and classifiers in a co-training
framework.

In addition, to illustrate the advantage of the pro-
posed multi-view method, especially in cases with very
few annotations, we compare our method with the self-
training method with a single view. In our study, we

investigated the basic self-training algorithm, which re-
places multiple classifiers in the co-training procedure
with the best classifier that employs the most efficient
feature. We computed GMM with the cepstral MFCC
(h1) and prosodic features (h2), and at each iteration we
take only the utterance with the best posterior probabil-
ity.

Figure 6 and Table 8 show a comparison between our
co-training method and the self-training method. It can
be seen that our method outperforms the self-training
method, 75.8% vs. 70.3%, with 100 labelled utterances.
In addition, the proposed co-training method gives a
satisfactory result in the case of very few annotations,
66.8% with 10 labelled utterances vs. 52.0% for the
self-training method. Comparing self-training and su-
pervised methods, Figure 6 shows that supervised al-
gorithm outperforms self-training algorithm since that
self-training method suffers from issues of divergence
(hight risk of divergence) [47]. The self-training algo-
rithm makes error in the first iteration, therefore the er-
ror rate becomes important, and then the classifier will
learn on falsely classified examples. The risk of diver-
gence is the major problem of the self-training algo-
rithm [47].

In addition, to illustrate the importance of the use of
the semi-supervised method, we compared the perfor-
mance of the proposed semi-supervised method and the
best supervised method (GMM-MFCC) using different
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Table 8: Classification accuracy with different numbers of annotations for training and 400 utterances for testing
Number of annotations for training 10 20 30 40 50 60 70 80 90 100
Proposed Co-training method 66.8 65.3 63.5 67.0 69.8 72.3 72.5 71.8 74.0 75.8
Co-training standard (using h1 and h4) 63.5 62.5 62.0 64.5 68.5 69.8 71.3 69.5 71.0 71.5
Co-training standard (using all the classifiers h1-h9) 57.0 58.5 58.5 61.0 64.0 67.0 67.3 68.0 69.0 68.5
Self-training (using h1: MFCC-GMM) 52.0 50.0 50.0 54.0 55.0 62.5 61.0 65.0 69.0 70.3
Self-training (using h2: prosody-GMM) 54.0 52.5 53.0 52.0 53.5 58.0 59.0 62.0 64.5 67.8
Supervised method: MFCC-GMM (best configuration) 55.0 59.3 59.5 61.5 68.5 71.0 70.0 69.8 71.5 72.8

Table 7: Initialization of Co-training algorithm
Classifiers (views) Combination

h1 GMM trained with f 1
h2 GMM trained with f 2
h3 k-NN trained with f 3
h4 k-NN trained with f 4
h5 SVM trained with f 5
h6 GMM trained with f 6
h7 MLP trained with f 7
h8 GMM trained with f 8
h9 MLP trained with f 9

numbers of annotations (from 10 labelled data to 100
labelled data). Figure 6 and Table 8 show that the pro-
posed co-training method outperforms the supervised
method especially with limited labelled data for training
(always 400 utterances for testing), 66.8% vs. 55.0%
with 10 labelled utterances.

Moreover, Figure 8 demonstrates that the proposed
co-training algorithm performs better in the first sev-
eral iterations (93.5% accuracy in the first iteration).
This result is quite reasonable because, as shown in
Figure 7, there are many more correctly classified than
falsely classified utterances in the first iteration (101
correctly classified utterances vs. 7 falsely classified
utterances). However, the performance of the classifi-
cation decreases in the last iterations because we are re-
training the system on misclassified utterances detected

incorrectly in previous iterations.

8. Conclusion

In this article, a co-training algorithm was presented
to combine different views to predict the common
class variable for emotional speech classification. Our
goal was to develop a motherese detector by comput-
ing multi-features and multi-classifiers to automatically
discriminate pre-segmented infant-directed speech seg-
ments from manually pre-segmented adult-directed seg-
ments, so as to enable the study of parent-infant interac-
tions and the investigation of the influence of this kind
of speech on interaction engagement. By using the more
conventional features often used in emotion recogni-
tion, such as cepstral MFCC, and other features, includ-
ing prosodic features with some statistics on the pitch
and energy and bark features, we were able to auto-
matically discriminate infant-directed speech segments.
Using classification techniques that are often used in
speech/emotion recognition (GMM, k-NN, SVM and
MLP) we developed different classifiers and we have
tested them on real-life home movies database. Our ex-
perimental results show that spectral features alone con-
tain much useful information for discrimination because
they outperform all other features investigated in this
study. Thus, we can conclude that cepstral MFCC alone
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can be used effectively to discriminate infant-directed
speech.

However, this method requires a large amount of
labelled data. Therefore, we investigated a semi-
supervised approach that combines labelled and un-
labelled data for classification. The proposed semi-
supervised classification framework allows the combi-
nation of multi-features and the dynamic penalisation
of each classifier by iteratively calculating its classifica-
tion confidence. The experimental results demonstrate
the efficiency of this method.

For our infant-directed speech classification experi-
ments, we used only utterances that were already seg-
mented (based on a human transcription). In other
words, the automatic segmentation of infant-directed
speech was not investigated in this study, but it can
be addressed in a follow-up study. Automatic infant-
directed speech segmentation can be seen as a sepa-
rate problem, which gives rise to other interesting ques-

tions, such as how to define the beginning and the end
of infant-directed speech, and what kind of evaluation
measures to use.

In addition, other issues remain to be investigated in
the future. We plan to test our semi-supervised clas-
sification method on larger emotional speech databases.
Then it will be interesting to investigate the complemen-
tarities of the different views by analysing the evolution
of weights of each classifier and to compare our algo-
rithm with other semi-supervised algorithms, especially
algorithms using multi-view features.
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