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Abstract

The present study elaborates on the exploitation of both linguistic and acoustic feature modeling for anger classi-
fication. In terms of acoustic modeling we generate statistics from acoustic audio descriptors, e.g. pitch, loudness,
spectral characteristics. Ranking our features we see that loudness and MFCC seems most promising for all databases.
For the English database also pitch features are important. In terms of linguistic modeling we apply probabilistic and
entropy-based models of words and phrases, e.g. Bag-of-Words (BOW), Term Frequency (TF), Term Frequency -
Inverse Document Frequency (TF.IDF) and the Self-Referential Information (SRI). SRI clearly outperforms vector
space models. Modeling phrases slightly improves the scores. After classification of both acoustic and linguistic
information on separated levels we fuse information on decision level adding confidences. We compare the obtained
scores on three different databases. Two databases are taken from the IVR customer care domain, another database
accounts for a WoZ data collection. All corpora are of realistic speech condition. We observe promising results for the
IVR databases while the WoZ database shows overall lower scores. In order to provide comparability in between the
results we evaluate classification success using the f1 measurement in addition to overall accuracy figures. As a result,
acoustic modeling clearly outperforms linguistic modeling. Fusion slightly improves overall scores. With a baseline
of approximately 60% accuracy and .40 f1-meaurement by constant majority class voting we obtain an accuracy of
75% with respective .70 f1 for the WoZ database. For the IVR databases we obtain approximately 79% accuracy with
respective .78 f1 over a baseline of 60% accurracy with respective .38 f1.

Key words:
emotion detection, anger classification, linguistic and prosodic acoustic modeling, IGR ranking, decision fusion, IVR
speech

Introduction

Detecting emotions in vocal human-computer inter-
action (HCI) is gaining increasing attention in speech
research. Moreover, classifying human emotions by
means of automated speech analysis is achieving a level
of performance, which makes effective and reliable de-
ployment possible. Emotion detection in interactive
voice response (IVR) systems can be used to monitor
quality of service or to adapt emphatic dialog strategies
(Yacoub et al., 2003; Shafran et al., 2003).
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alexander.schmitt@uni-ulm.de (Alexander Schmitt),
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Anger recognition in particular can deliver useful in-
formation to both the customer and the carrier of IVR
platforms. It may indicate potentially problematic turns
or slots, which could in turn lead to improvements or re-
finements of the system. It can further serve as trigger to
switch between tailored dialog strategies for emotional
conditions to better react to the user’s behavior (Metze
et al., 2008; Burkhardt et al., 2005a), including the re-
routing of customers to a human operator for assistance
when problems occur.

There are many ways, in which a person’s emotion
can be conveyed. However, in the present voice-based
scenario, two factors prevail: the choice of words and
acoustic variation. When a speaker expresses an emo-
tion while adhering to an inconspicuous intonation pat-
tern, human listeners can nevertheless perceive the emo-
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tional information through the lexical content. On the
other hand, words that are not generally emotionally
salient can certainly be pronounced in a way, which con-
veys the speaker’s emotion in addition to the mere lex-
ical meaning. Consequently, our task is to capture the
diverse acoustic and linguistic cues that are present in
the speech signal and to analyze their correlation to the
speaker’s emotion.

Our linguistic approach analyzes the lexical informa-
tion contained in the spoken word and its correlation
to the emotion of anger. The level of anger connota-
tion of a word can be estimated using various concepts.
First, we apply the concept of Emotional Salience (Lee
and Narayanan, 2005; Lee et al., 2008), which mod-
els posterior probabilities of a class given a word and
combines this information with the prior probability of
a class. This concept can be extended to include con-
textual information by modeling the salience of not just
one word, but word combinations, i.e. n-grams. Further,
we compare these models to traditional models from the
related field of information retrieval, i.e. models that
estimate term frequencies (TF) or words used (Bag-of-
Words, BOW) as explained in Section 3.

Our prosodic approach examines expressive patterns
that are based on vocal intonation. Applying large-scale
feature extraction, we capture these expressions by cal-
culating a number of low-level acoustic and prosodic
features, e.g. pitch, loudness, MFCC, spectral infor-
mation, formants and intensity. We then derive statis-
tics from these features. Mostly, the statistics encom-
pass moments, extrema, linear regression coefficients
and ranges of the respective acoustic contours. In or-
der to gain insight into the importance of our features
we rank them according to their information-gain ratio.
Looking at high-ranked features we report on their dis-
tribution and numbers in total, as well as in relation to
each other. Only the most promising features are re-
tained in the final feature set for acoustic classification.

In a final step, we fuse information from both linguis-
tic and acoustic classification results to obtain a com-
plex estimate of the emotional state of the user.

We compare our features for three different corpora.
One database comprises American English IVR record-
ings (Schmitt et al., 2010), another contains German
IVR recordings Burkhardt et al. (2009). Both databases
account for mostly adult telephony conversations with
customer-care hotlines and contain a high number of
different speakers. A third database comprises record-
ings from a Wizard of Oz (WoZ) scenario conducted
with a small number of German children (Steidl et al.,
2005).

1. Related Work and Realistic Database Conditions

When comparing existing studies on anger recog-
nition, one has to be aware of the precise conditions
of the underlying database design, as many of the re-
sults published hitherto are based on acted speech data.
Some of these databases include sets of prearranged
sentences. Recordings are usually done in studios, min-
imizing background noise, recording speakers (one at a
time) multiple times until a desired degree of expression
is reached. Real life speech does not have any of these
settings.

As much as 97% accuracy has been reported for the
recognition of angry utterances in a 7 class recognition
test performed by humans on the TU Berlin EMO-DB
(Burkhardt et al., 2005b), which is based on speech pro-
duced by German-speaking professional actors. The
lexical content is limited to 10 pre-selected sentences,
all of which are conditioned to be interpretable in six
different emotional and a neutral-speech contexts. The
recordings have wideband quality. Experiments on a
subset, which featured high emotion recognition rates
and high naturalness votes, both by human listeners, re-
sulted in 92% accuracy when Schuller (2006) classified
for the emotions and neutral speech automatically.

Comprising mostly read sentences, but also some free
text passages, a further anger recognition experiment
was carried out on the DES database by Enberg and
Hansen (1996). The accuracy for classification into 5
classes in a human anger recognition experiment re-
sulted in 75%. All recordings are of wide band qual-
ity as well. Classifying this database automatically,
Schuller (2006) reported an accuracy of 81%.

When speakers are not acting, namely when there is
no professional performance, we need to rely on the im-
pressions of a number of independent listeners. Since
no agreed-upon common opinion exists on how a spe-
cific emotion ’sounds’, it has become standard practice
to take into account the opinion of several raters. To
obtain a measurement for consistency of such ratings,
an inter-labeler agreement measure is often applied. It
is defined as the count of labeler agreements, corrected
for chance level and divided by the maximum possible
count of such labeler agreements. It should be noted that
the maximum agreement also depends on the task, as for
example the inter-labeler agreement in a gender recog-
nition task is expected to be higher than that in an anger
rating task. We assume that low inter-labeler agreement
on the different emotion categories in the training and
test data would predict a low automatic classification
score, since in cases where humans are uncertain about
classification, the classifier would likewise have diffi-
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culty in differentiating between the classes. Batliner
et al. (2000) further analyzes emotion recognition per-
formance degradations when comparing acted speech
data, read speech data and spontaneous speech obtained
from a WoZ scenario. Performances on acted speech
data were much better in all considered experiments.

Lee and Narayanan (2005) as well as Batliner et al.
(2000) used realistic narrow-band IVR speech data from
call centers. Both applied binary classification with
Batliner et al. (2000) discriminating angry from neutral
speech, and Lee and Narayanan (2005) classifying for
negative versus non-negative utterances. Given a two
class task, it is very important to know the prior proba-
bilities of class distribution. Batliner et al. (2000) reach
an overall accuracy of 69% using Linear Discriminative
Classification (LDC). Unfortunately no class distribu-
tion or inter-labeler agreement for his corpus is given.
Lee and Narayanan (2005) reach a gender-dependent
accuracy of 81% for female and 82% for male speak-
ers. They measured inter-labeler agreements as 0.45 for
male and 0.47 for female speakers, which can be inter-
preted as moderate agreement. For both gender classes,
constant voting for the non-negative class would achieve
about 75% accuracy already and - without any classifi-
cation - would outperform the results obtained by Bat-
liner et al. (2000).

Exploiting acoustic and linguistic information
Schuller et al. (2004) and Lee and Narayanan (2005)
apply late fusion strategies. Using predominantly
acted emotions from the automotive domain Schuller
et al. (2004) combines acoustic and linguistic infor-
mation in order classify into seven emotional states.
Extracting few acoustic features, the main difference
to the present work lies within the incorporation of
linguistic information. He hierarchically clusters
individual words into bigger phrase and super-phrase
levels using belief networks. Also Lee and Narayanan
(2005) uses few acoustic features and combines them
with linguistic information using Emotional Salience
models by averaging on decision level. He proposes to
calculate activations from Emotional Salience scores
and calculates accuracies in a gender dependent way.

In order to compare the performance of our lin-
guistic and acoustic models for the different databases,
we calculate classification success using two evaluation
scores: accuracy and the f1-measure. Given the skewed
class distribution, the accuracy measure overestimates
if the model of the majority class yields better results
than the models for the non-majority classes. As re-
ported above, such an inequality in model performance

is not uncommon1. We therefore focus on the unit func-
tion f1-measurement. It is defined as the (unweighted)
average of F-measures from all classes, which in turn
account for the harmonic mean of both precision and
recall of a given class. However, in order to be com-
parable to other works, we also show accuracy figures.
It should be noted that comparisons between results of
studies that use different evaluation measures are thus
often biased and, in some cases, may even be invalid.

Publications contributed to the INTERSPEECH 2009
Emotion Challenge (Schuller et al., 2009b) give a good
overview of recent developments in terms of classifier
diversity and acoustic feature modeling. All partici-
pant publications are based on the same training and test
corpus definitions, and the results are therefore more
comparable than results from single case studies. The
present study also includes the benchmark corpus, i.e.
the realistic Aibo corpus as presented in Section 2. Pre-
vailing classification algorithms applied in the bench-
mark are Support-Vector-Machines (S V M), Gaussian-
Mixture-Models (GMM) as well as the combination of
them, i.e. GMM-SVM Super-Vector approach, as pre-
sented by Dumouchel et al. (2009). Also, dynamic
GMM-HMM approaches, as widely used in speech
recognition, were proposed (Vlasenko and Wendemuth,
2009) among other methods. Best scores were generally
obtained by fusing the several classifiers at the decision
level. All those models are based on acoustic, including
prosodic, feature extraction. Polzehl et al. (2009b) pro-
posed to include linguistic knowledge, namely to model
information that can be drawn from the words the speak-
ers used. The best systems reached average recalls,
which was the primary evaluation criterion, of approx-
imately 70% and an accuracy of 69%, which, after all,
represents a small improvement over constant majority
class voting only. Overall, as most results from the dif-
ferent systems in the benchmark were very close, the
challenge illustrated the difficulty in recognizing emo-
tions from speech. The present study elaborates on the
exploitation of both linguistic and acoustic feature mod-
eling and the application of decision fusion.

In the context of humanmachine interaction, analyses
of emotional expressions are generally aimed at the de-
sign of Embodied Conversational Agents. This predom-
inantly relates to application in automated dialog sys-
tems. Related to research on human-computer interac-
tion, also human-human interaction has been analyzed
for emotions. Although the matter of interest is identi-

1Note, that besides the fact that class skewness affects the accuracy
evaluation criterion, it also implies an inequality in amount of training
data that can also contribute to performance differences.
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cal, a deeper look into the differences reveals that emo-
tionally colored speech is more likely to be encountered
in human-human interactions (Devillers et al., 2005).
Also intensity and forms can vary. This is due to the
level of both, self-restriction while interacting with a
system and the system’s restriction in interaction con-
text. A comprehensive study on human-human call-
center emotion analysis and machine classification can
be found in Vidrascu and Devillers (2007); Devillers
et al. (2005).

2. Selected Corpora

Nearly all studies on anger recognition are based on
single corpora making a generalization of the results dif-
ficult. Our aim in this study is to compare the perfor-
mance of different features when trained and tested on
different corpora. All of the selected databases account
for real life conditions, i.e. they have background noise,
recordings include cross- and off-talk, speakers are free
in the choice of words and do not enunciate as clearly
as trained speakers do.

The German IVR database contains about 21 hours
of recordings from a German voice portal. Customers
call in to report on problems, e.g. problems with the
phone connection. The callers are being preselected
by an automated voice dialog before they are passed
to an agent. The data can be subdivided into 4683 di-
alogs, averaging 5.8 turns per dialog. For each turn,
three labelers assigned one of the following labels: not
angry, not sure, slightly angry, clear anger, clear rage
or marked the turns as non applicable when encounter-
ing garbage. The labels were mapped onto two cover
classes by clustering according to a threshold over the
average of all voters’ labels as described by Burkhardt
et al. (2009). Following the extension of Cohen’s kappa
for multiple labelers by Davies and Fleiss (1982), we
obtain a value of κ = 0.52, which corresponds to mod-
erate inter-labeler agreement (Steidl et al., 2005). Fi-
nally, our experimental set contains 1951 Anger turns
and 2804 Non-Anger turns which correspond approxi-
mately to a 40/60 split of anger/non-anger distribution.
The average turn length after removing initial and final
pauses is 1.8 seconds. A more detailed description of
the corpus can be found in Burkhardt et al. (2009).

The English IVR database originates from a US-
American portal designed to solve Internet-related prob-
lems jointly with the caller. It helps customers to re-
cover Internet connections, reset lost passwords, can-
cel appointments with service employees or reset lost
e-mail passwords. If the system is unable to help the
customer, the call is escalated to a human operator.

Three labelers divided the corpus into angry, annoyed
and non-angry utterances. The final label was defined
based on majority voting resulting in 90.2% neutral,
5.1% garbage, 3.4% annoyed and 0.7% angry utter-
ances. 0.6% of the samples in the corpus were elim-
inated because all three raters had different opinions.
While the number of angry and annoyed utterances
seems very low, 429 calls (i.e. 22.4% of all dialogs) con-
tained annoyed or angry utterances. In order to be able
to compare results of both corpora we matched the con-
ditions of the English database to the conditions of the
German database, i.e. we collapsed annoyed and angry
to angry and created test and training sets according to
the 40/60 split. The resulting set consists of 1560 Non-
Anger and 1012 Anger turns. The inter-labeler agree-
ment results in κ = 0.63, which also represents moder-
ate agreement. The average turn length after eliminating
initial and final pauses is approximately 0.8 seconds. A
more detailed description of the corpus can be found in
Schmitt et al. (2010).

The German WoZ AIBO database consists of chil-
dren interacting with the AIBO robot dog. 51 children
(age 10-13) were recorded in a Wizard-of-Oz scenario.
The children were given the task to navigate the robot
through a certain course of actions using voice com-
mands. When the robot reacted disobediently, it pro-
voked emotional reactions from the children. The data
amounts to 9.2 hours of 16bit/16kHz speech recordings
in total. Five labelers annotated the utterances with re-
spect to 10 emotion-related target classes, which were
eventually mapped to a binary division between neg-
ative (NEG), subsuming touchy, angry, reprimanding
and emphatic labels, and non-negative (IDL) utter-
ances, subsuming all other classes, as described in
(Steidl et al., 2005). Recordings were split into chunks
by syntactic-prosodic criteria. For the present experi-
ments we chose a subset of 26 children2, which results
in 3358 NEG and 6601 IDL chunks corresponding to a
33/66 split. Inter-labeler agreement results in κ = 0.56.
A more detailed description of the corpus can be found
in Steidl (2009).

Details of all three corpora are listed in Table 1.
While the IVR databases contain different degrees of
anger expression in the Anger class, the WoZ database
also subsumes other emotion-related states. Thus, more
diverse patterns in the WoZ Anger class can be ex-
pected. Further, all samples from the selected databases
were presented to the labelers chronologically and inde-
pendently. This way, the history of a turn being part of

2This set corresponds to the AIBO chunk train set used in the IN-
TERSPEECH 2009 Emotion Challenge (Schuller et al., 2009b).
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a dialog course was known to the labelers, i.e. the label
decision includes the context of it. The labelers of the
IVR databases were familiar with the respective voice
portals and linguistic emotion theory. The labelers of
the WoZ database were advanced students of linguistics.
Rating the turns or chunks, acoustic and linguistic in-
formation processing happened simultaneously, i.e. all
stimuli were given in audible, not written form. In or-
der to facilitate formal comparisons, we will refer to the
NEG and IDL classes in the WoZ database as Anger
and Non-Anger classes and consider the given chunks
as corresponding to turns.

3. Linguistic Feature Modeling

Linguistic features model the information given by
the transcription of the spoken words or by word hy-
potheses obtained from automatic speech recognition
(AS R) of the user’s utterances. We investigate the per-
formance of word modeling for anger recognition using
four different feature spaces, i.e. Bag-of-Words (BOW),
Term Frequency (TF), Term Frequency - Inverse Doc-
ument Frequency (TF.IDF) and the Self-Referential In-
formation (SRI). BOW builds up a feature space by col-
lecting all words from a data set and registering the
words contained in an individual document. Our BOW
model contains 1 or 0 for present or absent words re-
spectively. As a result, word lists can be very large and
feature spaces are sparsely populated. TF refers to a
similar method. Instead of marking absence and pres-
ence, normalized word counts are registered in a vector
space. TF.IDF weights TF by the inverse of the docu-
ment frequency, i.e. the frequency of documents con-
taining an individual word. BOW, TF and TF.IDF are
frequently used in information retrieval tasks, e.g. text
classification (Huang et al., 2001).

Departing from the concept of relative entropy be-
tween two probability mass functions, we calculate the
information of a word with respect to an emotion class.
Let w ∈ W be a word out of a vocabulary, ε ∈ E an emo-
tion out of all target emotion classes and P(ε) the prior
probability of an emotion. The Self-Referential Infor-
mation about an emotion class, given a posterior proba-
bility that a certain word implies a certain emotion, can
be estimated by:

S RI(ε,w) = log
P(ε |w)
P(ε)

(1)

At the turn level, we sum up the word- and class-
specific SRI values and decide for the class of maximum
SRI sums. Departing from SRI Lee and Narayanan

(2005) calculate the Emotional Salience of a word us-
ing the mutual information between the probability of
a word and the probability of a class. Statistical in-
dependence of the two probabilities would result in a
mutual information of zero. Consequently the higher
the salience, the stronger the correlation with the class
labels. Let k be the number of classes, the Emotional
Salience is defined as:

MI(E,W = w) =
k∑

j=1

P(ε j|w) · log
P(ε j|w)
P(ε j)

(2)

Table 2 presents 10 examples from the most salient
words for the three databases. We also calculate the ac-
tivation feature proposed by Lee and Narayanan (2005),
which weights the SRI word summation with the prior
class probabilities at the turn level.

Table 3 shows the classification results of the linguis-
tic features for the three databases obtained by 10-fold
cross validation. When the individual test splits of the
cross-validation folds contain words of unknown SRI or
Emotional Salience, i.e. if they are out-of-vocabulary
(OOV), we skip their contribution to the turn summa-
tion. If a turn completely consists of OOV words it is
classified as belonging to the majority class. In general,
we notice an average of 8% OOV for the German data-
bases and 5% for the English, both of with are relatively
low figures.

Looking at the classification results, traditional text
mining features like BOW, TF and TF.IDF are not suit-
able for emotion recognition on our databases. Look-
ing at the F-measures of the individual classes we can
see, that too many test samples were classified as Non-
Anger. Also, unknown test words in the cross-validation
splits cannot be assigned to the majority class. SRI
and Emotional Salience achieve better F-scores for the
Anger class, while at the same time the F-measure of
Non-Anger class degrades. Due to weighting, Emo-
tional Salience seems more robust to imbalanced class
distributions while SRI is more influenced by the major-
ity class. However, the absolute performance of the fea-
tures does not exceed the prior class probabilities con-
siderably. For further experiments we retain the most
promising features, i.e. SRI and Emotional Salience.

Since SRI and Emotional Salience are dependent on
word posteriors, which in turn depend on word counts,
we examine the impact differences in database design
on our recognition recognition task. Analyzing the
impact of differences in number of turns, total num-
ber of words, and vocabulary size we generate 10 ran-
domly chosen subsets retaining original class distribu-
tions. Original sizes and targeted, subsampled sizes are
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Table 1: Database Conditions.
German IVR English IVR German WoZ

Domain Mobile Internet Support Directing Robot
Number of Dialogs in Total 4682 1911 -
Duration in Total 21h 10h 9.2h
Number of Raters 3 3 5
Speech Quality Narrow-band Narrow-band Wide-band

Deployed Subsets for Anger Recognition
Number of Speakers 683 417 26
Number of Turns 4515 2328 9959
Number of Words in Total 11812 3709 26157
Average Number of Words per Turn 2.6 ± 3.7 1.6 ± 1.5 2.7 ± 1.7
Vocabulary Size 1179 286 901
Perplexitya 233 40 78
Average Utterance Length in Secondsb 1.80 0.84 0.87
Average Duration Anger in Seconds 3.27 ± 2.27 1.87 ± 0.61 0.87 ± 0.51
Average Duration Non-Anger in Seconds 2.91 ± 2.16 1.57 ± 0.66 0.87 ± 0.62
Extended Cohen’s Kappa 0.52 0.63 0.56

aon basis of an uni-gram word model
bwithout initial or final turn pauses

Table 2: Salience of Words.
German IVR English IVR German WoZ

Class word Salience word Salience word Salience
Anger dämlicher (stupid) 1.298 wrong 1.321 Schluss (finish) 1.567
Anger teuer (expensive) 0.630 operator 0.860 stoppen (to stop) 1.040
Anger doch (<exasperation>) 0.578 person 0.795 aufhören (to end) 0.756
Anger warum (why) 0.558 please 0.723 faul (lazy) 0.513
Anger falsch (wrong) 0.280 support 0.575 endlich (finally) 0.325

Non-Anger korrekt (right) 0.751 correct 0.735 brav (good/obedient) 0.592
Non-Anger einfach (simple) 0.688 okay 0.350 fein (fine) 0.592
Non-Anger danke (thanks) 0.338 right 0.207 schön (nice) 0.492
Non-Anger okay 0.239 ready 0.132 gut (good) 0.479
Non-Anger Bonuspunkte (bonus points) 0.140 connected 0.087 okay 0.333

Table 3: Classification Results using Linguistic Information.
German IVR English IVR German WoZ

f1 | accuracy using BOW .50 | 54.6% .47 | 59.2% .44 | 59.7%
f1 | accuracy using TF .51 | 53.9% .47 | 58.0% .47 | 60.8%
f1 | accuracy using TF.IDF .51 | 54.6% .46 | 58.3% .46 | 61.9%
f1 | accuracy using Emotional Salience .64 | 66.7% .58 | 65.3% .63 | 69.1%
f1 | accuracy using SRI .63 | 63.9% .58 | 59.9% .68 | 68.9%
FAnger | FNon−Anger using BOW .40 | .64 .21 | .72 .15 | .74
FAnger | FNon−Anger using TF .39 | .63 .23 | .71 .19 | .74
FAnger | FNon−Anger using TF.IDF .37 | .64 .20 | .72 .13 | .75
FAnger | FNon−Anger using Emotional Salience .74 | .53 .76 | .40 .78 | .49
FAnger | FNon−Anger using SRI .69 | .56 .66 | .51 .74 | .62
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given in Table 1. Estimating averages from the ran-
dom sets we match the conditions between the data-
bases, e.g. by subsampling the German IVR data-
base to match the German WoZ vocabulary size. Each
randomly generated subset is further processed by 5-
fold cross-validation to calculate SRI and Emotional
Salience performances. As a result, none of the matched
conditions, i.e. subsampled versions of original data-
bases, results in considerable emotion recognition dif-
ferences. Hence, SRI and Emotional Salience seem rel-
ative robust with regard to these conditions.

When matching the dictionary sizes between the Ger-
man databases, the IVR database shrinks to 58% of its
original number of turns while the perplexity almost
stays constant. It shrinks from 233 to 223. As can
be seen from Table 1 the databases essentially differ in
perplexity, which in other words expresses the amout
of confusion when choosing uniformly and indepen-
dently among all words. Unfortunately, subsampling
the database to match the complexity condition does not
yield sufficient volumes of data for training. A prelimi-
nary classification experiment on the basis of these sets
showed an intolerably high standard deviation among
the results from cross-validation splits.

Expanding the basic modeling unit from separated
words to phrases we include contextual word informa-
tion by calculating Emotional Salience of phrases, e.g.
Metze et al. (2009). Because of a low average word-per-
turn rate, we apply phrase modeling including 2 con-
secutive words only. The resulting vocabularies com-
prise 4053 entries for German WoZ, 4973 for German
IVR and 880 entries for the English IVR database. Ta-
ble 4 shows the results when all phrases are taken in
to account, regardless of their frequency of occurrence
in the sets. In order to obtain more robust estimates
we set a frequency threshold. Table 4 also shows the
scores when admitting only phrases (and words) that oc-
cur more than 4 times.

Contextual word inclusion does not improve emotion
recognition scores on our corpora. Also, the use of n-
gram models directly has been proposed (Steidl, 2009;
Shafran and Mohri, 2005) as well as other linguistic fea-
tures, e.g. part-of-speech (POS ) or higher semantics
representations as reported on by Schuller et al. (2009a).
None of respective techniques resulted in significant im-
provements for the respective corpora reported by the
literature. It should be noted that all of the experimental
databases in those works were of low average word-per-
turn rate as well. Hence, an interpretation of the effect
of linguistic context modeling to emotion classification
has to be deferred to future experiments including data-
bases with longer utterances. However, Steidl (2009) re-

ports on different word clustering techniques that, after
all, seem to be most promising for databases with very
short utterances. Since these methods need additional
labeling, the respective features will not be available for
most applications.

All hitherto presented experiments were conducted
using speech transcripts generated from human tran-
scriptionists. We are now focusing on the impact of
word hypotheses quality, as obtained from automatic
speech recognition (ASR). Metze et al. (2009), Polzehl
et al. (2009b) as well as Schuller et al. (2009a) report
Word Error Rates (WER) of less than 20% and more
than 30%, respectively. At the same time, the impact on
anger recognition reveals very small.

In the next experiment we therefore focus on the de-
pendency of emotion recognition from text upon auto-
matic transcription quality. We simulate ASR quality by
systematically varying the decoding beam of a speech
recognizer. Narrowing the beam of the speech recog-
nizer we observed a monotonously rising word error
rate3. Analyzing the impact on emotion classification
we observe, that anger classification stays roughly con-
stant as long as the word accuracy does not fall below
a certain threshold. Calculating accuracy scores using
Emotional Salience models this threshold was found to
be around 40% word accuracy for the Geman WoZ data-
base. Figure 1 shows the graphs of the unweighted aver-
age recall and the weighted average recall, i.e. accuracy,
of angry utterances. Starting at our best word accuracy
of 82%, we observe a small decrease of roughly 5% in
emotion recognition when downgrading ASR accuracy
to approximately 40%.

As an interesting result, word errors are not strongly
harming the emotion recognition system as long as
the errors occur consistently. Looking more closely,
wrongly recognized words are correlated to emotion
classes when building the Emotional Salience model.
When the same error occurs in decoding, the erroneous
token nevertheless link to the respective emotion class.
After all, it can even be more suitable to use automatic,
i.e. erroneous transcripts instead of human transcrip-
tions because the resulting models are more compact
and show higher coherence in terms of training-testing
mismatch.

Focusing on the impact of training-testing mismatch
Figure 1 shows a comparison between a emotion recog-
nizer trained on best possible transcripts for training
of emotion models and a second m̈atched” recognizer

3Note that different speech recognizers can behave in different
ways when narrowing the decoding beam since word error rates also
depend on insertion and deletion rates.
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Table 4: SRI and Emotional Salience of Phrases.
German IVR English IVR German WoZ

f1 SRI all words .62 .58 .67
f1 Emotional Salience all words .62 .57 .63
f1 SRI min 4 words .62 .57 .67
f1 Emotional Salience min 4 words .61 .56 .64

trained with aligned transcript quality for both training
and testing. The absolute difference results in roughly
2% only. Thus we believe, it is not essential to have
high-effort transcription for training in order to achieve
good results when testing. As long as ASR errors hap-
pen systematically the emotion models will capture the
class relevant information, even given erroneous word
hypotheses. A more detailed description of the speech
recognition systems can be found in Metze et al. (2010).
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Figure 1: Impact of ASR Word Accuracy on Emotion Classification.

4. Acoustic Modeling

4.1. Feature Definition

Our acoustic feature definitions, including spectral
and prosodic features, provide a broad range of infor-
mation about vocal expression patterns that can be use-
ful when classifying speech metadata. Our approach is
structured into two consecutive steps. In the first step an
audio descriptor extraction unit processes the raw audio
format and provides speech descriptors. In the second
step a statistics unit calculates various statistics on both
the descriptors and certain sub-segments of them. All
descriptors are extracted using 10ms frame shift. For
any windowing we used Gaussian windows. The result-
ing audio descriptors can be sub-divided into 7 groups:

pitch, loudness, MFCC, spectrum, formants, intensity
and other.

We extract pitch using autocorrelation as described
by Boersma and Weenink (2009). Octave confusions
between sub-segments of a turn are further processed by
a rule-based path finding algorithm. We convert pitch
into the semitone domain using the mean pitch as the
reference value for a whole turn. We apply piecewise
cubic interpolation and smoothing by local regression
using weighted linear least squares.

We calculate loudness as defined by Fastl and
Zwicker (2005). This measure operates on a Bark fil-
tered version of the spectrum and finally integrates the
filter coefficients into a single loudness value in sone
units per frame.

We further filter the spectrum into the mel domain
and apply a discrete cosine transformation (DCT) to ob-
tain 16 mel-frequency cepstral coefficients (MFCC).

Other features drawn from the spectral representa-
tion are the spectral centroid and the 95% roll-off point
of spectral energy. Both features capture aspects related
to the spectral slope (also called the spectral tilt) and
correspond to perceptual impression of sharpness and
brightness of sounds (Fastl and Zwicker, 2005). Abrupt
changes in the spectrum are captured by calculating the
spectral flux.

We extract five f ormant frequencies and estimate
their bandwidths. Taken directly from the speech sig-
nal we extract the intensity contour in dB. Referred to
as other features we calculate the Harmonics-to-Noise
Ratio (HNR), the correlation between pitch and inten-
sity, the Zero-Crossing-Rate, and the relation of pitched
and non-pitched speech segments as individual features.

The statistic unit derives means, moments of first to
fourth order, extrema and ranges from the respective
contours in the first place. Special statistics, e.g. a
linear regression analysis or a Discrete Cosine Trans-
formation (DCT), are then applied to certain descrip-
tors such as pitch, loudness and intensity. Applying the
DCT to these contours directly, we model their spectral
composition in terms of fast or slow moving contour
constituents. Finally, we append delta coefficients of
first and second order and calculate their statistics like-
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wise. On the basis of a voiced, unvoiced and silence
segmentation we calculate ratios of features from these
segments both separately and jointly. A more detailed
description of the feature setup can be found in Polzehl
et al. (2010).

As can be seen from Table 1 our databases consist
mostly of very short utterances. We assume that every
turn is a short utterance of one prosodic entity. Conse-
quently we calculate our statistics to account for whole
utterances. Intuitively, this seems suboptimal for very
long utterances. In a comparative study on emotion
recognition using phoneme-, word- and sentence-level
analysis Vlasenko et al. (2008) concludes, that larger
units seem to be beneficial for emotion recognition.
He obtains best results when calculating features on
sentence-level. Furthermore, other systems also model
the course of acoustic contours by dynamic methods,
e.g. Vlasenko and Wendemuth (2009), or hybrid meth-
ods, e.g. Vlasenko et al. (2007).

All in all, we obtain some 1450 features. Table 5
shows the different audio descriptors groups, the num-
ber of features calculated from them and preliminary
classification scores. Note that differences in absolute
number of features can bias the figures, e.g. if a higher
number of features also means a higher amount of rel-
evant information. To determine the amount of rele-
vant information we use a filter-based feature selection
method explained below.

4.2. Acoustic Feature Selection and Classification

In order to gain insight into the performance of indi-
vidual features, we apply 10-fold cross-validation eval-
uating the entropy-based information-gain-ratio (IGR)
(Duda et al., 2000) of individual features. Given a sin-
gle feature and the observed values it holds, the IGR
generally estimates the reduction of uncertainty about a
class distribution given the conditional entropy of ob-
servations.

Looking for the optimal feature set we incrementally
admit a greater number of top-ranked features for clas-
sification. In terms of classification we apply Support-
Vector-Machines (S V M) as introduced by Vapnik and
Cortes (1995). SVMs have been shown to produce ex-
cellent results reliably. Moreover, SVMs are proven to
yield good results for small data sets as well. The al-
gorithm views data as sets of vectors from two classes
in a multi-dimensional space. A separating hyper-plane
in the feature space is constructed, which maximizes
the margin between data and the hyper-plane. As a
result, SVM classification provides a high degree of
generalization. We determine the optimal settings for
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Figure 2: Determination of Optimal Feature Set Size.

the algorithm’s complexity parameter by 10-fold cross-
validation. SVMs can be extended to non-linear feature
spaces by passing the original data points through ker-
nel functions. The choice of the best kernel function can
only be done experimentally. We use linear kernel func-
tion and expand the kernel function to higher polyno-
mials and radial basis functions (RBF) when fusing the
systems. The combination of SVM with an RBF kernel
function in turn is very similar to an RBF type of artifi-
cial neural network (ANN). We also use ANNs, namely
multi-layer perceptrons (MLP), directly for final fusion
at the decision level.

In order to compare observations from different dis-
tributions we apply z − normalization, also known as
z − scores, normalscores or standardization (Duda
et al., 2000) to our features. Eventually, each feature is
normalized to zero mean and unit variance before classi-
fication. To avoid overestimation we apply 10-fold strat-
ified cross-validation for any classification steps. The
optimal feature-set size is 220 for the German databases
and 80 for the English database. Table 6 shows the
scores obtained.

Comparing the scores for the three databases, we
observe good results for the IVR databases. The F-
measures of the Anger classes are approximately .7,
while the F-measures of Non-Anger classes exceed this
figure by .1 absolute. Acoustic modeling of the Anger
class of the WoZ corpus seems problematic. The mod-
els were not able to capture the emotion-related infor-
mation needed for classification. As a hypothetic expla-
nation, this could be due to the mapping of the classes
touchy, angry, reprimanding and emphatic into the sin-
gle cover class of Anger. Although the inter-labeler
agreement does not indicate human differences in per-
ception between the German databases, the acoustic
models might been blurred by the process of sub-
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Table 5: Feature Groups and Performance on the Databases.
Feature Group Number of f1 Performance on f1 Performance on f1 Performance on

Features German IVR English IVR German WoZ
pitch 240 .68 .73 .63
loudness 171 .68 .71 .67
MFCC 612 .69 .68 .71
spectrals 75 .68 .69 .64
formants 180 .68 .68 .65
intensity 171 .69 .74 .69
other 10 .56 .67 .62

Table 6: Classification Results using Acoustic Information.
Database Class Recall Precision F-measure f1-measure
German IVR Non-Anger 86.3% 79.0% .82 .76

Anger 64.7% 75.8% .69
English IVR Non-Anger 83.6% 80.1% .82 .77

Anger 68.8% 74.0% .71
German WoZ Non-Anger 85.1% 77.0% .81 .68

Anger 50.0% 63.6% .56

summation of classes.

Figure 2 shows the f1 development as the feature
space increases. The saw-like shape of the graphs indi-
cates a non-optimal ranking, i.e. some inclusions seem
to harm the performances. This is mainly due to heuris-
tic IGR estimation. Regarding the magnitude of the
jitter we note that it is only about .02, which after all
proves a generally reasonable ranking. The filter seems
to predict best for the German IVR database, where the
observed jitter is very low. Regarding efficiency, we
note that including only 120 features for the German
IVR, and 100 features for the German WoZ database
results in a loss for f1 of only about .01.

Analyzing the acoustic feature groups in the ranked
sets we see that features derived from filtering in the
spectral domain, e.g. MFCC and loudness, seem to be
most promising for all three databases. They account for
more than 50% of all features. However, MFCCs occur
more frequently among the top-ranked features when
operating on the German IVR database, while loud-
ness features are more frequently among the top ranks
when operating on the English IVR database. On the
WoZ database, too, loudness is highly ranked more fre-
quently. Pitch features account for approximately 25%
of the top sets when trained on the English IVR data-
base, while the number is as small as about 10% when
trained on the German top sets.

5. Fusion of Linguistic and Acoustic Features

As previous experiments using early fusion tech-
niques show inferior results, cf. Polzehl et al. (2010), we
combine the predictions obtained from the acoustic and
the linguistic analysis by decision fusion using SVMs
and compare the results to MLP fusion. In the MLP ex-
periments we use back-propagation training in maximal
500 epochs. A validation set size of 10% is used for
early training termination. The nodes of the three lay-
ers are connected by sigmoid activation functions, the
middle layer comprises 4 nodes. We further extent the
SVM classifier to non-linear mapping by transforming
data using a RBF kernel function. We determine the op-
timal settings for the algorithm’s complexity parameter
and the kernel width by 10-fold cross-validation on the
train set in a grid-search manner. The final feature space
consists of eight features, four from each acoustic and
linguistic system. Both systems contribute a predicted
class. The acoustic system further generates scores by
logistic regression analysis for each prediction. The lin-
guistic system contributes the estimated SRI scores di-
rectly. On the basis of these scores we compute normal-
ized confidence estimates for both classifiers by com-
puting the rank for a score in its population and re-
normalizing this to a range of [0,1]. In our case, the
normalized rank corresponds to the discrete probability
distribution. In other words, we estimating the amount
of confidence in a prediction to belong to a class by con-
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sidering likelihoods of predictions of higher and lower
values for that class. Table 7 shows the final classifica-
tion scores obtained by 10-fold cross-validation.

As expected, the fusion of both types of information
at the decision level generates slight improvements for
all corpora. Looking at the magnitude of the differ-
ence, little improvement could be expected due to in-
ferior performance of the linguistic classification. After
all, the final scores resemble the scores obtained from
the acoustic classification. We note that for the approx-
imate 33/66 split of class distributions for the WoZ cor-
pus, constant classification into the majority class would
result in approximately .40 f1, 66% accuracy. For the
IVR databases constant majority class voting would re-
sult in .38 f1, 60% accuracy. Similarly, to the results of
the acoustic classification, the low F-measures for the
Anger class models for the WoZ database turns out to
be problematic. Another expected result is that non-
linear classification yields better results than linear clas-
sification. Furthermore, in our experiments SVM-RBF
slightly outperforms MLP fusion.

6. Summary and Results

The present study has investigated the exploitation
of both linguistic and acoustic feature modeling for
anger classification. In terms of acoustic modeling we
generate statistics from acoustic speech features, e.g.
pitch, loudness and spectral characteristics. Ranking
our features, we see that loudness and MFCC seem most
promising for all three databases. For the English data-
base pitch features are also important. In terms of lin-
guistic modeling we apply probabilistic and entropy-
based models for words and phrases, e.g. BOW, TF.IDF
and SRI. SRI clearly outperforms vector space models.
Modeling phrases improves the scores slightly.

After classification of both acoustic and linguistic in-
formation at separated levels, we fuse the information at
the decision level by adding confidences. We compare
the scores obtained for three different databases. Two
databases are in the IVR customer care domain, and an-
other database is in a Wizard-of-Oz domain. All corpora
represent realistic speaking conditions.

We observe promising results for the IVR data-
bases while the WoZ database shows lower scores over-
all. In order to provide comparability between the re-
sults, we evaluate classification success using the f1-
measurement in addition to overall accuracy figures. As
a result, acoustic modeling clearly outperforms linguis-
tic modeling. Fusion improves overall scores slightly.
With a baseline of approximately 60% accuracy and .40

f1 by constant majority class voting we obtain an accu-
racy of 75.3% with respective .70 f1 for the WoZ data-
base. For the IVR databases we obtain approximately
78.9% and 78.2% accuracy for German and English re-
spectively, while f1-measurements result in .78. Base-
lines figures of these databases are 60% accuracy with
.38 f1.

7. Discussion

For the anger classification tasks in actually deployed
IVR domains, which we have presented here, acoustic
modeling seems consistently more promising than lin-
guistic modeling. However, there are a number of fac-
tors, which could have influenced our results and whose
importance would need to be re-assessed for other data-
bases. Although we have produced results on three dif-
ferent databases, all the results explained here must also
be interpreted as corpus-dependent. Therefore, the fol-
lowing Sections discuss key factors of influence in terms
of similarities and differences between the databases.

7.1. Signal Quality

While the WoZ database has been recorded in wide
band quality under controlled conditions, the IVR data-
bases are of narrow-band quality including noise. How-
ever, signal quality does not seem to be the predomi-
nant factor in our anger recognition experiments since
the results for the assumed higher-quality WoZ data-
base do not yield better classification scores. Further-
more, the IVR speech quality can also be subdivided
into sub-classes, since callers may have dialed in via
different transmission channels using different encod-
ing paradigms. While the English database mostly com-
prises calls that were routed through land line connec-
tions the German database accounts for a greater share
of mobile telephony transmission channels. Because
fixed line connections usually transmit less compressed
speech it could be assumed that there is more informa-
tion retained in it. Eventually, the impact of the differ-
ence in the total amount of information between wide-
band and narrow-band speech as well as the differences
caused by speech transmission remain to be addressed
in further experiments in the future.

7.2. Speech Duration

Another factor in the database design is the aver-
age turn length, which also correlates to the number of
words in a turn. On the one hand, a longer turn offers
more data for both linguistic and acoustic analysis. On
the other hand, emotional expression can be very short
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Table 7: Classification Performance after Fusion.
F-measure F-measure

Database Classifier Anger Non-Anger Accuracy f1-measure
German IVR SVM-linear .70 .82 77.7% .76

SVM-RBF .73 .83 79.0% .78
MLP .72 .82 78.2% .77

English IVR SVM-linear .70 .82 77.5% .76
SVM-RBF .73 .82 78.2% .78
MLP .73 .81 78.1% .77

German WoZ SVM-linear .55 .81 73.3% .68
SVM-RBF .57 .83 75.3% .70
MLP .57 .83 75.1% .70

naturally. Longer passages might include diverse emo-
tional user state changes. Segmentation and labeling is-
sues need to be addressed in future work in this respect.
In terms of modeling, statistics are presumably more re-
liable on the basis of longer speech utterances, as the
acoustic system is based on turn-wise statistics such
as mean and regression analysis. Also Vlasenko et al.
(2008) concludes, that larger units seem to be beneficial
for emotion recognition. Also, linguistic phrase mod-
eling can be expected to improve. However, the differ-
ences in speech duration in the selected databases do not
show significant influence. The German databases are
comparable in terms of average words per turn, though
the standard deviation is higher for the IVR database.
The English database is of lower average. In the present
work, differences in overall performance do not appear
to be correlated to this condition. As speech duration
is mostly limited by database-dependent turn lengths or
phrase lengths, most common units of analysis are nat-
urally turns or words. However, also modeling on sub-
word level, e.g. phonemes (Vlasenko and Wendemuth,
2009), phoneme-classes (Bitouk et al., 2010), has been
applied. Eventually, the present diversity in the litera-
ture suggests that the optimal analysis unit strongly de-
pends on the data.

7.3. Scenario

The captured data originate in all cases from human-
computer interaction (HCI) and are not mixed with
human-human interaction data. In all three scenarios
the speakers believed to be talking to a machine. The
basic comparability of the corpora for a HCI anger task
can thus be seen as given.

7.4. Language

It should be noted that the findings seem to generalize
well across the two languages, i.e. English and German.

Both IVR databases yield comparably good results for
both the acoustic and linguistic task. Further details,
including a more thorough analysis of important fea-
tures, mono- and multilingual performance evaluation,
and a literature survey, can be found in Polzehl et al.
(2009a). Comparing mono- and multilingual emotion
recognition experiments on English, Slovenian, Span-
ish, and French acted speech recordings also Hozjan and
Kacic (2003) conclude that multilingual emotion recog-
nition can be applied successfully using prosodic fea-
tures. Working on Chinese, English, Russian, Korean
and Japanese acted speech Wang et al. (2009) confirms
this finding. He concludes, that although prosodic fea-
tures show variation with respect to different emotions,
the variation with respect to different languages indi-
cates commonness.

7.5. Domain and Vocabulary Size

The domain of the data presumably seems to be of
importance. Although the perplexity and the vocabulary
size of the English IVR are significantly smaller than
for the German IVR, the resulting scores are compara-
ble. Downsampling the databases to match the smaller
vocabulary size conditions did not show a significant in-
fluence on anger recognition in terms of linguistic mod-
eling. On the one hand, if the vocabulary is limited,
speakers may need to resort more to acoustic means
in order to express emotions. This could explain the
comparatively low performance of the linguistic mod-
els for the English IVR domain. On the other hand,
the acoustic models are expected to be more distinct
in that case. Still, the acoustic model performance is
comparable to the models trained on the German IVR
database, which has a much larger vocabulary. Future
experiments therefore need to focus on acoustic emo-
tion detection when subsampling according to linguis-
tic word paradigm criteria. We further contrasted data

12



  

from a hotline domain with data from a navigational in-
struction domain. Linguistic and acoustic performance
proved poor for the navigational domain generally. Fur-
ther experiments separating the WoZ corpus into do-
main specific characteristics need to be conducted. Di-
recting commands to a robot may well, for example,
cause different speech behavior than inquiring for as-
sistance.

7.6. Speakers

The number of speakers may also have influenced the
results. The WoZ corpus contained 26 speakers, while
the IVR corpora contained more than 400 speakers. The
resulting models from the IVR databases thus might be
more robust in terms of speaker-independence. All re-
sults presented are obtained by speaker-dependent 10-
fold cross-validation4. In addition, the possibility that
callers exceptionally dialed in more than one time can-
not be denied. However, the ratio between the high
number of speakers in the IVR cross-validation sets and
the average dialog length results in a quasi speaker-
independent cross-validation folds setup. On the other
side, speaker dependency in the setup of the WoZ ex-
periments will most likely lead to a lower performance,
when the system encounters new speakers. Also record-
ing children versus adults could potentially have a major
effect. It is not hard to imagine that children may adapt
quite differently and with more variation when speak-
ing with a toy robot machine than adults dialing into
a customer care hotline. Provided that specific emo-
tional expressions are shaped by experience, adults may
have had specific associations when initiating the call
that may have led to more trained and more categorical
reactions during the whole interaction.

7.7. Class Labels and Agreement

The inter-labeler agreement is similar for both Ger-
man databases with κ = 0.53 for the German IVR and
κ = 0.56 for the German WoZ corpus. The slightly
higher κ = 0.63 for the English IVR corpus could indi-
cate a clearer separation of the expressive patterns and
could thus explain the good performance on the English
IVR. The low performance of the WoZ corpus can per-
haps be attributed to the diversity of the anger class la-
bels which comprise touchy, angry, reprimanding and
emphatic. Here, acoustic profiles may be overlapping,
interfering or mutually blurring. Experiments using the

4Since we are not competing with other algorithms in this article,
our experiments use all data available for cross-validation.

original class definitions may well lead to more pre-
cise results. Also differences in labeler training could
be influential. For the presented databases the label-
ers listened to the speech utterances before voting. An
annotation phase based only on the linguistic content
(without listen to the dialogs) could help to obtain bet-
ter performances with linguistic features. In addition,
Steidl (2009) concludes, the mere task of choosing ex-
actly one category forces the labelers to fell hard- and
clear-cut decisions, independently of the intensity of
the emotional state. The very point of cutting varies
intra- and inter-personally. Still, the κ values achieved
here are typical for emotion databases, which generally
amount to “fair” agreement between labelers only. This
points to a general difficulty in determining ground truth
for an abstract condition such as “emotion”, when only
acoustic and linguistic evidence is available, which is a
challenge for all work on real-life data on this task, be it
performed by humans, or machines.
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