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We prove that the normalized Steklov eigenvalues of a bounded domain in a complete Riemannian manifold are bounded above in terms of the isoperimetric ratio of the domain. Consequently, the normalized Steklov eigenvalues of a bounded domain in Euclidean space, hyperbolic space or a standard hemisphere are uniformly bounded above. On a compact surface with boundary, we obtain uniform bounds for the normalized Steklov eigenvalues in terms of the genus. We also establish a relationship between the Steklov eigenvalues of a domain and the eigenvalues of the Laplace-Beltrami operator on its boundary hypersurface.

Introduction

The goal of this paper is to obtain geometric upper bounds for the spectrum of the Dirichlet-to-Neumann map. Let N be a complete Riemannian manifold. Let Ω be a relatively compact domain in N with smooth boundary Σ. The Dirichlet-to-Neumann map Λ :

C ∞ (Σ) → C ∞ (Σ) is defined by Λf = ∂ n (Hf )
where Hf is the harmonic extension of f to the interior of Ω and ∂ n is the outward normal derivative. The Dirichlet-to-Neumann map is a first order elliptic pseudodifferential operator [START_REF] Taylor | Partial differential equations[END_REF]. Because Σ is compact, the spectrum of Λ is positive, discrete and unbounded [1, p. 95]:

0 = σ 1 ≤ σ 2 (Ω) ≤ σ 3 (Ω) ≤ • • • ր ∞.
The spectrum of this operator is also called the Steklov spectrum of the domain Ω.

1.1. Physical interpretation. Prototypical in inverse problems, the Dirichlet-to-Neumann map is closely related to the Calderón problem [START_REF] Calderón | On an inverse boundary value problem[END_REF] of determining the anisotropic conductivity of a body from current and voltage measurements at its boundary. This point of view makes it useful as a model for Electrical Impedance Tomography. A particularly striking related result [START_REF] Lassas | The Dirichlet-to-Neumann map for complete Riemannian manifolds with boundary[END_REF] is that if the manifold M is real analytic of dimension at least 3, then the knowledge of Λ determines M up to isometry. The study of the spectrum of Λ was initiated by Steklov in 1902 [START_REF] Stekloff | Sur les problèmes fondamentaux de la physique mathématique[END_REF]. Eigenvalues and eigenfunctions of this operator are used in fluid mechanics, heat transmission and vibration problems [START_REF] Fox | Sloshing frequencies[END_REF][START_REF] Kopachevsky | Operator approach to linear problems of hydrodynamics[END_REF].

1.2. Optimization. The general question we are interested in is to give upper bounds for the eigenvalues in terms of natural geometric quantities. Because the eigenvalues are not invariant under scaling of the Riemannian metric, we consider normalized eigenvalues σk (Ω) := σ k (Ω)|Σ|

1 n with |Σ| = Σ dv Σ
where n is the dimension of the boundary Σ and dv Σ is the measure induced by the Riemannian metric of N restricted to Σ. Question 1.1. Given a complete Riemannian manifold N, is σ k (Ω) uniformly bounded above among bounded domains Ω ⊂ N?

For the first non-zero eigenvalue, this questions has been studied by many authors. See [START_REF] Payne | Some isoperimetric inequalities for harmonic functions[END_REF][START_REF] Hersch | Some inequalities for Stekloff eigenvalues[END_REF] for early results in the planar case. The series of paper by J. Escobar [START_REF] Escobar | The geometry of the first non-zero Stekloff eigenvalue[END_REF][START_REF] Escobar | An isoperimetric inequality and the first Steklov eigenvalue[END_REF][START_REF] Escobar | A comparison theorem for the first non-zero Steklov eigenvalue[END_REF] is influencial. For more recent results, see [START_REF] Wang | Sharp bounds for the first non-zero Stekloff eigenvalues[END_REF][START_REF] Fraser | The first steklov eigenvalue, conformal geometry, and minimal surfaces[END_REF]. For higher eigenvalues in the planar situation, see [START_REF] Girouard | On the Hersch-Payne-Schiffer inequalities for Steklov eigenvalues[END_REF][START_REF] Girouard | Shape optimization for low Neumann and Steklov eigenvalues[END_REF].

The main result of this paper (Theorem 2.2) is an upper bound for the eigenvalues of the Dirichlet-to-Neumann map on a domain in a complete Riemannian manifold satisfying a growth and a packing condition in terms of its isoperimetric ratio. We list here some applications.

Domains in space forms. The case of simply connected planar domain is well understood. See [START_REF] Weinstock | Inequalities for a classical eigenvalue problem[END_REF][START_REF] Hersch | Some inequalities for Stekloff eigenvalues[END_REF] and especially [START_REF] Girouard | Shape optimization for low Neumann and Steklov eigenvalues[END_REF] for a survey of this problem. If a bounded domain Ω ⊂ R 2 is simply connected, then σk (Ω) ≤ 2πk.

(1.1)

This inequality is optimal. In higher dimensions, only few results about the first non-zero eigenvalue are known. See [START_REF] Brock | An isoperimetric inequality for eigenvalues of the Stekloff problem[END_REF] for a different normalization.

Our first result is a generalization of the above to the case of arbitrary1 domains in space forms. Theorem 1.2. There exists a constant C n depending only on the dimension n such that, for each bounded domain Ω in a space form R n , H n or in an hemisphere of S n , we have

σk (Ω) ≤ C n k 2/n . (1.2)
This result follows from a more general result allowing control of the Steklov spectrum of a domain in a complete manifold in terms of its isoperimetric ratio. Domains in a complete manifold. The following theorem shows that under an additional assumption on Ricci curvature, we can control the normalized Steklov eigenvalue σ k of a domain in terms of its isoperimetric ratio.

Theorem 1.3. Let N be a complete manifold of dimension n + 1. If N is conformally equivalent to a complete manifold with non-negative Ricci curvature, then for each domain Ω ⊂ N, we have

σk (Ω) ≤ γ(n) I(Ω) n-1 n k 2/(n+1) , (1.3) 
where I(Ω) is the classical isoperimetric ratio of Ω, namely

I(Ω) = |Σ| |Ω| n/(n+1) .
A surprising corollary of this theorem is that if dim N ≥ 3 then a large isoperimetric ratio I(Ω) implies that the normalized eigenvalue σk (Ω) is small. This is false for surfaces (n = 1), see Example 5.1.

Remark 1.4. Since there exists a constant c n such that

σ k (Ω) ∼ c n k 1/n as k → ∞,
one may expect that a bound such as (1.3) should hold with exponents 1/n. In fact, for n ≥ 2, this is impossible because it would imply an upper bound on I(Ω). Naturally, if we remove I(Ω), such a bound might still be possible. For instance, we do not know if inequality (1.2) holds with exponent improved to 1/n.

Large eigenvalues.

The assumption of non-negative Ricci curvature is essential. In section 6 we will construct for each n ≥ 2 and each κ < 0 a complete manifold N of dimension n + 1 with Ricci curvature bounded below by κ admitting a sequence Ω j of domains such that the normalized eigenvalues σ2 (Ω j ) → ∞ and the isoperimetric ratio

I(Ω j ) → ∞.
Under the assumption of non-negative Ricci curvature, we do not know if the presence of the isoperimetric ratio is essential. Namely, is there a constant C(n, k) such that for each domain Ω ⊂ N, σk (Ω) ≤ C(n, k) ? Of course, this will be the case if we can give uniform lower bound on the isoperimetric ratio I(Ω). This situation will be discussed in Proposition 3.3 and in Corollary 3.6.

1.3. Surfaces. If N is two-dimensional the isoperimetric ratio disappears from inequality (1.3). This means that for any domain in a complete surface with conformally non-negative curvature we get a uniform bound similar to (1.1) :

σk (Ω) ≤ γ(2)k.
In fact, in the case of surfaces, we don't need to assume our compact manifold to be a domain in a complete manifold with non-negative Ricci curvature. Let M be a compact surface with smooth boundary Σ. The Steklov spectrum of M is defined exactly as in the case of a domain.

Theorem 1.5. There exists a constant C such that for any compact orientable Riemannian surface M of genus γ with non-empty smooth boundary,

σk (M) ≤ C γ + 3 2 k (1.4)
where ⌊.⌋ is the integer part.

This result is in the spirit of Korevaar [START_REF] Korevaar | Upper bounds for eigenvalues of conformal metrics[END_REF] and generalizes a recent result of Fraser-Schoen [START_REF] Fraser | The first steklov eigenvalue, conformal geometry, and minimal surfaces[END_REF].

1.4. Relationships with the spectrum of the Laplacian for Euclidean hypersurface. In section 4, we will use the result of our paper [START_REF] Colbois | Isoperimetric control of the spectrum of a compact hypersurface[END_REF] to establish a relation between the spectrum of the Dirichletto-Neumann map and the spectrum of the Laplacian acting on smooth function of the boundary Σ. The main consequence of this estimate is that for a manifold embedded as hypersurface in Euclidean space, the presence of large normalized eigenvalue of the Laplacian will force the normalized eigenvalues σ k to be small.

Statement and proof of the main theorem

We consider a slightly more general eigenvalue problem than that of the introduction. Let M be a sufficiently regular compact Riemannian manifold of dimension n + 1 with boundary Σ. Let δ is a smooth nonnegative and non identically zero function on Σ. The Steklov eigenvalue problem is

∆f = 0 in M, ∂ n f = σ δf on Σ.
It has positive and discrete spectrum [1, p. 95]:

0 = σ 1 ≤ σ 2 (M, δ) ≤ σ 3 (M, δ) ≤ • • • ր ∞.
Because the eigenvalues are not invariant under scaling of the Riemannian metric or of the mass density δ, we consider the normalized eigenvalues σk (M, δ)

:= σ k (M, δ)m(Σ, δ)|Σ| 1 n , with |Σ| = Σ dv Σ and m(Σ, δ) = 1 |Σ| Σ δ dv Σ .
Let (N, g 0 ) be a complete Riemannian manifold of dimension (n+1). We consider the Riemannian distance d 0 induced by g 0 and we assume: (P1) There exists a constant C depending on d 0 such that each ball of radius 2r in N 0 may be covered by at most C balls of radius r.

(P2) There exists a constant ω depending only on g 0 such that, for each x ∈ N 0 , and r ≥ 0, |B(x, r)| ≤ ωr n+1 .

Example 2.1. There is a large supply of complete Riemannian manifolds satisfying these conditions.

(1) If N is compact, then (P1) and (P2) are satisfied. In this case the constants C and ω depend on g 0 . (2) If the Ricci curvature of g 0 is non-negative then, by Bishop-Gromov comparison theorem, there exist constants C and ω depending only on the dimension of N such that (P1) and (P2) are satisfied. This is in particular the case of the Euclidean space R n+1 , and we will use this in the proof of Theorem 3.4 and Theorem 1.3.

It follows from the previous example that Theorem 1.3 is a corollary of the following theorem.

Theorem 2.2. Let (N, g 0 ) be a complete Riemannian manifold of dimension (n + 1) satisfying (P 1) and (P 2). Let g ∈ [g 0 ] be a metric in the conformal class of g 0 . Then, there exists a constant γ(g 0 ) depending only on the constants C and ω coming from (P 1) and (P 2) such that, for any bounded domain Ω ⊂ N and any density δ on Σ = ∂Ω, we have

σk (Ω, δ) ≤ γ(g 0 ) I(Ω) n-1 n k 2/(n+1) . (2.1)
The proof of Theorem 2.2 is based on the construction of a family of disjointly supported functions with controlled Rayleigh quotient

R(f ) = Ω |∇ g f | 2 dv g Σ f 2 δdv Σ . On N we consider the Borel measure µ = δdv Σ . That is, the measure of an open set O ⊂ N is µ(O) = O∩Σ δ dv Σ . (2.2) 
In particular, we have

µ(N) = Σ δdv Σ = |Σ|m(Σ, δ).
Definition 2.3. Let (X, d) be a metric space. An annulus A ⊂ X is a subset of the form {x ∈ X : r < d(x, a) < R} where a ∈ X and 0 ≤ r < R < ∞. The annulus 2A is the annulus {x ∈ X : r/2 < d(x, a) < 2R}.

In particular, A ⊂ 2A.

Theorem 1.1 and Corollary 3.12 of [START_REF] Grigor ′ Yan | Eigenvalues of elliptic operators and geometric applications[END_REF] tell us that if a metric measured space (X, d, ν) satisfy property (P 1) and if the measure ν is non-atomic, then there is a constant c > 0 such that, for each positive integer k, there exist a family of 2k annuli

{A i } 2k i=1 in X such that µ(A i ) ≥ c ν(X) k .
and the annuli 2A i are disjoint.

The constant c depends only on the constant C of property (P 1), that is only on the distance d and not on the measure ν.

Proof of Theorem 2.2. Consider the metric measured space (N, d 0 , µ), where d 0 is the Riemannian distance associated to g 0 and µ is the measure induced by g 0 and the density δ as defined above in (2.2).

It follows from Theorem 1 and Corollary 3.12 of [START_REF] Grigor ′ Yan | Eigenvalues of elliptic operators and geometric applications[END_REF] mentioned above that there exist 2k annuli A 1 , ..., A 2k ⊂ N with

µ(A i ) ≥ µ(N) ck , c = c(g 0 ) > 0. (2.3)
The annuli B i = 2A i are mutually disjoint. We can reorder them so that the first k of them satisfy

|B i ∩ Ω| g ≤ |Ω| g k (i = 1, • • • , k). ( 2 

.4)

Let A = {x ∈ N : r < d(x, a) < R} be one of these first k annuli and let h a function supported in 2A. Taking (2.4) into account, it follows from Hölder's inequality and the conformal invariance of the generalized Dirichlet energy that

B∩Ω |∇ g h| 2 dv g ≤ B∩Ω |∇ g h| n+1 dv g 2/(n+1) |B ∩ Ω| 1-2/(n+1) g ≤ 2A |∇ g 0 h| n+1 dv g 0 2/(n+1) |Ω| g k 1-2/(n+1)
Choosing the function h that is identically 1 on A and proportional to the distance to A on 2A \ A, we have

|∇ g 0 h| n+1 ≤ 2 n+1 r n+1 on B(a, r) \ B(a, r/2), 1 R n+1 on B(a, 2R) \ B(a, R). It follows from (P 2 ) that 2A |∇ g 0 h| n+1 dv g 0 ≤ 2 n+2 ω.

This leads to

B∩Ω |∇ g h| 2 dv g ≤ (2 n+2 ω) 2/(n+1) |Ω| g k (n-1)/(n+1)
Moreover, using (2.3) we get

Σ h 2 δdv Σ ≥ µ(A) ≥ µ(N) ck
By considering the Rayleigh quotient, this leads to

σ k (Ω, δ) ≤ 2 n+2 ωck µ(N) |Ω| g k (n-1)/(n+1)
.

Using µ(N) = |Σ|m(Σ, δ), we conclude σk (Ω, δ) = σ k (Ω, δ)m(Σ, δ)|Σ| 1/n ≤ γ(g 0 ) I(Ω) n-1 n k 2/(n+1) ,
with γ(g 0 ) = 2 n+2 cω.

Applications of Theorem 2.2

In this section, we prove most of the results announced in the introduction as consequence of our Theorem 2.2.

3.1. Domains in a manifold with conformally non-negative Ricci curvature. It is difficult to estimate the packing constant C and the growth constant ω of a general Riemannian manifold. Nevertheless, as was observed in Example 2.1, in the special situation where Ω is a domain Ω in a complete Riemannian manifold N with non-negative Ricci curvature, it follows from the Bishop-Gromov inequality that these constants can be estimated in terms of the dimension. Theorem 3.1. Let (N, g) be a complete Riemannian manifold of dimension (n+ 1) and assume that the metric g is conformally equivalent to a metric g 0 with Ric(g 0 ) ≥ 0. Then, for any bounded domain Ω ⊂ N, and for any density δ on ∂Ω, we have

σk (Ω, δ) ≤ γ(n) I(Ω) n-1 n k 2/(n+1) , (3.1) 
where γ(n) is a constant depending only on n.

This theorem is a direct consequence of Theorem 2.2 and of Example 2.1. Theorem 1.3 is the special case when δ ≡ 1.

If n ≥ 2, large isoperimetric ratio I(Ω) implies small eigenvalues σk (Ω, δ).

Corollary 3.2. Under the assumptions of Theorem 3.1, if a family of domains {Ω

t } 0<t<1 is such that lim t→0 I(Ω t ) = ∞, then, if n ≥ 2
and for each density δ t on ∂Ω t , we have lim t→0 σk (Ω t , δ t ) → 0. This is false for n = 2. See Example 5.1.

Control of the isoperimetric ratio.

In general, it is difficult to estimate the isoperimetric ratio I(Ω). We give two special situations where we have a uniform lower estimate on it. This will be a consequence of the inequality of Croke [START_REF] Croke | Some isoperimetric inequalities and eigenvalue estimates[END_REF] as presented by Chavel [4,p.136].

Proposition 3.3. Let N be a complete Riemannian manifold. For each x ∈ N, let inj(x) the injectivity radius of N at x. Given p ∈ N and ρ > 0, consider

r < 1 2 inf x∈B(p,ρ) inj(x) . (3.2)
Then, for a each domain Ω ⊂ B(p, r), we have I(Ω) ≥ C(n) for a constant C(n) depending only on the dimension.

If the injectivity radius of N is strictly positive, we can choose any r < inj(N) 2 .

Domains in space forms.

A special but very important case is when the ambient space N is a space form, that is the Euclidean space R n+1 , the hyperbolic space H n+1 or the sphere S n+1 with their natural metric of curvature 0, -1 and 1 respectively.

Theorem 3.4. For any bounded domain Ω with smooth boundary Σ = ∂Ω in R n+1 , H n+1 or on an hemisphere of the sphere S n+1 and any k ≥ 1, we have

σk (Ω, δ) ≤ γ(n) I(Ω) n-1 n k 2/(n+1) ≤ C n k 2/(n+1)
where C n and γ n are constants depending only on n.

Proof. The standard metrics on Euclidean space and on the sphere have non-negative Ricci curvature. The standard metric on the hyperbolic space is conformally equivalent to the Euclidean one. We can therefore apply Theorem 2.2, with g 0 = g one of these standard metric. The injectivity radii of Euclidean and hyperbolic space are infinite. That of the unit sphere is π. The proof is completed by using Proposition 3.3.

In particular, this proves Theorem 1.2. Remark 3.5. It is also classically known that any domain Ω in Euclidean space, the hyperbolic space or an hemisphere, isoperimetric ratio bounded from below by a constant depending on the dimension. This can be used instead of Croke's result in the above proof.

Domains inside a ball.

In the case where the Ricci curvature of N is non-negative, we deduce the following Corollary 3.6. If the Ricci curvature of N is non-negative and if Ω ⊂ B(p, r), where r satisfy (3.2), then

σk (Ω, δ) ≤ C n k 2/(n+1)
for some constant C n depending only on n.

4.

Relation between the spectrum of the Dirichlet-to-Neumann operator and the spectrum of the Laplacian.

Let ∆ Σ be the Laplacian acting on smooth functions of the boundary Σ = ∂M of a compact Riemannian manifold with boundary. Let 0 = Recently, Wang and Xia studied this question [START_REF] Wang | Sharp bounds for the first non-zero Stekloff eigenvalues[END_REF] for the first nonzero eigenvalues of both operators. Under the assumption that Ricci curvature of M is non-negative and that the principal curvatures of ∂M are bounded below by a positive constant c, they proved that

λ 1 ≤ λ 2 (Σ) ≤ • • • ր ∞ be the spectrum of ∆ Σ . It is
σ 2 ≤ √ λ 2 nc ( λ 2 + λ 2 -nc 2 )
Note that Xia had previously proved [START_REF] Xia | Rigidity of compact manifolds with boundary and nonnegative Ricci curvature[END_REF], under the same hypothesis, that λ 2 ≥ nc 2 .

In [START_REF] Colbois | Isoperimetric control of the spectrum of a compact hypersurface[END_REF], we study the control of the spectrum of the Laplacian on a closed hypersurface by the isoperimetric ratio. The following is a particular case of one of our results. Theorem 4.2. Let N be a complete Riemannian manifold with nonnegative Ricci curvature. Let Ω ⊂ N be a bounded domain with smooth boundary Σ = ∂Ω contained in a ball of radius r < inj(N)

2
. There is a constant B n depending only on dimension such that for any k ≥ 0,

λk (Σ) ≤ B n I(Ω) (n+2)/n k 2/n
where λk (Σ) = λ k (Σ)|Σ| 2/n are the normalized eigenvalues of the Laplacian.

Combining Theorem 4.2 and Corollary 3.4, we get Theorem 4.3. Let N be a complete Riemannian manifold of dimension (n + 1) with non-negative Ricci curvature. There exists a constant κ n depending only on dimension such that for any bounded domain Ω ⊂ N with boundary Σ = ∂Ω contained in a ball of radius r < inj(N)

2
the following holds:

λk (Σ)σ l (Ω) ≤ κ n |Σ| |Ω| 3/n k 2/n l 2/(n+1) . (4.1)
In the special case where N is the Euclidean space R n+1 , the injectivity radius in each point is ∞, so that that is no further restrictions on Ω, and Inequalities (4.1) and (4.2) are true for all bounded domains.

Without the normalization, we have

λ k (Σ)σ l (Ω)m(Σ, δ) ≤ κ n k 2/n l 2/(n+1) |Ω| 3/(n+1) . (4.2) 
Remark 4.4. In comparison with [START_REF] Wang | Sharp bounds for the first non-zero Stekloff eigenvalues[END_REF], we make no assumption on the convexity of Ω. We also have comparison for all eigenvalues. Note however that our method does not give any sharpness.

A remarkable feature of this inequality is that large eigenvalues of the Laplacian are seen to impose small eigenvalues of the Dirichlet-to-Neumann map.

Corollary 4.5. Under the assumptions of Theorem 4.3, if a family of domains {Ω t } 0<t<1 of volume one with boundaries

Σ t = ∂Ω t is such that lim t→0 λ k (Ω t ) = ∞, then, if n ≥ 2 we have for each l ≥ 1 lim t→0 σl (Ω t ) → 0.

Surfaces

The situation for surface is special. We begin by a proof of the upper bound of σ k in term of the genus.

Proof of Theorem 1.5. This is a modification of the proof of Theorem 2.2.

By gluing a disk on each boundary components of M, we can see M as a domain in a a compact surface S of genus γ. This closed surface can be represented as a branched cover over S 2 with degree d = ⌊ γ+3 2 ⌋ (See [START_REF] Gunning | Lectures on Riemann surfaces[END_REF] for instance).

On S 2 we consider the usual spherical distance d and we define a Borel measure µ = ψ * (δdv Σ ). That is, the measure of an open set

O ⊂ S 2 is µ(O) = ψ -1 (O)∩Σ δ dv Σ .
(5.1)

In particular, µ(S 2 ) = |Σ|m(Σ, δ). It follows from Theorem 1 and Corollary 3.12 of [START_REF] Grigor ′ Yan | Eigenvalues of elliptic operators and geometric applications[END_REF] applied to the metric measured space (S 2 , d, µ) that there exist 2k annuli A 1 , ..., A 2k ⊂ S 2 with

µ(A i ) ≥ µ(S 2 ) ck . (5.2) 
Because the annuli 2A i are mutually disjoint, so are the sets B i = ψ -1 (2A i ). These sets can be reordered so that the first k of them satisfy

|B i | g ≤ |M| g k (i = 1, • • • , k). (5.3) 
Let A = {x ∈ S 2 : r < d(x, a) < R} be one of the above annuli and let h be a function supported in 2A. Let f = h • ψ be the lift of this function to M. It is supported in the set B = ψ -1 (2A).

Taking (5.3) into account, it follows from conformal invariance of the Dirichlet energy that

B∩Ω |∇ g f | 2 dv g ≤ deg(ψ) 2A |∇ g 0 h| n+1 dv g 0 2/(n+1) |Ω| g k 1-2/(n+1)
.

The rest of the proof is almost identical to that of Theorem 2.2 and is left to the reader. In Corollary 3.2 it was mentioned that for manifold of dimension at least three, a large isoperimetric ratio implies small Steklov eigenvalues. The next example shows that this is false for surfaces.

Example 5.1. Let M be a compact Riemannian manifold with metric g. Let f ∈ C ∞ ( M) be a smooth function vanishing on the boundary ∂M. Consider a conformal perturbation g = e f g of the original metric. It is well known that the Laplacian is conformally invariant in dimension two. Moreover, because g = g on ∂M, the normal derivative is also preserved. It follows that the the Dirichlet-to-Neumann map induced by g is the same as that induced by by g. In particular, they have the same spectrum.

On the other hand the measure of the surface is given by

|M| g = M e f dg.
By taking a function f that decays fast away from the boundary, we can make this quantity as small as we want. In other words, the isoperimetric ratio

I(M) = |∂M | √ |M |g
will become very large.

Construction of large eigenvalues

The behavior of the Steklov spectrum depends on the interior of the domain in an essential way. For a closed Riemannian manifold Σ with large eigenvalue λ k of the Laplacian, embedding as an hypersurface in Euclidean space forces very small Steklov eigenvalues. This comes from the fact that, by [START_REF] Colbois | Isoperimetric control of the spectrum of a compact hypersurface[END_REF] the isoperimetric ratio I(Ω) has to be big, with Σ = ∂Ω, and this implies the presence of small eigenvalues. If we embed Σ as the cross-section of a cylinder Σ × R with its product metric, we will see that exactly the opposite will happen. This shows that our geometric assumptions are necessary. Lemma 6.1. Let Σ be a closed Riemannian manifold of volume one. Let the spectrum of its Laplace operator ∆ Σ be

0 = λ 1 < λ 2 ≤ λ 3 • • • ր ∞
and let (u k ) be an orthonormal basis of L 2 (Σ) such that

∆ Σ u k = λ k u k . Let N = R × Σ. On the domain Ω = [-L, L] × Σ ⊂ N, a complete system of orthogonal eigenfunctions of the Dirichlet-to-Neumann map is given by 1, t, cosh( λ k t)f k (x), sinh( λ k t)f k (x) with eigenvalues 0, 1/L, λ k tanh( λ k L) < λ k coth( λ k L).
Proof. It is enough to check that these functions are Steklov eigenfunctions since their restriction to the boundary form a basis L 2 . Proposition 6.2. Let Σ be a closed manifold of dimension ≥ 3. On the product manifold N = Σ × R there exists a complete Riemannian metric g and a sequence of bounded domains Ω i such that

lim i→∞ σ 2 (Ω i ) = ∞, and 
lim i→∞ I(Ω i ) = ∞.
Proof. Let Σ be a closed manifold of dimension ≥ 3. The first author and Dodziuk [START_REF] Colbois | Riemannian metrics with large λ 1[END_REF] proved the existence of a sequence h i of Riemannian metrics of volume one such that lim i→∞ λ 2 (Σ, h i ) = ∞. Without loss of generality, we assume for each i that λ 2 (Σ, h i ) > 1.

Consider the cylinder Ω i = Σ × [i, i + L i ] with

1 > L i = 1 λ 2 (Σ, h i ) → 0 as i → ∞.
Let g be a complete Riemannian metric on Σ × R such that the restriction of g to Ω i is the product of h i with the Euclidean metric on R. It follows from Lemma 6.1 that σ 2 (Ω i ) = min λ 2 (Σ, h i ), λ 2 (Σ, h i ) tanh(1) = λ 2 (Σ, h i ) tanh(1).

In particular lim i→∞ σ2 (Ω i ) = ∞. Proof. It is well known that there exists a sequence of Riemann surfaces of volume one Σ i such that λ 2 (Σ i ) → ∞ (see [START_REF] Colbois | Extremal eigenvalues of the Laplacian in a conformal class of metrics: the 'conformal spectrum[END_REF]). We consider the complete Riemannian manifold N i = Σ i × R (with the product Riemannian metric) and the subset

Ω i = Σ i × [0, L i ] with L i = 1 √ λ 2 (Σ i )
. As before, we see that lim i→∞ σ2 (Ω i ) = ∞. The manifold N is obtained by joining the N i 's by tubes. Proof. Let Ω be any domain of M that is diffeomorphic to the cylinder (0, 1) × S n . Because n ≥ 3, there exists a sequence of Riemannian metric h i on S n such that lim i→ λ 2 (S n , h i ) = ∞. Let g i be a Riemannian metric on M such that the restriction of g i to Ω is isometric to product S n × (0, L i ) with

L i = 1 √ λ 2 (S n ,h i )
.

It follows from scaling invariance of the normalized eigenvalues that in each of the three previous examples, the Riemannian metrics can be chosen to have Ricci curvature arbitrarily close to zero.

Proposition 6 . 3 .

 63 There exists a complete three-dimensional Riemannian manifold N admitting a sequence of bounded domainsΩ i ⊂ N such that lim i→∞ σ 2 (Ω i ) = ∞, and lim i→∞ I(Ω i ) = ∞.

Proposition 6 . 4 .

 64 Let M be a compact manifold of dimension ≥ 4.There exists a sequence of Riemannian metric g i and a domain Ω ⊂ M such thatlim i→∞ σ 2 (Ω, g i ) = ∞, and lim i→∞ I(Ω, g i ) = ∞.

  well known that Λ is a first order pseudodifferential operator and that its principal symbol is the square root of the principal symbol of ∆ Σ . It follows that σ

k ∼ √ λ k as k → ∞. See for instance ([25, p. 38 and p. 453], [23]). Question 4.1. Can the eigenvalues σ k and λ l be compared to each other ?

i.e. not necessarily simply connected.