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ABSTRACT

We study the conditions under which a 2D well-composed
binary image preserves its topological properties under any
rigid transformations. This work initiates a more global study
of digital image topological properties under such transforma-
tions, which is a crucial but unconsidered issue in the context
of image processing,e.g., for image registration and warping.

Index Terms— Well-composed images, rigid transforma-
tion, digital topology.

1. INTRODUCTION

The preservation of digital image topological properties is a
crucial issue for several application fields, involving 3D data
(e.g., medical imaging [1]) or 2D ones (e.g., remote sensing
[2]). In particular, topology preservation has been considered
in the context of image transformations, both from the view-
points of registration [3] and warping [4]. The main efforts
have been devoted to deal with the case of complex transfor-
mations, while more simple ones have been unconsidered.

Indeed, simple transformations are generally assumed to
be trivially handled. This can be explained by the fact that,in
the continuous case (i.e., in R

n), such transformations,e.g.,
translations or rotations, are generally topology-preserving,
while this is not necessarily the case for more complex ones,
e.g., those induced by nonrigid registration [5]. Based on this
“continuous” assertion, it is often thought that simple trans-
formations still lead to easy handling of topological properties
in the discrete case (i.e., in Z

n). This is a wrong belief.
In the case of discrete rigid transformations [6] (composed

of translations and rotations,followed by a digitisation), some
topological issues have already been identified [7]. These is-
sues are directly induced by the sampling that are mandatory
to guarantee the stability of the transformations insideZ

n.
In this article, we propose a preliminary study that deals

with necessary and sufficient conditions under whichbinary
digital images inZ2 preserve their topological properties
under any rigid transformations. We develop this study in
the framework of well-composed images [8], by considering
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transformations in thebackwardsmodel. We show that such
conditions can be checked in linear time with respect to the
size of images. They also lead to procedures for “correcting”
the images before transformations.

The article is organised as follows. Sec. 2 provides back-
ground notions. Sec. 3 establishes the conditions for topolog-
ical invariance of well-composed images under rigid trans-
formations. Sec. 4 presents experiments and methodological
remarks. Sec. 5 concludes the article by perspective works.

2. BACKGROUND NOTIONS

2.1. Discrete rigid transformations

In R
2, a rigid transformation is a functionU : R

2 → R
2

defined, for anyx = (x, y) ∈ R
2 by

U(x) =

(

cos θ − sin θ
sin θ cos θ

)(

x
y

)

+

(

a
b

)

(1)

wherea, b ∈ R andθ ∈ [0, 2π[ . The functionU is a bijec-
tion, and we noteT = U−1 its inverse function, which is also
a rigid transformation. These definitions cannot be directly
applied to the case ofdigital images, since there is no guar-
antee thatU(Z2) ⊆ Z

2. The handling ofdiscreterigid trans-
formations then requires to consider a discretisation operator
D : R2 → Z

2 (in the most common cases, and in the current
one, the standard rounding function), to define discrete ana-
logues ofU andT , namelyU = D ◦ U|Z2 andT = D ◦ T|Z2 .

In this work, we consider the Eulerian(backwards)trans-
formation model. More precisely, given an imageI : Z2 → V

and a rigid transformationU : R2 → R
2, the transformed im-

ageI ′ : Z2 → V, with respect toI andU , is defined as

I ′ = I ◦D ◦ (U−1)|Z2 = I ◦ T (2)

In the case of binary images(namely,V = {0, 1}) the image
I (resp.I ′) can be modeled by the setS = {p | I(p) = 1} ⊂
Z
2 (resp.S′ = {p | I ′(p) = 1} ⊂ Z

2), and its complement
S = Z

2 \S (resp.S′ = Z
2 \S′). Then, Eq. (2)is rewrittenas

S′ = Z
2 ∩ U(S ⊕�) (3)

S′ = Z
2 ∩ U(S ⊕�) (4)

where⊕ is the dilation operator (Minkowski addition) [9] and
� = [− 1

2
, 1

2
]2 ⊂ R

2 is the unit square (i.e., pixel) element.



Fig. 1: Left: S (in black) is weakly well-composed, whileS
(in white) is not. Right: bothS andS are well-composed.

Fig. 2: Left: a well-composed image and the grid modelling
its discrete structure. Middle: a rigid transformation applied
on this grid. Right: the transformed image, which is not well-
composed, and whose adjacency tree differs from the one of
the initial image (with the4-adjacency model).

Remark 1. In this work, we assume thatU is such thatZ2

does not intersect any transformed pixel border. In other
words, Eqs.(2)–(4) lead to same results for� = [− 1

2
, 1

2
]2

or ]− 1

2
, 1

2
[ 2. From a theoretical viewpoint, this allows us to

develop a general discussion without confusing variants re-
lated to the definition ofD. From a pratical viewpoint, this
assumption is compliant with computer-based applications,
that generally rely on floating point arithmetic.

2.2. Digital topology and well-composed sets

Digital topology [10] provides an efficient framework for han-
dling the topology of binary images inZn. It relies on a
graph structure that models the adjacency relations between
the points ofS andS. To deal with topological paradoxes re-
lated to the discrete version of the Jordan theorem, a coupleof
dual adjacencies [11] are defined from theL1 andL∞ norms,
leading to the well-known 4- and 8-adjacencies inZ

2 [10].
From these (irreflexive and symmetric) 4-/8-adjacency re-

lations over the points ofZ2, we obtain by reflexive/transitive
closure, some equivalence relations (the 4-/8-connectedness),
and their equivalence classes (the 4-/8-connected compo-
nents), associated either toS or S. The “nested” relation
between all these connected components can be modeled
by a tree structure, called the adjacency tree [12].More
precisely, a componentA of S and a componentB of S
are 4-/8-adjacentif either A 4-/8-surroundsB or B 8-/4-
surroundsA. In particular, inZ2, if two binary images have
isomorphic adjacency trees, they can be seen as topologically
equivalent [13].

Based on the digital topology framework, some notions
of well-composed sets/images [8] have been introduced (see
Fig. 1), to characterise the binary images whose structure in-

(a) C1 (b) C2 (c) C3

Fig. 3: (a) Configuration forbidden in well-composed images
(see Th. 3). (a,b,c) Configurations forbidden in regular im-
ages (see Def. 9). (These configurations are given up toπ/2
rotations, symmetries and values inversion.)

(a) ⊞, P1 (b) P2 (c) P3 (d) P4 (e) P5

Fig. 4: (a) The pattern⊞ ⊂ Z
2. (a–e) The patternsPi that

can verifyT (⊞) = Pi (the colours represent the point corre-
spondance between⊞ andPi).(See Prop. 6.)

trinsically avoids the topological issues of the Jordan theorem.

Definition 2 (Well-composed sets [8]). We say thatS is
weakly well-composedif any 8-connected component ofS
is also a 4-connected component. We say thatS (resp. I) is
well-composedif bothS andS are weakly well-composed.

When interpreting digital topology in a continuous framework
[14] that relies,e.g, on cubical complexes [15], a binary dig-
ital image is well-composed iff the boundaries shared by the
foreground and background pixels constitute a manifold [16].

It has been proved that well-composed sets can be locally
characterized by observing only2× 2 samples of an image.

Theorem 3([8]). A 2D image is well-composed iff it does not
contain the configurationC1 illustrated in Fig. 3(a).

3. TOPOLOGICAL INVARIANCE UNDER RIGID
TRANSFORMATIONS

Well-composed images present nice topological properties,
that may however be altered bydiscreterigid transformations
(see Fig. 2). We propose to investigate conditions that guar-
antee thetopological invarianceof a well-composed image.

Definition 4 (Topological invariance). We say that a well-
composed imageI is topologically invariantif any trans-
formedimageI ′ = I ◦ T : (i) is well-composed, and(ii) has
an adjacency tree isomorphic to the one ofI.

3.1. Preliminary properties

Let ⊟ = {x} × {y, y + 1} or {x, x + 1} × {y} ⊂ Z
2. Let

⊞ = {x, x+1}× {y, y+1} ⊂ Z
2. The following properties

(given for anyT , ⊟ and⊞) derive from Eq. (2).

Property 5. There existsp ∈ Z
2 such thatT (p) ∈ ⊟.

Property 6 ([17]). There exist 5 patterns that can be equal to
T (⊞), up toπ/2 rotations and symmetries (see Fig. 4).



Property 7. If ⊞1 ∩⊞2 6= ∅, then any setP ⊂ Z
2, such that

T (P ) = ⊞1 ∪⊞2, is 4-connected.

3.2. Necessary condition for topological invariance

The next result is easy to prove by combinatorial analysis.

Lemma 8. If I containsC2 (resp.C3), then it does not satisfy
condition(ii) (resp.(i)) of Def. 4.

We now introduce a notion ofregularity, that strenghtens the
notion of well-composition.

Definition 9 (Regularity). We say thatI is regularif it does
not contain any ofC1, C2 andC3.

From Defs. 4 and 9, and Lem. 8, we then derive the following
necessary condition for topological invariance.

Proposition 10. If an imageI is topologically invariant, then
it is regular.

3.3. Sufficient condition for well-composition

We now show that regularity is a sufficient condition to satisfy
condition(i) of Def. 4.

Proposition 11. If I is a regular image, then any transformed
imageI ′ = I ◦ T is well-composed.

Proof Let T be such thatI ′ : I ◦ T is not well-composed.
Then,I ′ has a pattern⊞ that is aC1 (Th. 3) and that derives
from aPi in I (Prop. 6). But then,P1 is aC1, P2 is aC3,
P3 andP5 contain aC2, andP4 is impossible. Thus,I is
non-regular. The result follows by contraposition.�

3.4. Regularity and 4-adjacency

We now introduce a new adjacency relation, that strenghtens
the standard4-adjacency inZ2.

Definition 12 (⊞-adjacency). The pointsp, q ∈ S (resp.S)
are⊞-adjacentif (i) they are4-adjacent, and(ii) there exists
⊞ ⊆ S (resp.S) such thatp, q ∈ ⊞.

We then derive the notions of⊞-connectedness (equivalence
relation) and⊞-connected components (equivalence classes).

It is plain that the⊞-adjacency implies the4-adjacency.
In the context of regular images, the counterpart is also true.

Lemma 13. If I is a regular image, then the4-adjacency is
equal to the⊞-adjacencyin S andS.

Proof Let p, q ∈ S be 4-adjacent (the same holds forS).
We setp = (x, y) andq = (x, y + 1) (the same holds up
to π/2 rotation). We haver′ = (x − 1, y) ∈ S or r =
(x + 1, y) ∈ S, otherwise{r′,p, r} is a C2; for instance
r ∈ S. Let s = (x + 1, y + 1). If s ∈ S, then we have
{p, q, r, s} = ⊞ ∈ S. If s /∈ S, then we haves′ = (x −
1, y + 1) ∈ S, otherwise{s′, q, s} is a C2. Thus, we have
r
′ = (x − 1, y) ∈ S, otherwise{r′,p, q, s} is aC3. Finally,

we have{p, q, s′, r′} = ⊞ ∈ S. �

3.5. Sufficient condition for topological invariance

We noteaS (resp.aS′) the4-adjacency relation onS (resp.
S′), and∼S (resp. ∼S′) the 4-connectedness relation onS
(resp. S′). We recall thatT|S′ is the restriction ofT to
S′. (Due to the symmetry of Def. 2, the results of Lem. 14,
Cor. 15 and Lem. 16, stated forS/S′ are also valid forS/S′.)

Lemma 14. If I is a well-composed image, thenT|S′ estab-
lishes a homomorphism from(S′,aS′) to (S,∼S).

Proof Let p′
aS′ q

′, p = T|S′(p′) andq = T|S′(q′). From
Eq. (2), we can have:(i) p = q, and thenp ∼S q; (ii)
p aS q, and thenp ∼S q; or (iii) p, q are8-adjacent, and
thus8-connected, and thenp ∼S q derives from Def. 2.�

Corollary 15. LetC′ ∈ [S′]∼
S′

be a4-connected component
ofS′. If I is well-composed, then there exists one4-connected
componentC ∈ [S]∼S

of S such thatT|S′(C′) ⊆ C.

We can then set the functionTS′ : [S′]∼S′
→ [S]∼S

, defined,
for anyC′ ∈ [S′]∼

S′
, byT|S′(C′) ⊆ TS′(C′).

Lemma 16. If I is a regular image, thenTS′ is a bijection.

Proof (Surjectivity)Let C ∈ [S]∼S
andp ∈ C. There exists

q ∈ C such thatp aS q, otherwise,I containsC2 cen-
tered onp. Then{p, q} = ⊟. There existsrS′ such that
T|S′(r) ∈ {p, q} ⊆ C (Prop. 5). ThenTS is a surjection
(Cor. 15). (Injectivity) Let p′, q′ ∈ S′. Let p = T|S′(p′),
q = T|S′(q′). Suppose thatp, q ∈ C ∈ [S]∼S

, thenp, q
are4-connected, andtherefore⊞-connected inS (Lem. 13).
In other words, we havep, q ∈

⋃k

i=0
⊞i (k ≥ 0), where

∀i ∈ [[0, k]],⊞i⊂S and∀i ∈ [[0, k − 1]],⊞i ∩ ⊞i+1 6= ∅. For
any i ∈ [[0, k]], we definePi ⊂ S′ such thatT|S′(Pi) = ⊞i.
Any Pi is4-connected (Prop. 7,for ⊞1 = ⊞2 = ⊞i), and then
⋃k

i=0
Pi is also4-connected (Props. 5 and 7). Consequently,

there existsC′ ∈ [S′]∼S′
such thatp′, q′ ∈

⋃k

i=0
Pi ⊆ C′. It

follows thatTS is an injection.�

Let CI = [S]∼S
∪ [S]∼

S
andCI′ = [S′]∼

S′
∪ [S′]∼

S′
. We

define the functionTS′ ∪ T
S′ = TI′ : CI′ → CI , which

is a bijection between the4-connected components ofI ′ and
those ofI. We say thatC′

1 6= C′
2 ∈ CI′ (resp.C1 6= C2 ∈ CI )

areadjacent, and we noteC′
1 aI′ C′

2 (resp. C1 aI C2), if
there existp′ ∈ C′

1, q′ ∈ C′
2 (resp. p ∈ C1, q ∈ C2) that

are4-adjacent. The adjacency tree [12] ofI ′ (resp.I) is then
defined by(CI′ ,aI′) (resp.(CI ,aI)).

Proposition 17. If I is a regular image, thenTI′ establishes
an isomorphism between(CI′ ,aI′) and(CI ,aI).

Proof Let C′
1 aI′ C′

2. Up to reindexing, we haveC′
1 ∈

[S′]∼
S′

, C′
2 ∈ [S′]∼

S′
. Let p′ ∈ C′

1, q′ ∈ C′
2 be4-adjacent.

Let p = T|S′(p′) ∈ TI′(C′
1), q = T|S′(q′) ∈ TI′(C′

2).
From Eq. (2), we can have:(i) p, q are4-adjacent, and then
TI′(C′

1) aI TI′(C′
2); or (ii) p, q are8-adjacent (but not4-

adjacent). In that second case, letr be4-adjacent with both



p andq. We have eitherr ∈ TI′(C′
1) or TI′(C′

2), and then
TI′(C′

1) aI TI′(C′
2).

Let C1 aI C2. Up to reindexing, we haveC1 ∈ [S]∼S
,

C2 ∈ [S]∼
S
. Let p ∈ C1, q ∈ C2 be4-adjacent. Up toπ/2

rotation, we havep = (x, y), q = (x, y + 1). Case(i): we
haver = (x+1, y) ∈ C1 ands = (x+1, y+1) ∈ C2. Then
we have{p, q, r, s} = ⊞, {p, r} = ⊟ ⊂ C1 and{q, s} =
⊟ ⊂ C2. Let P ⊂ I ′ such thatT (P ) = {p, q, r, s}. We
haveP ∩ T

−1

I′ (C1) 6= ∅ andP ∩ T
−1

I′ (C2) 6= ∅ (Prop. 5).
Moreover, P is 4-connected (Prop. 7). Then, we have
T
−1

I′ (C1) aI T
−1

I′ (C2). Case(ii): we haver, s ∈ C1. Let
⊞1 = {p, q, r, s} and⊞2 = q + {−1, 0} × {0, 1}. We have
⊞2 ⊆ C2 (by a similar reasonning as for Prop. 13). LetP ⊂
I ′ such thatT (P ) = ⊞1 ∪ ⊞2. We haveP ∩ T

−1

I′ (C1) 6= ∅
andP ∩T

−1

I′ (C2) 6= ∅ (Prop. 5). Moreover,P is 4-connected
(Prop. 7). Then, we haveT−1

I′ (C1) aI T
−1

I′ (C2). The other
cases are impossible or equivalent to the above two cases, by
symmetry betweenS andS. �

By gathering Props. 10, 11 and 17, we obtain our main result.

Theorem 18. The imageI : Z2 → {0, 1} is topologically
invariant iff it is regular.

This result enables, in particular, to check the topological in-
variance of an imageI by simply scanning it once to identify
potential occurrences ofC1, C2 andC3.

4. EXPERIMENTS AND METHODOLOGY

From Sec. 3, we can determine –in linear time–whethera 2D
binary well-composed image is topologically invariantusing
the introduced notion of regularity. The analytic usefulness
of these results is illustrated in Fig. 5(a–d), which emphasises
the ability to predict the “topological behaviour” of an image.

Beyond the possibility to analyse images, these results
also lead to solutions for correcting them, in order to improve
their topological robustness. Indeed, once the pixels thatfor-
bid topological invariance have been identified (see Fig. 5(c)),
the image can be processed to locally modify the correspond-
ing areas, in order to fulfill the regularity requirements (see
Fig. 5(e,f)). This process has to be performed iteratively un-
til convergence, and can then fail in pathological cases,e.g.,
when the images present a fine texture (see Fig. 6).

In such cases, a solution consists of considering a super-
resolution strategy. Indeed, by increasing the resolution
by a factor2, i.e., by associating a2 × 2 pixel square to
each initial pixel, a well-composed image becomes regular.
Moreover, this strategy can be associated to other super-
resolution paradigms based,e.g., on Khalimsky grids [18], to
transform any(4, 8) or (8, 4)-adjacency binary image into a
well-composed, and finally regular one.

(a) (b) (c) (d) (e) (f)

Fig. 5: (a) Regular images. (b) Rigid transformations of (a),
with topological preservation. (c) Well-composed but non-
regular images (the occurrences of critical configurationsC2

andC3 are depicted by red and yellow frames, respectively).
(d) Rigid transformations of (c), with topological alterations.
(e) Corrected (regular) images obtained from (c) (in blue:
added pixels; in green: removed pixels). (f) Rigid transfor-
mations of (e), with topological preservation.

Fig. 6: Well-composed images that cannot be modified (with-
out a super-resolution approach) to fulfil regularity require-
ments, due to fine texture effects.

5. CONCLUSION

We have explored necessary and sufficient conditions(namely,
regularity) under which 2D binary well-composed images
preserve their topological properties under rigid transfor-
mations, with solutions for favouring such preservation in
application cases.

From a methodological viewpoint, this preliminary study
opens the way to further extentions in terms of dimensions
(from 2D to 3D [19]), and value spaces (from binary to grey-
scale [20] and colour [21]), with applicative perspectivesin
image processing (registration, image warping, etc.). In addi-
tion, the case of standard dual(8, 4)- and(4, 8)-adjacencies,
commonly used in digital topology may also be investigated.

From a theoretical viewpoint, the relations that may exist
between these results and various (continuous and/or discrete)
geometrical and topological concepts will also be explored. In
particular, some links may be found with notions such as the
r-regularity [22, 23] and the connectivity classes [24, 25].
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