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ABSTRACT transformations in theackwardanodel. We show that such

We study the conditions under which a 2D weII—composeoc.ond't'c.mS can be checked in linear time with refpect ,to_the
size of images. They also lead to procedures for “corretting

binary image preserves its topological properties undgr an_ "~ .
hary ge pre . polog prop ¥ the images before transformations.

rigid transformations. This work initiates a more globaildst The article is oraanised as follows. Sec. 2 provides back
of digitalimage topological properties under such transa round notions Se?: 3 establishes thé conaitic?ns for tgpol
tions, which is a crucial but unconsidered issue in the cdnte g ' ' tap

of image processing. g, for image registration and warping ical invariance of well-composed images under rigid trans-
e " formations. Sec. 4 presents experiments and methodologica

Index Terms— Well-composed images, rigid transforma- remarks. Sec. 5 concludes the article by perspective works.
tion, digital topology.

2. BACKGROUND NOTIONS

1. INTRODUCTION
2.1. Discrete rigid transformations

The preservation of digital image topological propertesti
crucial issue for several application fields, involving 3&tal
(e.g, medical imaging [1]) or 2D one®(g, remote sensing
[2]). In particular, topology preservation has been comisid cosf —sinf x a
in the context of image transformations, both from the view- Uz) = ( sinf  cosd ) ( Yy ) * ( b ) @)
points of registration [3] and warping [4]. The main efforts _ ) .
have been devoted to deal with the case of complex transon_\-’herea’ b € R andf 67[102 277_[' The funct_|0nL{ ISa b_uec-
mations, while more simple ones have been unconsidered. t|0r_1, .and we notg” — U= its INVerse fgnctlon, which is "?‘ISO

Indeed, simple transformations are generally assumed @ rgid transformation. These definitions cannot be diyectl

be trivially handled. This can be explained by the fact thmat, applied to thegcase gn‘igital imaggs, singe therg i.s no guar-
the continuous case.¢. in R"), such transformationg,g, ~ 2ntee that/(Z7) € Z°. The handling otliscreterigid trans-

translations or rotations, are generally topology-préses formations then requires to consider a discretisationatper

. R2 2 (i H
while this is not necessarily the case for more complex oned? : R — Z7 (in the most common cases, and in the current
e.g, those induced by nonrigid registration [5]. Based on thiﬁone, the standard rounding function), to define discrete ana
“continuous” assertion, it is often thought that simplenga ogues ot andT, namelylU = D o Ujz= andT’ = D o Tz.

formations still lead to easy handling of topological prajes In t_h's work, we Cons'def the Eglen&ba_ckwardijrans-

in the discrete casé.€., in Z™). This is a wrong belief. format|_0r_1 model. More_preusgly, g|v2en animagez” — V
Inthe case of discrete rigid transformations [6] (compose&anI 6} r|g|2d transfo_rmatlou : RY = R%, the tra_nsformed im-

of translations and rotation&llowed by a digitisatio), some agel’ : Z* — V, with respect td andl/, is defined as

topological issues have already been identified [7]. These i I'=ToDo (U_l)W =JoT (2)

sues are directly induced by the sampling that are mandatory i i i

to guarantee the stability of the transformations ingide In the case of binary imaggsamely,V = {0, 1}) the image

In this article, we propose a preliminary study that deals’ 2(resp.]’) can be mcadeled by the Szﬁt: {p|I(p)=1} C
with necessary and sufficient conditions under witarary 2 (re.;,p.S = {p_|/I (p% = }} C Z7), and its complement
digital images inZ? preserve their topological properties ° = Z° \ 5 (résp.5" = Z*\ 5"). Then, Eq. (2)s rewrittenas
under any rigid transformationsWe develop this study in S =72 NU(S @ 0) (3)
the framework of well-composed images [8], by considering T =72 nuESen) @

In R2, a rigid transformation is a functioll : R? — R?
defined, for anye = (z,y) € R? by

The research leading to these results has received fundimg the . - . . "
French Agence Nationale de la Recherche (Grant Agreeme-2010-  Whered is the dilation operator (Minkowski addition) [9] and

BLAN-0205 03). O = [-3, 3]* C R?is the unit squarei.g., pixel) element.
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Fig. 3: (a) Configuration forbidden in well-composed images
(see Th. 3). (a,b,c) Configurations forbidden in regular im-
ages (see Def. 9). (These configurations are given up'20
rotations, symmetries and values inversion.)
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Fig. 1. Left: S (in black) is weakly well-composed, whilg
(in white) is not. Right: botts and.S are well-composed.
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Fig. 4 (a) The patteri8 C Z2. (a—e) The patterns?; that
can verifyT () = £; (the colours represent the point corre-
Fig. 2: Left: a well-composed image and the grid modellingspondance betweéh and.#;).(See Prop. 6.)

its discrete structure. Middle: a rigid transformation kg

on this grid. Right: the transformed image, which is not well trinsically avoids the topologicalissues of the Jordaotee.
com_p_o_se(_j, and Whose adjac_ency tree differs from the one gefinition 2 (Well-composed sets [8])We say thatS is
the initial image (with thel-adjacency model). weakly well-composedf any 8-connected component §f

is also a 4-connected component. We say théesp. I) is

: . 5 pC
Remark 1. In this work, we assume that is such thatZ®  \o_composedf both S and S are weakly well-composed.
does not intersect any transformed pixel border. In other

words, Eqs(2)+(4) lead to same results fdrl = [_%7 %]2 When interpreting digital topology in a continuous framekvo
or] — 1, 1[2. From a theoretical viewpoint, this allows us to [14] that reliesg.g on cubical complexes [15], a binary dig-

develop a general discussion without confusing variants reital image is well-composed iff the boundaries shared by the
lated to the definition of). From a pratical viewpoint, this foreground and background pixels constitute a manifold.[16
assumption is compliant with computer-based applications It has been proved that well-composed sets can be locally
that generally rely on floating point arithmetic. characterized by observing orilyx 2 samples of an image.

N Theorem 3([8]). A 2D image is well-composed iff it does not
2.2. Digital topology and well-composed sets contain the configuratiof#, illustrated in Fig. 3(a).

Digital topology [10] provides an efficient framework forra
dling the topology of binary images i@". It relies ona 3. TOPOLOGICAL INVARIANCE UNDER RIGID
graph structure that models the adjacency relations betwee TRANSFORMATIONS
the points ofS andS. To deal with topological paradoxes re-
lated to the discrete version of the Jordan theorem, a catiple
dual adjacencies [11] are defined from thkeand > norms,
leading to the well-known 4- and 8-adjacencie&[10].

From these (irreflexive and symmetric) 4-/8-adjacency re

lations over the points @2, we obtain by reflexive/transitive pefinition 4 (Topological invariance) We say that a well-
closure, some equivalence relations (the 4-/8-conneet=n  composed imagé is topologically invariantif any trans-
and their equivalence classes (the 4-/8-connected comp@yrmedimagel’ = I o T": (i) is well-composed, andi) has
nents), associated either Hor S. The “nested” relation  an adjacency tree isomorphic to the onelof
between all these connected components can be modeled
by a tree structure, called the adjacency tree [1R]ore
precisely, a componemt of S and a componenB of S
are 4-/8-adjacentif either A 4-/8-surroundsB or B 8-/4- LetH = {z} x {y,y + 1} or {z,x + 1} x {y} C Z*. Let
surroundsA. In particular, inZ?, if two binary images have = {z,z+ 1} x {y,y + 1} C Z?. The following properties
isomorphic adjacency trees, they can be seen as topolygicalgiven for anyl’, 5 andH) derive from Eq. (2).
equivalent [13]. . 9

Based on the digital topology framework, some notionsPrOperty 5. There existp € 27 such thall'(p) € B.
of well-composed sets/images [8] have been introduced (sd&roperty 6 ([17]). There exist 5 patterns that can be equal to
Fig. 1), to characterise the binary images whose structure i 7'(F), up tor /2 rotations and symmetries (see Fig. 4).

Well-composed images present nice topological properties
that may however be altered bjscreterigid transformations
(see Fig. 2). We propose to investigate conditions that-guar
antee thaopological invarianceof a well-composed image.

3.1. Preliminary properties



Property 7. If B, N H, # 0, then any seP C Z?2, such that
T(P) = H; UH,, is 4-connected.

3.2. Necessary condition for topological invariance

The next result is easy to prove by combinatorial analysis.

Lemma 8. If I containsé; (resp.%3), then it does not satisfy
condition(iz) (resp. (i)) of Def. 4.

We now introduce a notion aégularity, that strenghtens the
notion of well-composition.

Definition 9 (Regularity) We say thaf is regularif it does
not contain any 0%}, ¢, ands.

3.5. Sufficient condition for topological invariance

We note~g (resp.~g/) the4-adjacency relation of' (resp.
S’), and~g (resp. ~g) the 4-connectedness relation ¢h
(resp. S’). We recall thatT|s is the restriction of7" to
S’. (Due to the symmetry of Def. 2, the results of Lem. 14,
Cor. 15 and Lem. 16, stated f6¢S’ are also valid foi5/S".)

Lemma 14. If I is a well-composed imag¢henT] s estab-
lishes a homomorphism frof$’, ~g/) to (S, ~g).

Proof Letp’ ~s' ¢’, p = T\s/(p’) andq = T|g(q’). From
Eqg. (2), we can have(i) p = ¢, and thenp ~s gq; (i7)
p ~s g, and thernp ~g q; or (iii) p, g are8-adjacent, and
thus8-connected, and thegm~ g g derives from Def. 2l

From Defs. 4 and 9, and Lem. 8, we then derive the following

necessary condition for topological invariance.

Proposition 10. If an imagel is topologically invariant, then
it is regular.

3.3. Sufficient condition for well-composition

We now show that regularity is a sufficient condition to Sgtis
condition(¢) of Def. 4.

Proposition 11. If I isa regularimagethen any transformed
imagel’ = I o T is well-composed.

Proof Let T' be such thatl’ : I o T is not well-composed.
Then,I’ has a patterf that is a%; (Th. 3) and that derives
froma<Z; in I (Prop. 6). But then??, is a%y, % is a%3,
Y5 and ¥; contain a6,, and 2, is impossible. Thus/ is
non-regular. The result follows by contrapositidiih.

3.4. Regularity and 4-adjacency

Corollary 15. LetC’ € [S’], be a4-connected component
of S’. If I is well-composed, then there exists dagonnected
componenC € [S]. of S such thatl}s (C") C C.

We can then set the functi® : [S']~,, — [S]~;, defined,
foranyC’ € [S']~,,, by T|s/(C") € Ts/(C).

Lemma 16. If I is a regular imagethen¥ . is a bijection.

Proof (Surjectivity)Let C' € [S]., andp € C. There exists
q € C such thatp ~g g, otherwise,/ contains%, cen-
tered onp. Then{p,q} = B. There existsS’ such that
Tis(r) € {p,q} € C (Prop.5). TherZs is a surjection
(Cor. 15). (Injectivity) Let p’,q" € S'. Letp = T|s (p’),
q = Tis(q’). Suppose thap,q € C € [S].g, thenp,q
are4-connected, anthereforetH-connected inS (Lem. 13).
In other words, we have,q € Ufzo B, (¢ > 0), where
Vi € [0,k],B,CS andVi € [0,k — 1],8; N W1 # 0. For
anyi € [0, k], we defineP; C S’ such thatl|s (P;) = ;.
Any P; is4-connected (Prop. Tor B, = H, = H;), and then

We now introduce a new adjacency relation, that strenghtengf:0 P, is also4-connected (Props. 5 and 7). Consequently,

the standard-adjacency irz>.

Definition 12 (B-adjacency) The pointsp, g € S (resp. S)
areH-adjacentf (i) they are4-adjacent, andii) there exists
B C S (resp.S) such thatp, q € .

We then derive the notions @i-connectedness (equivalence
relation) andl-connected components (equivalence classesﬁ

It is plain that thefH-adjacency implies thd-adjacency.
In the context of regular images, the counterpart is alse. tru

Lemma 13. If I is a regular image then thet-adjacency is
equal to theB-adjacencyin S and S.

Proof Let p,q € S be 4-adjacent (the same holds féh).
We setp = (z,y) andg = (z,y + 1) (the same holds up
to 7/2 rotation). We haver’ = (z — 1,y) € Sorr =
(x + 1,y) € S, otherwise{r’,p,r} is a%»; for instance
reS. Lets = (x+1y+1). If s €S, then we have
{p,q,7,s} =B € S. If s ¢ S, then we haves’ = (v —
1,y + 1) € S, otherwise{s’, g, s} is a%>. Thus, we have
r’ = (x—1,y) € S, otherwise{r’, p, q, s} is a%5. Finally,
we have{p,q,s’, 7'} =Hec S. 1

there exist€”’ € [S']., suchthap’,q’ € Uf:()]%- cC. it
follows that¥ g is an injection.

LetCr = [S]ws U [Slog andCp = []~,, U [S"]~,. We
define the functiorts: U 357 = T : Cp» — Cr, which
s a bijection between th&-connected components &f and
hose ofl. We say that’] # C, € Cy (resp.Cy # Cs € Cy)
areadjacenf and we note”] ~p C} (resp. Cy ~; Cy), if
there existp’ € Cy, q' € C (resp.p € C1, g € C5) that
are4-adjacent. The adjacency tree [12]6f(resp.I) is then
defined by(C;/, ~1/) (resp.(Cr, ~1)).

Proposition 17. If I is a regular imagethen¥ ;. establishes
an isomorphism betwedd;,, ~;/) and(Cy, ~ ).

Proof Let C} ~p Cj. Up to reindexing, we havé’, <
[S']~s Cp €[S, Letp” € C1, ¢’ € O be4-adjacent.
Letp = Tjs/(p') € T (C1), ¢ = Tiz(q') € Tr(Cy).
From Eg. (2), we can havéi) p, g are4-adjacent, and then
T (Cr) ~1 T (CY); or (i1) p, q are8-adjacent (but not-
adjacent). In that second case, #ebbe 4-adjacent with both



p andq. We have either € T;/(C) or T;/(C%), and then
T (C1) ~1 T (C).

Let Cy ~; Cs. Up to reindexing, we havé; € [S].,
C; € [S]~s- Letp € C1, g € C; bed-adjacent. Up tor/2
rotation, we have = (z,y), ¢ = (x,y + 1). Case(i): we
haver = (x+1,y) € Cy ands = (x 4+ 1,y+ 1) € Cy. Then
we have{p,q,r,s} = B, {p,r} =8 C C; and{q, s} =
B C Cy. LetP C I’ such thatl'(P) = {p,q,r,s}. We
have P N %,'(C1) # 0 andP N T, (Ca) # O (Prop. 5).
Moreover, P is 4-connected (Prop. 7). Then, we have
T1(C1) ~1 T;1(Cy). Case(ii): we haver,s € C. Let
B, ={p,q,r,s} andBHy = g+ {—1,0} x {0,1}. We have
Hy C Cs (by a similar reasonning as for Prop. 13). Lkt
I' such thal (P) = B, U ;. We haveP TLHCY) # 0 (@) (b) @
andeT; (Cs) # O (Prop. 5) MoreoverP is 4-connected
(Prop. 7). Then, we havg,,'(C1) ~r T;,'(Cy). The other
cases are impossible or equivalent to the above two cases,
symmetry betwees andS. B
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Fig. 5: (a) Regular images. (b) Rigid transformations of (a),
ith topological preservation. (c) Well-composed but non-
é(gular images (the occurrences of critical configuratiéns

and%s are depicted by red and yellow frames, respectively).

(d) Rigid transformations of (c), with topological altdmats.

By gathering Props. 10, 11 and 17, we obtain our main resulte) Corrected (regular) images obtained from (c) (in blue:

added pixels; in green: removed pixels). (f) Rigid transfor
Theorem 18. The imagel : Z* — {0, 1} is topologically mations of (), with topological preservation.
invariant iff it is regular.

This result enables, in particular, to check the topoldgdica
variance of an imagé by simply scanning it once to identify
potential occurrences &, ¢, and%s.

4. EXPERIMENTS AND METHODOLOGY
Fig. 6: Well-composed images that cannot be modified (with-
From Sec. 3, we can determine —in linear timeethera 2D Out @ super-re§olution approach) to fulfil regularity requi
binary well-composed image is topologically invariaising ~ MenNts, due to fine texture effects.
the introduced notion of regularityThe analytic usefulness
of these results is illustrated in Fig. 5(a—d), which emjgess
the ability to predict the “topological behaviour” of an ig&

Beyond the possibility to analyse images, these resultg/e have explored necessary and sufficient condiioasely,
also lead to solutions for correcting them, in order to inwero regularity) under which 2D binary well-composed images
their topological robustness. Indeed, once the pixelsfirat preserve their topological properties under rigid transfo
bid topological invariance have been identified (see Fig)5( mations, with solutions for favouring such preservation in
the image can be processed to locally modify the corresponépplication cases.
ing areas, in order to fulfill the regularity requirementse(s From a methodological viewpoint, this preliminary study
Fig. 5(e,f)). This process has to be performed iteratively u opens the way to further extentions in terms of dimensions
til convergence, and can then fail in pathological case®,  (from 2D to 3D [19]), and value spaces (from binary to grey-
when the images present a fine texture (see Fig. 6). scale [20] and colour [21]), with applicative perspectives

In such cases, a solution consists of considering a supeimage processing (registration, image warping, etc.)ddhi-a
resolution strategy. Indeed, by increasing the resolutiotion, the case of standard du@l 4)- and (4, 8)-adjacencies,
by a factor2, i.e., by associating & x 2 pixel square to commonly used in digital topology may also be investigated.
each initial pixel, a well-composed image becomes regular. From a theoretical viewpoint, the relations that may exist
Moreover, this strategy can be associated to other supebpetween these results and various (continuous and/oetégcr
resolution paradigms basezlg, on Khalimsky grids [18],to geometrical and topological concepts will also be explohed
transform any(4, 8) or (8, 4)-adjacency binary image into a particular, some links may be found with notions such as the
well-composed, and finally regular one. r-regularity [22, 23] and the connectivity classes [24, 25].

5. CONCLUSION
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