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ABSTRACT

We study the conditions under which the topological proper-
ties of a 2D well-composed binary image are preserved under
arbitrary rigid transformations. This work initiates a more
global study of digital image topological properties under
such transformations, which is a crucial but under-considered
problem in the context of image processing, e.g., for image
registration and warping.

Index Terms— Well-composed images, rigid transforma-
tion, digital topology.

1. INTRODUCTION

Preservation of digital image topological properties is a cru-
cial problem in several application fields (e.g remote sensing
[2], medical imaging [1]). This problem has been considered
both from the viewpoints of registration [3] and warping [4].
The majority of efforts in this direction have been devoted to
deal with complex transformations, while simpler cases have
been somewhat neglected. Indeed, simple transformations are
generally assumed to be trivially handled, for in the continu-
ous case (i.e., in R™) they are generally topology-preserving
(e.g., translations or rotations). In contrast, this is not nec-
essarily the case for more complex cases, for instance those
induced by nonrigid registration [5]. Based on this “continu-
ous” assumption, it is often thought that for simple transfor-
mations topological properties can still be easily handled in
the discrete case (i.e., in Z™). This is in fact not the case.

In the case of discrete rigid transformations [6] (i.e. trans-
lations and rotations, followed by a digitisation), some topo-
logical issues were identified in [7]. These are directly in-
duced by the sampling, which is mandatory to guarantee the
stability of the transformations within Z".

In this article, we propose a preliminary study that deals
with necessary and sufficient conditions under which the
topological properties of binary digital images in Z? are pre-
served under any rigid transformations. We develop this study
in the framework of well-composed images [8], by consider-
ing transformations in the Eulerian model. We show that such
conditions can be checked in linear time with respect to the
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size of images. A procedure for enforcing these conditions
prior to transformations is also given.

The article is organised as follows. Sec. 2 provides back-
ground notions. Sec. 3 establishes the conditions for topolog-
ical invariance of well-composed images under rigid trans-
formations. Sec. 4 presents experiments and methodological
remarks. Sec. 5 concludes the article by perspective works.

2. BACKGROUND NOTIONS

2.1. Discrete rigid transformations

In R?, a rigid transformation is a function &/ : R? — R2
defined for any = = (x,y) € R? by

cosf —sinf x a

u(m)(sine cos@)<y>+<b> S
where a,b € R and 6 € [0,27). The function i is a bi-
jection, and we note T = U —1 its inverse function, which is
also a rigid transformation. These definitions cannot be di-
rectly applied to the case of digital images, since there is no
guarantee that U (Z?) C Z?2. The handling of discrete rigid
transformations then requires to consider a discretisation op-
erator D : R? — Z2 (e.g. the standard rounding function,
which is the one we use), to define discrete analogues of U/
and 7, namely U = D oUjzz and T' = D o Tjz>.

In this work, we consider the Eulerian (backwards) trans-
formation model. More precisely, given an image I : Z? — V
and a rigid transformation I/ : R? — R2, the transformed im-
age I’ : Z? — V, with respect to I and U, is defined as

I'=IoDoU ")z2=1I0T. )

In the case of binary images (namely, V = {0, 1}) the image
I (resp. I") can be modeled by the set S = {p | I(p) =1} C
72 (resp. S’ = {p | I'(p) = 1} C Z?), and its complement
S =72\ S (resp. S" = Z?\ S’). Then, Eq. (2) is rewritten as

S'=7NU(S @ 0), (3)
S =7*nuU(S e0), 4)

where & is the dilation operator (Minkowski addition) [9] and
0= [—%7 %]2 C R? is the unit square (i.e., pixel) element.



Fig. 1: Left: .S (in black) is weakly well-composed, while S
(in white) is not. Right: both S and .S are well-composed.
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Fig. 2: (a) Configuration forbidden in well-composed images
(see Th. 3). (a,b,c) Configurations forbidden in regular im-
ages (see Def. 9). (These configurations are given up to /2
rotations, symmetries and values inversion.)

Remark 1. In this work, we assume that U is such that 7>

does not intersect any transformed pixel border. In other

words, Eqs. (2)—(4) lead to same results for O = [—%, %]2
11

or]— 3, 5[2. From a theoretical viewpoint, this allows us to
develop a general discussion without confusing variants re-
lated to the definition of D. This assumption is compliant with
computer-based applications, that generally rely on floating

point arithmetic.

2.2. Digital topology and well-composed sets

Digital topology [10] provides an efficient framework for han-
dling the topology of binary images in Z™. It relies on a
graph structure that models the adjacency relations between
the points of S and S. To deal with topological paradoxes re-
lated to the discrete version of the Jordan theorem, a couple of
dual adjacencies [11] are defined from the L' and L* norms,
leading to the well-known 4- and 8-adjacencies in 72 [10].

From these (irreflexive and symmetric) 4-/8-adjacency re-
lations over the points of Z?2, we obtain by reflexive/transitive
closure, some equivalence relations (the 4-/8-connectedness),
and their equivalence classes (the 4-/8-connected compo-
nents), associated either to S or S. The “nested” relation
between all these components can be modeled by a tree struc-
ture, called the adjacency tree [12], in which the root is the
unique infinite component of the background, and each edge
corresponds to the adjacency of two connected components.
In particular, in Z2, two binary images with the same isomor-
phic adjacency trees are topologically equivalent [13].

Based on the digital topology framework, several notions
of well-composition [8] have been introduced (see Fig. 1), to
characterise the binary images whose structure intrinsically
avoids the topological issues of the Jordan theorem.

Definition 2 (Well-composed sets [8]). We say that S is
weakly well-composed if any 8-connected component of S
is also a 4-connected component. We say that S (resp. I) is
well-composed if both S and S are weakly well-composed.

Fig. 3: Left: a well-composed image and the grid modelling
its discrete structure. Middle: a rigid transformation applied
on this grid. Right: the transformed image, which is not well-
composed, and whose adjacency tree differs from the one of
the initial image (with the 4-adjacency model).
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Fig. 4: (a) The pattern B C Z2. (a—e) The patterns %; that
can verify T'(H) = 2; (the colours represent the point corre-
spondance between B and £7;).(See Prop. 6.)

When interpreting digital topology in a continuous framework
[14] that relies, e.g, on cubical complexes [15], a binary dig-
ital image is well-composed iff the boundaries shared by the
foreground and background pixels constitute a manifold [16].
Further, it has been proved that well-composition be locally
characterized by observing only the 2 x 2 samples of an im-
age.

Theorem 3 ([8]). A 2D image is well-composed iff it does not
contain the configuration € illustrated in Fig. 2(a).

3. TOPOLOGICAL INVARIANCE UNDER RIGID
TRANSFORMATIONS

Well-composed images present nice topological properties,
that may however be altered by discrete rigid transformations
(see Fig. 3). We propose to investigate conditions that guar-
antee the topological invariance of a well-composed image.

Definition 4 (Topological invariance). We say that a well-
composed image I is topologically invariant if any trans-
Sformed image I' = I o T': (i) is well-composed, and (ii) has
an adjacency tree isomorphic to the one of I.

In the following, we present several properties and lem-
mas which are used for proving our main result (Th. 18).

3.1. Preliminary properties

Let 85 = {z} x {y,y + 1} or {z,z + 1} x {y} C Z%. Let
B ={x,z+1} x {y,y + 1} C Z2. The following properties
(given for any 7', B and H) derive from Eq. (2).

Property 5 ([17]). There exists p € Z? such that T(p) € B.

Property 6 ([7]). There exist 5 patterns that can be equal to
T(BB), up to 7/2 rotations and symmetries (see Fig. 4).



Property 7. If 8, N By # (), then any set P C 72, such that
T(P) = By UMy, is 4-connected.

3.2. Necessary condition for topological invariance

The next result is easy to prove by combinatorial analysis.

Lemma 8. If I contains €5 (resp. 63), then it does not satisfy
condition (ii) (resp. (1)) of Def. 4.

We now introduce a notion of regularity, that strenghtens the
notion of well-composition.

Definition 9 (Regularity). We say that I is regular if it does
not contain any of 61, 6> and 6s.

From Defs. 4 and 9, and Lem. 8, we then derive the following
necessary condition for topological invariance.

Proposition 10. If an image I is topologically invariant, then
it is regular.

3.3. Sufficient condition for well-composition

We now show that regularity is a sufficient condition to satisfy
condition () of Def. 4.

Proposition 11. If 1 is a regular image, then any transformed
image I' = I o T is well-composed.

Proof Let T be such that I’ = I o T is not well-composed.
Then I’ has a pattern H that is a ¢} (Th. 3), and derived from
a P, fori=1..5,in I (Prop. 6). But then &, is a %, & is
a 63, P3 and L5 contain a 6,, and &2, is impossible. Thus,
1 is non-regular. The result follows by contraposition. l

3.4. Regularity and 4-adjacency

We now introduce a new adjacency relation, that strenghtens
the standard 4-adjacency in Z2.

Definition 12 (B-adjacency). The points p,q € S (resp. S)
are HB-adjacent if (i) they are 4-adjacent, and (ii) there exists
H C S (resp. S) such that p,q € H.

We then derive the notions of H-connectedness (equivalence
relation) and HH-connected components (equivalence classes).
It is plain that the H-adjacency implies the 4-adjacency. In
the context of regular images, the counterpart is also true.

Lemma 13. If I is a regular image, then the 4-adjacency is
equal to the B-adjacency in S and S.

Proof Let p,q € S be 4-adjacent (the same holds for S).
We set p = (z,y) and ¢ = (z,y + 1) (the same holds up
to 7/2 rotation). We have v’ = (z — 1,y) € Sorr =
(x +1,y) € S, otherwise {r’, p, r} is a %>; for instance we
assume 7 € S. Lets = (z + 1,y +1). If s € S, then
we have {p,q,r,s} = B € S. If s ¢ S, then we have
s’ =(x—1,y+1) € S, otherwise {s', q, s} is a 5. Thus,
we have v’ = (x — 1,y) € S, otherwise {r/, p, g, s} is a €.
Finally, we have {p,q,s’,r'} =B e S. 1

3.5. Sufficient condition for topological invariance

We note ~g (resp. ~g-) the 4-adjacency relation on .S (resp.
S”), and ~g (resp. ~g) the 4-connectedness relation on S
(resp. S’). We recall that Tis is the restriction of T' to
S’. (Due to the symmetry of Def. 2, the results of Lem. 14,
Cor. 15 and Lem. 16, stated for S/S’ are also valid for S/S".)

Lemma 14. If I is a well-composed image, then T|s: estab-
lishes a homomorphism from (S’, ~g:) to (S, ~g).

Proof Let p’ ~g: q', p = T|s/(p’) and q = Ts/(q’). From
Eq. (2), we can have: (i) p = g, and then p ~g q; (i)
p ~s g, and then p ~g q; or (iii) p, q are 8-adjacent, and
thus 8-connected, and then p ~g q is derived from Def. 2. B

Corollary 15. Let C' € [S']~, be a 4-connected component
of S'. If I is well-composed, then there exists one 4-connected
component C € [S]. of S such that T|s:(C") C C.

We can then define the function Tg/ : [S]_, — [S]~;, such
that for any C’ € [S"]~, we have T|s/(C") C T/ (C”).

~gr
Lemma 16. If I is a regular image, then g is a bijection.

Proof (Surjectivity) Let C € [S]., and p € C. There exists
q € C such that p ~g q, otherwise, I contains %5 centered
on p. Then {p,q} = B. There exists r € S’ such that
Tis/(r) € {p,q} € C (Prop. 5). Then T is a surjection
(Cor. 15). (Injectivity) Let p’,q" € S’, p = T|s/(p’) and
q = Tjs/(q’). Suppose that p,q € C' € [S]~g, then p,q
are 4-connected, and therefore H-connected in .S (Lem. 13).
In other words, we have p,q € Uf:o H; (k > 0), where
Vi € [[O,k‘]],EHi C SandVi e [[0,]42 — 1]],831‘ ﬁHHH_l 7é (. For
any i € [0, k], we define P; C S’ such that T}g (P;) = H;.
Any P; is 4-connected (Prop. 7 for H; = H, = H;), and
then Uf:o P; is also 4-connected (Props. 7). Consequently,
there exists C" € [S'] ., such that p’, ¢’ € Uf:o PCC'. It
follows that s is an injection. H

Let C; = [S]og U[S]og and Cp = [S'], U [T We
define the function Tgr U T = T : Cpp — Cy, which
is a bijection between the 4-connected components of I’ and
those of I. We say that C] # C% € Cp (resp. Cy # Cy € Cy)
are adjacent, and we note C; ~p C} (resp. C; ~1 Cy), if
there exist p’ € C1, q' € C (resp. p € C1, q € Cy) that
are 4-adjacent. The adjacency tree [12] of I’ (resp. I) is then
defined by (Cy/, ~y/) (resp. (Cr, ~1)).

Proposition 17. If I is a regular image, then X1/ establishes
an isomorphism between (Cyr, ~1/) and (Cr, ~1).

Proof Let C; ~p C4. Up to reindexing, we have C] €
(S~ Ch € [@]N? Let p’ € C1, q’ € CY be 4-adjacent,
p = Tis(p') € Tr(C1) and ¢ = Ti5r(q') € Ty (Cy).
From Eq. (2), we can have: (i) p, q are 4-adjacent, and then
T (Cy) ~1 1 (Ch); or (i) p, q are 8-adjacent (but not 4-
adjacent). In the second case, let » be 4-adjacent with both



p and g. We have either r € T/ (Cy) or T;/(C%), and then
T (C1) ~1 Tr(Cy).

Let C; ~; Cs. Up to reindexing, we have Cy € [S].,
Cy € [S]~,. Letp € C1, g € Oy be 4-adjacent. Up to /2
rotation, we have p = (x,y), ¢ = (z,y + 1). Case (i): we
haver = (z+1,y) € Cirands = (z + 1,y + 1) € Cs.
Then we have {p,q,r,s} = H such that {p,r} = B C
Cy and {g,s} = B C Cy. Let P C Z? such that
T(P) = {p,q,r,s}. We have P N T,'(C1) # 0 and
PN T (Cy) # 0 (Prop. 5). Moreover, P is 4-connected
(Prop. 7). Then, we have ‘I;l(Cl) ~r ‘3:1_,1(02). Case
(ii): we have r,s € Cy. Let B, = {p,q,r,s} and
By = g+ {-1,0} x {0,1}. We have Hy C C; (by a
similar reasoning to that for Lem. 13). Let P C Z2? such
that T(P) = B; U H,. We have P N T (C1) # 0 and
PN ‘I;l(Cg) # () (Prop. 5). Moreover, P is 4-connected
(Prop. 7). Then, we have T;l(C’l) ~r ‘I;l(Cg). The other
cases are impossible or equivalent to the above two cases, by
symmetry between S and S. B

Combining properties 10, 11 and 17, we obtain our main re-
sult.

Theorem 18. The image I : Z> — {0,1} is topologically
invariant iff it is regular.

This result enables us, in particular, to check the topological
invariance of an image I by simply scanning it once to iden-
tify potential occurrences of 61, 6, and 5.

4. EXPERIMENTS AND METHODOLOGY

From Sec. 3, we can determine in linear time whether a 2D
binary well-composed image is topologically invariant using
the introduced notion of regularity. The analytic usefulness of
these results is illustrated in Fig. 5(a—d).

As well as allowing us to analyse images, these results
also lead to solutions for improving their topological robust-
ness. Indeed, once the pixels that forbid topological invari-
ance have been identified (see Fig. 5(c)), images can be pro-
cessed to locally modify the corresponding areas, in order to
fulfill the regularity requirements (see Fig. 5(e,f)). This pro-
cess must be performed iteratively until convergence, and can
still fail in some cases, e.g., when the images present a fine
texture (see Fig. 6).

In such cases, a super-resolution strategy can be consid-
ered. Indeed, by doubling the resolution, i.e., by associating a
2 x 2 pixel square to each initial pixel, a well-composed im-
age necessarily becomes regular. Moreover, this strategy can
be associated to other super-resolution paradigms based, e.g.,
on Khalimsky grids [18], to transform any (4, 8) or (8,4)-
adjacency binary image into a well-composed, and finally reg-
ular one.

(a) (b) (© (d (e) ®

Fig. 5: (a) Regular images. (b) Rigid transformations of (a),
with topological preservation. (c) Well-composed but non-
regular images (the occurrences of critical configurations %5
and %73 are depicted by red and yellow frames, respectively).
(d) Rigid transformations of (c), with topological alterations.
(e) Corrected (regular) images obtained from (c) (in blue:
added pixels; in green: removed pixels). (f) Rigid transfor-
mations of (e), with topological preservation.

Fig. 6: Well-composed images that cannot be modified to
fulfill regularity requirements without resorting to super-
resolution.

5. CONCLUSION

We have introduced the notion of regularity as a necessary
and sufficient condition to ensure that the topological proper-
ties of a 2D well-composed binary image are preserved under
arbitrary rigid transformation. We have proposed solutions
for detecting and favoring such preservation in applications.

From a methodological viewpoint, this preliminary study
opens the way to extensions in terms of dimensions (from
2D to 3D [19]), value spaces (from binary to grey-scale
[20] and colour [21]), with applicative perspectives in image
processing (registration, image warping, etc.). In addition,
the standard digital topology case of dual (8,4)- and (4, 8)-
adjacencies will also be investigated.

From a theoretical viewpoint, the relations that may exist
between these results and various (continuous and/or discrete)
geometrical and topological concepts will also be explored. In
particular, some links may be found with notions such as the
r-regularity [22, 23] and connectivity classes [24, 25].
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