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Abstract 
The aim of this study was to characterise, to model and to 
compare the different lingual articulatory strategies of a group of 
speakers. Individual principal component analysis (PCA) and 
multi-linear decomposition methods have been applied to 
different representations of the tongue contour extracted from 
magnetic resonance images (MRI). The corpus consisted of 
seven speakers articulating 63 French vowels and consonants. 
On the average, over the seven speakers, the Root Mean Square 
prediction Error (RMSE) was 0.12 cm accounting for a 
percentage of variance explanation of 92.6% for the individual 
PCA, using 4 components. Several Multi-linear decomposition 
methods, to model the tongue contour with a single set of 
components, have been performed and compared. The 2-Level-
PCA gave the best results among the other techniques. By means 
of a Student's t-test, at 5% of significance level, we found that 2-
level-PCA equals the PCA performance with 11 components to 
represent 91% of the variance explanation with a RMSE of 0.11 
cm. While the same method, with 4 components, represents 75% 
of the variance explanation with a RMSE of 0.19 cm.  
Index Terms: Articulatory modelling, speaker normalisation, 
factor analysis, MRI. 

1. Introduction 
The Speech & Cognition Department at GIPSA-lab has 
developed acoustic-to-articulatory inversion methods to provide 
speakers with a visual articulatory feedback [1] based on a fairly 
complete orofacial clone. This clone is made of a set of models 
of articulators (jaw, tongue, velum, lips, etc.) based on 
articulatory data acquired on a single speaker [2]. Therefore, the 
clone represents faithfully the characteristics of a specific 
speaker, but not necessarily those of other speakers that may 
have different morphologies and different articulatory control 
strategies. Thus, one important issue is the normalisation 
problem: how can the speaker-specific models of the orofacial 
clone be adapted to other speakers? This problem is particularly 
challenging as it implies discovering how different speakers with 
different morphologies can produce articulated sounds that are 
considered equivalent for speech communication purposes. 
Several studies based on measurements with Electromagnetic 
Articulography (EMA) and Magnetic Resonance Imaging (MRI), 
based only on vowels, have been led in this field. The present 
study attempts to extend this type of modelling from vowels to 
consonants. We first describe the set of data acquired to perform 
the different experiments and the linear decomposition methods                

used; then we describe the performance of individual speaker 
models and compare them in terms of relative variance explained 
– i.e. the ratio of the variance of the reconstructed data over the 
variance of the original measured data – of Root Mean Square 
Error (RMSE), and of individual articulatory strategies. Next, we 
present a summary of the state of the art and compare our results 
with those reported in the literature. Finally, we show and 
compare the performance of different multi-linear decomposition 
methods to build a single model that drives the tongue contours 
of all the speakers. 

2. Data 
In this study, midsagittal Magnetic Resonance Images (MRI) of 
seven French speakers (two males: PB, YL, and five females: HL, 
AA, MG, AK, MGO) have been collected. The subjects were 
instructed to pronounce and maintain the vocal tract shape of 63 
different articulations for 16 seconds each. The corpus consisted 
of the 10 French oral vowels /i e ε a y ø œ u o ɔ/, the 3 nasal 
vowels /ã ɛ � ɔ �/ and the 10 consonants /p t k f s ʃ m n ʁ l/ 
articulated in symmetric VCV context of five vowels /a e ε i u/.  
The contour of the tongue was manually edited with splines and 
re-sampled with N = 150 equidistant points. The present study is 
limited to the contour from the tongue tip to the base of the 
epiglottis.  

3. Linear decomposition methods 

3.1 Principal component analysis (PCA) 

PCA is a two-way factor analysis approach often used for 
dimensionality reduction and analysis of data sets to summarize 
their main characteristics. Consider articulatory measurements 
Xs = [x1, x2, ... , xA] for the speaker s which consists of vectors of 
measurements (1 ≤ n ≤ N) for the articulations from 1 to A. Such 
that Xs is decomposed into a set of control parameters πs

[A x Cmp] 
(set of Cmp components that explain the variations in 
articulations) and the articulatory model Cs

[N x Cmp]  (Coefficients 
that explain the contribution of each articulator point to the 
components) by the following equation:   

 
Xs = πs * Cs

T + ξs                                                        (1) 
 
where ξ is the residual error. 
 
 
 



3.2 Two-Level PCA 

This method has been proposed by Ananthakrishnan [3]. The 
technique consists in unfolding the contour coordinates of all 
subjects together as X = [Xs1; Xs2; . . . ; Xsy] in which each 
subject is a set of articulatory measurements Xs = [x1, x2, ..., 
xA].The data is decomposed using PCA according to equation 1. 
 
3.3 Parallel factor (PARAFAC) 

PARAFAC is a three-way factor analysis approach which is 
often used to decompose 3-dimensional data. In our specific 
case, the three dimensions are related to the articulations, 
articulator points and subjects, respectively. The data of a given 
subject Xs is decomposed as: 
 

Xs = π * Фs * C
T + ξs                                                  (2) 

 
where ξ is the residual error. The extra matrix Фs, respect to the 
PCA, provides speaker-specific weights to the contribution of the 
components. 
 
3.4 Tucker 

Tucker [4] also called three-mode PCA is an extension of PCA 
to three modes of variation. The data of a given subject Xs is 
decomposed as: 
 

Xs = ∑∑∑ π * Фs * C * G                                          (3) 
 
The extra matrix G, respect to the PARAFAC, is called the core 
matrix which contains the factor loadings for all three modes of 
variation. 

4. Individual articulatory models (PCA) 
The models were made and assessed by means of a leave-one-
out cross validation (LOOCV) procedure. One observation of 
the data was left out; the model was built from the remaining 
data and used to predict the left-out articulation, this process was 
repeated for each articulation on the set. LOOCV was useful to 
decide how many predictors to use. For instance, the cross-
validated mean-square error will tend to decrease if valuable 
predictors are added, but increase if worthless predictors are 
added. Indeed, increasing the number of predictors might lead to 
an over-fitted or degenerated model (Riu & Bro, 2003).  
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Figure 1 - Performance of the LOOCV PCA individual models as 
a function of number of components for the tongue contours of 
the seven speakers PB, YL, HL, AA, MG, AK and MGO. Left: 
variance explained. Right: RMSE in centimeters. 
 
Figure 1 displays the variance explained and RMSE relative to 
the reconstruction of the tongue for the whole corpus of vowels 

and consonants. For interpretability reasons, the final number of 
components used is four. This is explained in detail on section 
4.1. We have found that, on average over our seven speakers, the 
LOOCV PCA model with the first four components explains an 
amount of 91.26% of the data variance, with an RMSE of 
0.14 cm. 
  
4.1  Differences between speaker control strategies 

Using a procedure based on a guided PCA analysis of tongue 
contours, Badin and Serrurier [2] have shown that the first four 
components account for the largest amount of tongue movement 
variance. In this section we describe the results of the Guided 
PCA analysis of our seven speakers. The jaw height parameter 
JH was defined as the normalized value of the measured lower 
incisor height; it was used as the first control parameter of the 
tongue model (the associated model coefficients were obtained 
by the linear regression (LR) of all the vertex coordinates against 
JH). The next two parameters, tongue body TB  and tongue 
dorsum TD were extracted by PCA from the coordinates of the 
midsagittal tongue contour, excluding the tongue tip region, from 
which the JH contribution had been removed (the associated 
model coefficients were obtained by LR, as for JH). The next 
parameter called tongue tip TT was extracted by PCA from the 
midsagittal tongue tip contour coordinates, from which the TB 
and TD contributions had been removed (the associated 
coefficients were also obtained by LR). 

 
Subject PB 

4 6 8 10 12 14
4

5

6

7

8

9

10

11

12

13

JH  15.51%

 4 6 8 10 12 14
4

5

6

7

8

9

10

11

12

13

TB  45.78%

 

4 6 8 10 12 14
4

5

6

7

8

9

10

11

12

13

TD  19.47%

 4 6 8 10 12 14
4

5

6

7

8

9

10

11

12

13

TT   4.46%

 
Subject YL 

4 6 8 10 12 14
4

5

6

7

8

9

10

11

12

13

JH  20.72%

 4 6 8 10 12 14
4

5

6

7

8

9

10

11

12

13

TB  25.42%

 

4 6 8 10 12 14
4

5

6

7

8

9

10

11

12

13

TD  31.37%

 4 6 8 10 12 14
4

5

6

7

8

9

10

11

12

13

TT   8.49%

 
Figure 2 - Illustration of the first four components and their 
variance explained extracted by Guided PCA for the tongue 
contour of speakers PB and YL (from up to bottom respectively). 
Each predictor (JH, TB, TD and TT) is varied from -3 to +3 with 
a 0.5 step. 



Hence, in order to understand the articulatory characteristics of 
each subject, we compared their four guided PCA components 
explained above. Figure 2 illustrates the associated nomograms 
for the subject PB and YL. The main effect of JH is a rotation of 
the tongue around a point located in its back. The JH parameter 
of subjects MGO, MG, AA and AK is more associated with a 
movement of the front of the tongue without movement in the 
back. Oppositely, subjects HL, PB and YL move the back of the 
tongue when JH moves. The tongue body parameter TB controls 
front-back displacements while the TD parameter is related to 
flattening-arching movements. It appears that the TB component 
of subjects HL, AK and YL is a rather horizontal movement of 
the tongue body while it is a more diagonal movement for 
subjects PB, MG, AA and MGO. Besides, TB explains more 
variability than TD for most subjects, but that behaviour is 
swapped for subject YL: in other words, subject YL uses more his 
tongue dorsum component than his tongue body component 
compared to the other subjects. On the other hand, the TT 
parameter controls precisely the tongue tip motions. We have 
observed that subjects AA, AK, MG, MGO and PB are able to 
move their tongue tips more independently from the tongue back 
than the subjects HL and YL do. 

5. Comparison with the literature: 
PARAFAC model with vowels 

In order to make a fair comparison of our results with those 
given by the literature, we restricted our modelling to the 10 
French oral vowels. Using a two factor PARAFAC model, the 
average reconstruction error, over our seven speakers, was 
0.25 cm for the 150 articulator points while the RMSE for 
tongue contours under-sampled to 3 points was 0.21 cm, 
accounting for a variance of 75.1% and 85.8%, respectively. 
Table 1 shows that, on the overall, our results are comparable 
with those reported in the literature. The challenge is to extend 
this analysis to a corpus with consonants (63 articulations), as 
explained in the following sections. 
 

 
Table 1 – Comparison of our results with the literature using 
PARAFAC with 2 components. 

6. Multi-linear decomposition methods with 
different representations of Data 

Figure 3 illustrates the grid system proposed by [11] to represent 
the tongue contour with intersection points (INTRXY) and 
intersection distances (INT). The coordinates INTRXY refers to 
the intersections between the grid lines and the tongue contour. 
On the other hand, the coordinates INT are related to the internal 
distances of the grid lines up to the tongue contour. 

In this section, we describe the results of different multi-linear 
decomposition methods such as 2-Level-PCA, PARAFAC, and 
TUCKER. The experiments are performed with 150 equidistant 
tongue contour points (TngUpper), 22 intersection points 
(INTRXY) and 22 intersection distances (INT).  

 

 
 

Figure 3 – illustration of the grid system to represent the tongue 
contour with INTRXY and INT. 

 
Figure 4 shows the performance of all the methods with the 
different representations of data in terms of variance explanation 
and RMSE. The experiments with TUCKER show a very similar 
performance compared to 2-Level-PCA. As explained on 
sections 3.2 and 3.4, TUCKER is a method with a more complex 
structure and more parameters compared with the 2-Level-PCA. 
So, we keep the 2-Level-PCA and TUCKER is not further 
analysed on this paper.  
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Figure 4 - Performance of the multi-linear decomposition 
methods with several representations of data as a function of 
number of components of the seven speakers PB, YL, HL, AA, 
MG, AK and MGO. Left: variance explained. Right: RMSE in 
centimetres. 
 
PCA models have been used as baseline models to assess the 
performance of the different multi-linear decomposition methods 
for each representation of data separately. As shown in section 
4.1, the first four components account for about 90% of tongue 
movement variance for the TngUpper representation. Thus, 4 

components are chosen as reference model. For the experiments 
with INTRXY and INT, we find that 3 components are sufficient 
to explain about the same variance as the PCA with TngUpper. 
We have then used a Student's t-test, at 5% significance level, to 
determine the number of components for each method that give 
RMSE not statistically different from those obtained by the 
reference PCA models (see Table 2). For the TngUpper 



representation, the PARAFAC and 2-level-PCA need 
respectively between 19 and 28 components - depending on the 
speakers - and between 11 and 18 components. For the INTRXY 
representation, the PARAFAC and 2-Level-PCA need 
respectively 11-21 components and 7-11 components. Globally, 
the 2-Level-PCA with INTRXY uses the smallest range of 
components to model the tongue contour of all the speakers. We 
could conclude that, in terms of reduction of components, the 2-
Level-PCA with INTRXY appears to be the optimal solution.  
Besides, we have verified that the first four components of the 2-
Level-PCA models, for each of the 7 speakers, can be 
approximately interpreted in terms of jaw height, tongue body, 
tongue dorsum and tongue tip motions. These movements can 
appear in different order according to different subjects’ 
strategies. 

 

Representation 
of data 

PCA PARAFAC 2-Level-
PCA 

Ref. 
cmp 

Var. 
Exp. 

Nb. 
cmp 

Var. 
Exp. 

Nb. 
cmp 

Var. 
Exp. 

TngUpper 4 92,6% 19-28 90% 11-18 95% 

INTRXY 3 90% 11-21 90% 7-11 91% 

INT 3 94,4% 15-21 92% 8-14 96% 

Table 2 – Results of Student's t-test between reference 
component PCA and the multi-linear methods (PARAFAC and 2-
Level-PCA), for each representation of data. 

7. Conclusions 
We applied individual PCA models and linear decomposition 
methods to model the tongue contours of 63 French phonemes 
extracted from an MRI database of 7 French speakers. As far as 
we know, this is one of the very few studies that includes both 
vowels and consonants. The primary focus of this study was to 
establish a model that represents different speaker articulatory 
strategies. The experiments carried out showed that such a kind 
of model is possible, using 4 components, with a RMSE of 
0.12 cm accounting for a variance explanation of 92.6% for the 
individual PCA models. Several Multi-linear decomposition 
methods to model the tongue contour with a single set of 
components have been performed and compared with a reference 
PCA component by means of a Student's t-test. The 2-Level-
PCA with INTRXY gave the best results. We found that 2-level-
PCA and TUCKER are significantly equivalent to PCA with a 
maximum of 11 components to represent 91% of the variance 
explanation with a RMSE of 0.11 cm. On the other hand, 
PARAFAC generally needs more components to be significantly 
equivalent to the reference PCA performance. The multi-linear 
decomposition methods showed an increase number of 
components compared with the individual PCA models. As 
showed on section 3.1, there is indeed an inter-speaker 
variability due to speaker independent control strategies. 
We suppose that linear methods may not offer a good solution to 
model tongue variations among different speakers, especially in 
the presence of consonants. Thus, future work is to be directed at 
using non linear methods. 
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