Christian

A TYPE THEORETICAL FRAMEWORK FOR NATURAL LANGUAGE SEMANTICS: THE MONTAGOVIAN GENERATIVE LEXICON

Keywords: 1991 Mathematics Subject Classification. 03B65, 03B15, 03B40, 68T50 type theory, computational linguistics

We present a framework, named the Montagovian generative lexicon, for computing the semantics of natural language sentences, expressed in many sorted higher order logic. Word meaning is depicted by lambda terms of second order lambda calculus (Girard's system F) with base types including a type for propositions and many types for sorts of a many sorted logic. This framework is able to integrate a proper treatment of lexical phenomena into a Montagovian compositional semantics, including the restriction of selection which imposes the nature of the arguments of a predicate, and the possible adaptation of a word meaning to some contexts. Among these adaptations of a word's sense to the context, ontological inclusions are handled by an extension of system F with coercive subtyping that is introduced in the present paper. The benefits of this framework for lexical pragmatics are illustrated on meaning transfers and coercions, on possible and impossible copredication over different senses, on deverbal ambiguities, and on "fictive motion". Next we show that the compositional treatment of determiners, quantifiers, plurals,... are finer grained in our framework. We then conclude with the linguistic, logical and computational perspectives opened by the Montagovian generative lexicon.

Introduction: word meaning and compositional semantics

The study of natural language semantic and its automated analysis is usually divided into formal semantics, usually compositional, which has strong connections with logic and with philosophy of language, and lexical semantics which rather concerns word meaning and their interrelations, derivational morphology and knowledge representation. Roughly speaking, given an utterance, formal semantics tries to determine who does what according to this utterance, while lexical semantics analyses the concepts under discussions and their interplay i.e. what it speaks about.

(1) A sentence: Some club defeated Leeds.

(2) Its formal semantics: ∃x : e (club(x) ∧ defeated (x, Leeds))

(3) Lexical semantics of the verb as found in a dictionary: defeat: a. overcome in a contest, election, battle, etc.; prevail over; vanquish b. to frustrate; thwart. c. to eliminate or deprive of something expected Although any applications in computational linguistics requires both formal and compositional semantics rather applies in man machine dialogue, text generation and lexical semantics in information retrieval and classification. Herein we shall endow compositional semantics with a treatment of some of lexical semantics issues, in particular for picking up the right word sense in a given context. Of course any sensible analyser, including human beings, or Moot's Grail parser [START_REF] Moot | Wide-coverage French syntax and semantics using Grail[END_REF] combines both the predicate argument structures and the relations between lexical meanings to build a semantic representation and to understand the utterance.

1.1. The syntax of compositional semantics. As opposed to many contributions to the domain of linguistic known as "formal semantics" the present paper neither deals with reference nor with truth in a given situation: we only build a logical formulae first order or higher order, single or many sorted) that can be thereafter interpreted as one wants, if he wishes to. Hence are not committed to any particular kind of interpretation like truth values, possible worlds, game semantics,...

In the traditional view as exposed by Montague, the process of semantic interpretation of a sentence, consists in computing a logical formula including logical modalities and intensional operators, from syntax and word meanings, and to interpret it in possible world semantics. Although Montague thought that intermediate steps were meaningless and should be wiped off just after computing truth values and references, in this paper we precisely focus on the intermediate step, the logical formula, that can be called the logical form of the sentence, with particular attention to the way it is computed -for the time being, we leave out the interpretation of these formulae. A reason for doing so is that we can encompass subtle questions, like vague predicates, generalised and vague quantifiers, for which standard notions of truth and references are inadequate possibly some interactive interpretation would be better suited, e.g. like [START_REF] Vito | Quantification in ordinary language: from a critic of set-theoretic approaches to a proof-theoretic proposal[END_REF][START_REF] Lecomte | Figures of dialogue: a view from ludics[END_REF]. Another reason is that, apart from these difficult questions, we do not have modification to bring to standard interpretations. 1.2. Brief reminder on Montague semantics. Let us briefly remind the reader how one computes the logical form according to the montagovian view. Assume for simplicity that a syntactic analysis is a tree specifying for each node, which subtree applies to the other one -the one that is applied is called the function while the other is called its argument. A semantic lexicon provides a simply typed λ-term [w] for each word w. The semantics of a leaf (hence a word) w is [w] and the semantic [t] of a sub syntactic tree t = (t 1 , t 2) is recursively defined as

[t] = ([t 1] [t 2]) that is [t 1] applied to [t 2], if [t 1]
is the function and [t 2] the argument -and as [t] = ([t 2] [t 1]) otherwise, i.e. when [t 2] is the function and [t 1] the argument.

The typed λ-terms from the lexicon are given in such a way that the function always has a semantic type of the shape a → b that matches the type a of the argument, and the semantics associated with the whole tree has the semantic type t, that is the type of propositions. This correspondence between syntactical categories and semantic types, which extends into a correspondence between parse structures and logical forms is crystal clear in categorial grammars, see e.g. [START_REF] Moot | The logic of categorial grammars: a deductive account of natural language syntax and semantics[END_REF]Chapter 3]. Typed λ-terms usually are defined out of two base types, e for individuals (also known as entities) and t for propositions (which have a truth value). Logical formulae can be defined in this typed λ-calculus as first observed by Church long ago. This early use of lambda calculus, where formulae are viewed typed lambda terms, can not be merged with the more familiar view of typed lambda terms as proofs. The proof which such a typed lambda term correspond to is simply the proof that the formula is well formed, e.g. that a two-place predicate is properly applied to two individual terms of type e and not to more or less objects, nor to objects of a different type etc. This initial vision of lambda calculus was designed for a proper handling of substitution in deductive systems à la Hilbert. One needs constants for the logical quantifiers and connectives: Liverpool , Leeds e as well as predicates for the precise language to be described -a binary predicate like won has the type e → e → t.

A small example goes as follows. Assume the syntax says that the structure of the sentence "Some club defeated Leeds." is (some (club)) (defeated Leeds) where the function is always the term on the left. If the semantic terms are as in the lexicon in figure 1, placing the semantical terms in place of the words yields a large λ-term that can be reduced:

λP e→t λQ e→t (∃ (e→t)→t (λx e (∧(P x)(Q x)))) λx e (club e→t x) λy e λx e ((defeated e→(e→t) x)y) Leeds e ↓ β λQ e→t (∃ (e→t)→t (λx e (∧ t→(t→t) (club e→t x)(Q x)))) λx e ((defeated e→(e→t) x)Leeds e) ↓ β ∃ (e→t)→t (λx e (∧(club e→t x)((defeated e→(e→t) x)Leeds e)))
This λ-term of type t that can be called the logical form of the sentence, represents the following formula of predicate calculus (admittedly more pleasant to read):

∃x : e (club(x) ∧ defeated (x, Leeds))
The above described procedure is quite general: starting a properly defined semantic lexicon whose terms only contains the logical constants and the predicates of the given language one always obtain a logical formula. Indeed, such λ-terms always reduce to a unique normal form and any normal λ-term of type t (preferably η long, see e.g. [START_REF] Moot | The logic of categorial grammars: a deductive account of natural language syntax and semantics[END_REF]Chapter 3]) corresponds to a logical formula.

If we closely look at the Montagovian setting described above, we observe that it is weaving two different "logics": Logic/calculus for meaning assembly: (a.k.a glue logic, metalogic,...) In our example, this is simply typed λ-calculus with two base types e and tthese terms are the proof in intuitionistic propositional logic. Logic/language for semantic representations: In our example, that is higher-order predicate logic. 1The framework we present in this paper mainly concerns the extension of the metalogic and the reorganisation of the lexicon in order to incorporate some phenomena of lexical semantics, first of all restrictions of selection. Indeed, in the standard type system above nothing prevents a mismatch between the real nature of the argument and its expected nature. Consider the following sentences:2 (4) * A chair barks.

(5) * Jim ate a departure (6) ? The five is fast Although they can be syntactically analysed, they should not receive a semantical analysis. Indeed, "barks" requires a "dog" or at least an "animate" subject while a "chair " is neither of them; "departure" is an event, which cannot be an "inanimate" object that could be eaten; finally a "number " like "five" cannot do anything fastbut there are particular contexts in which this can happen and we shall also handles these meaning transfers.

1.3. The need of integrating lexical semantics in formal semantics. In order to block the interpretation of the semantically illformed sentences above, it is quite natural to use types, where the word type be both understood in its intuitive and in its formal meaning. The type of the subject of barks should be "dog", the type of "fast" objects should be "animate", and the type of the object of "ate" should be "inanimate". Clearly, having, on the formal side a unique type e for all entities is not sufficient.

The traditional view with a single type e for entities has another related drawback. It is unable to relate related predicates, although a usual dictionary does. A common noun like "book " is usually viewed as a unary predicate "book:e → t" while a transitive verb like "read " is viewed as a binary predicate "read:e → e → t" This gives the proper argument structure of Mary reads a book. as (∃x : ebook(x) and reads(M ary, x)) but this traditional setting cannot relate the predicates book and read -while any dictionary does. If we had several types, as we shall do later on, we could stipulate that the object of "read " ought to be something that can be "read ", that one can "read " and "write" a "book ". Such connections like predicates like "book ", "write", "read " would allow to interpret sentences like "I finished my book " which usually means "I finished to read my book " and sometimes "I finished to write my book ".

Hence we need a more sophisticated type theory than the one initially used by Montague to filter semantically invalid sentences. But in some cases some flexibility is needed to accept and analyse sentences in which a word type is coerced into another type. In sentence 6, in the context of a football match, the noun "five" can be considered as a player i.e. a "person" who plays the match with the number 5 jersey, who can "run" and be "fast".

There is a large literature on such lexical meaning transfers and coercions, starting from 1980 [START_REF] Bierwisch | Wörtliche bedeutung -eine pragmatische gretchenfrage[END_REF][START_REF] Bierwisch | Semantische und konzeptuelle repräsentation lexikalischer einheiten[END_REF][START_REF] Cruse | Lexical semantics. Cambridge textbooks in linguistics[END_REF][START_REF] Nunberg | Transfers of meaning[END_REF] -see also [START_REF] Lauer | A comparative study of current theories of polysemy in formal semantics[END_REF][START_REF] Blutner | Lexical semantics and pragmatics[END_REF] for a more recent account of some theories. In those pioneering studies, the objective is mainly to classify these phenomena, to find the rules that govern them. The quest of a computational formalisation that can be incorporated into an automated semantic analyser appears with Pustejovsky's generative lexicon in 1991 [START_REF] Pustejovsky | The generative lexicon[END_REF][START_REF] Pustejovsky | The generative lexicon[END_REF]. The integration of lexical issue into compositional semantics la Montague and type theories appears with the work by Nicholas Asher [START_REF] Asher | The metaphysics of words in contexts[END_REF][START_REF] Asher | A type driven theory of predication with complex types[END_REF] which lead to the book [START_REF] Asher | Lexical Meaning in context -a web of words[END_REF], and differently in some works of Robin Cooper with an intensive use of records from type theory to recover frame semantics with features and attributes inside type-theoretical compositional semantics [START_REF] Cooper | Copredication, dynamic generalized quantification and lexical innovation by coercion[END_REF][START_REF] Cooper | Copredication, quantification and frames[END_REF] 1.4. Type theories for integrating lexical semantics. As the afore mentioned contribution suggest, finer-grained type theories are quite a natural framework both for formal semantics à la Montague and for selectional restriction and coercions. Such a model must extend the usual ones into two directions:

(1) Montague's original type system and metalogic should be enriched to encompass lexical issues (selectional restriction and coercions), and (2) the usual phenomena studied by formal semantics (quantifiers, plurals, generics) should be extended to this richer type system and so far only Cooper and us did so [START_REF] Cooper | Copredication, dynamic generalized quantification and lexical innovation by coercion[END_REF][START_REF] Cooper | Copredication, quantification and frames[END_REF][START_REF] Chatzikyriakidis | An account of natural language coordination in type theory with coercive subtyping[END_REF][START_REF] Moot | Second order lambda calculus for meaning assembly: on the logical syntax of plurals[END_REF][START_REF] Mery | Plurals: individuals and sets in a richly typed semantics[END_REF][START_REF] Lefeuvre | Traitement automatique sur corpus de récits de voyages pyrénéens : Une analyse syntaxique, sémantique et temporelle[END_REF][START_REF] Retoré | Variable types for meaning assembly: a logical syntax for generic noun phrases introduced by "most[END_REF] At the end of this paper, we shall provide a comparison of the current approaches, which mainly focus on 1. Let us list right now what the current approaches are:

• The system work with type based coercions and relies on some Modern Type Theory (MTT) 3 -this correspond to the work of Zhaohui Luo [START_REF] Luo | Contextual analysis of word meanings in type-theoretical semantics[END_REF][START_REF] Luo | Common nouns as types[END_REF][START_REF] Xue | Dot-types and their implementation[END_REF], 13] • The system work with type based coercions and relies on usual typed λcalculus extended with some categorical logic rules -this approach by Asher [START_REF] Asher | The metaphysics of words in contexts[END_REF][START_REF] Asher | A type driven theory of predication with complex types[END_REF] culminated in his book [START_REF] Asher | Lexical Meaning in context -a web of words[END_REF] • The system work with term based coercions and relies on second order λ-calculus -this is our approach, first introduced with Bassac, Mery, and further developed with Mery, Moot, Prévot, Real-Coelho. [START_REF] Bassac | Towards a Type-Theoretical Account of Lexical Semantics[END_REF][START_REF] Moot | Un calcul de termes typés pour la pragmatique lexicale -chemins et voyageurs fictifs dans un corpus de récits de voyages[END_REF][START_REF] Moot | A discursive analysis of itineraries in an historical and regional corpus of travels[END_REF][START_REF] Moot | Second order lambda calculus for meaning assembly: on the logical syntax of plurals[END_REF][START_REF] Mery | Plurals: individuals and sets in a richly typed semantics[END_REF][START_REF] Lefeuvre | Traitement automatique d'un corpus de récits de voyages pyrénéens : analyse syntaxique, sémantique et pragmatique dans le cadre de la théorie des types[END_REF][START_REF] Lefeuvre | Traitement automatique sur corpus de récits de voyages pyrénéens : Une analyse syntaxique, sémantique et temporelle[END_REF][START_REF] Retoré | Variable types for meaning assembly: a logical syntax for generic noun phrases introduced by "most[END_REF][START_REF] Retoré | A generative Montagovian lexicon for polysemous deverbal nouns[END_REF][START_REF] Retoré | On the semantics of deverbals in a richly typed system[END_REF] In fact our approach differs from the concurrent ones mainly because of the organisation of the lexicon and of the respective rôles of types and terms. Our approach can be said to be word driven, as it account for the (numerous) idiosyncrasies of natural language in particular the different behaviour of words of the same type is coded by assigning them different terms, while others derive everything from the types.

The precise type system we use, namely system F , does not make a big difference with other type theories, and as far as the presentation of the system is concerned, it is the simplest of all systems, because it only contains four term building operations (two of them being the standard λ-calculus rules, the two other one being their second order counter part) and two reduction rules (one of them being the usual beta reduction and the other one being its second order counterpart). Dependent types, that types defined from terms are not avoided.

A Montagovian generative lexicon

3 This name Modern Type Theory (MTT) covers several variants of modern type theories, including Martin-Löf type theory, the Predicative Calculus of (Co)Inductive Constructions (pCic), the Unifying Theory of dependent Types (UTT),... -this later one being the closest to the system used by Zhaohui Luo for compositional semantic and lexical pragmatics

We are to present our solution for introducing some lexical issues in a compositional framework à la Montague.

2.1. Guidelines for a semantic lexicon. We should keep in mind that whatever the precise solution presented, the following questions must be addressed in order to obtain a computational model, so here are the guidelines of our model:

• What is the logic for semantic representation?

We use many-sorted higher order predicate calculus. As usual, the higher order can be reified in first order logic, so it can be first order logic, but in any case the logic has to be many sorted. Asher [START_REF] Asher | Lexical Meaning in context -a web of words[END_REF] is quite similar on this point, while Luo use Type Theory [START_REF] Luo | Common nouns as types[END_REF]. • What are the sorts?

The sorts are the base types. As discussed later on these sorts may vary from a small set of ontological kinds to any formula of one variable. We recently proposed that they correspond to classifiers in language with classifiers: this give sorts a linguistically and cognitively motivated basis. [START_REF] Mery | Semantic types, lexical sorts and classifiers[END_REF] • What is the metalogic (glue logic) for meaning assembly?

We use second order λ-calculus (Girard system F) in order to factor operations that apply uniformly to family types. For specific coercions, like ontological inclusion we use subtyping introduced in the present paper. Asher [START_REF] Asher | Lexical Meaning in context -a web of words[END_REF] use simply typed λ-terms with additional categorical rules, while Luo also use Type Theory with coercive subtyping [START_REF] Luo | Common nouns as types[END_REF]. • What kind of information is associated with a word in the lexicon?

Here it will be a finite set of λ-terms, one of them being called the principal λ-term while the other are called optional. Other approaches make use more specific terms and rules. • How does one compose words and constituents for a compositional semantics?

We simply apply one λ-term to the other, following the syntactic analysis, perform some transformations corresponding to coercions and presupposition, and reduce the compound by β-reduction. • How is rendered the semantic incompatibility of two components?

By type mismatch, between a function of type A → X and an argument of type B = A, and others do the same. • How does one allow an a priori impossible composition?

By using the optional λ-terms, which change the types of at least one of the two terms being composed, the function and argument. Both the function and the argument may provide some optional lambda terms. Other approaches rather use type driven rules. • How does one allow and block felicitous and infelicitous copredications on various aspect of a word? An aspect car be explicitly declared as incompatible with any other aspect.

More recently we saw that linear types (linear system F) can account for compatibility between arbitrary subsets of the possible aspects. [START_REF] Mery | Advances in the logical representation of lexical semantics[END_REF] Each word in the lexicon is given a principal term, as well as a finite number, possibly nought, optional terms that licence type change and implement coercions. They may be inferred from an ordinary dictionary, electronic or not. Terms combine almost as usual except that there might be type clashes, which accounts for infringement of selectional restriction: in this case optional terms may be use to solve the type mismatch. In case they lead to different results these results should be considered as different possible readings -just as the different readings with different quantifier scopes are considered by formal semantics as different possible readings of a sentence.

Let us first present the type and terms and thereafter we shall come back to the the composition modes.

2.2. Remarks on the type system for semantics. We use a type system that resembles Muskens T y n [START_REF] Muskens | Anaphora and the logic of change[END_REF] where the usual type of individuals, e is replaced with a finite but large set of base types e 1 , . . . , e n for individuals, for instance objects, concepts, events,... These base types are the sorts of the many sorted logic whose formulae express semantic representations. The set of base types as well as their interrelations can express some ontological relations as Ben Avi and Francez thought ten years ago [START_REF] Ben | Categorial grammars with ontology-refined types[END_REF] For instance, assume we have a many sorted logic with a sort ζ for animals, a sort φ for physical objects and a predicate eat whose arguments are of respective sort φ and ζ the many sorted formula ∀z : ζ ∃x : φ eat(z, x) is rendered in type theory by the λ-term:

∀ ζ (λz ζ ∃ φ λx φ ((eat x)z) with eat a constant of type φ → ζ → t.
Observe that the type theoretic formulation requires a quantifier for each sort α of object, that is a constant ∀ α of type (α → t) → t. 4What are the base types? We have a tentative answer, but we cannot be too sure of the answer. Indeed, this is a subtle question depending on ones philosophical convictions, and also of the expected precision of the semantic representations.5 but it does not really interfere with the formal and computational model we present here. Let us mention some natural sets of bases types are, from the smallest to the largest:

(1) A single type e for all entities (but as seen above it cannot account for lexical semantics) (2) A very simple ontology distinguishing events, physical objects, living entities, concepts, ... (this resembles Asher's position) (3) Many Asian languages (Chinese, Japanese, Korean, Malay, Burmese, Nepali,...) and all Sign Languages, have classifiers that are pronouns specific to classes of nouns (100-400) especially detailed for physical objects that are handled, animals.There are almost no classifiers in European languages. Nevertheless a word like "head" in "Three heads of cattle." can be considered as a classifier. Hence classifiers are a rather natural set of base types, or the importation of the classifiers of a language in one that does not have any. But we do not claim that this is the definitive answer. For instance, for a specific task, some other set of base types may be better.

[38] (4) A type per common noun as proposed by Luo in [START_REF] Luo | Common nouns as types[END_REF]) (5) A type for every formula with a single free variable as suggested by some colleague (N. Asher or F. Corblin) after a talk of mine. Our opinion is that types should be cognitively natural classes and rich enough to express selectional restrictions. Whatever types are, there is a relation between types and properties. With base types as in 5, the correspondence seems quite clear, but, because types can be used to express new many sorted formulae, the set of types is in this case defined as a least fixed point. For other sets of base types, e.g. 4 or 2 for each type τ there should be a corresponding predicate which recognises τ entities among entities of a larger type. For instance, if there is a type dog there should be a predicate dog : α → t but what should be α the type of its argument? Should it be "animal ", "animate",... the simplest solution is to assume a type of all individuals, that is Montague's e, and to say that corresponding to any base type τ , there is a predicate, namely τ of type e → t 6Let us say here a remark on the predicate constants in the language. If a predicate constant, say Q is given with type u → t with u = e which sometimes is more natural there is an obvious extension Q e which should be interpreted as false for any object that cannot be viewed as an u-object. Given predicate in the language do also have restrictions, Q| v which is defined as Q on q ∩ v where q is the domain of Q and false elsewhere.

2.3. ΛTy n : many sorted formulae in second order lambda calculus. Since we have many base types, and many compound types as well, it is quite convenient and almost necessary to define operations over family of similar terms with different types, to have some flexibility in the typing, and to have terms that act upon families of terms and types. Hence we shall extend further T y n into ΛTy n by using Girard's system F as the type system [START_REF] Girard | The blind spot -lectures on logic[END_REF][START_REF] Girard | Une extension de l'interprétation de Gödel à l'analyse et son application: l'élimination des coupures dans l'analyse et la théorie des types[END_REF]. System F involves quantified types whose terms can be specialised to any type.

The types of ΛTy n are defined as follows:

• Constants types e i and t, as well as type variables α, β, . . . are types.

• Whenever T and α respectively are a type and a type variable Πα. T is a type. The type variable may or may not occur in the type T . • Whenever T 1 and T 2 are types, T 1 → T 2 is a type as well.

The terms of ΛTy n , which encode proofs of quantified propositional intuitionistic logic, are defined as follows:

• A variable of type T i.e. x : T or x T is a term, and there are countably many variables of each type. • In each type, there can be a countable set of constants of this type, and a constant of type T is a term of type T . Such constants are needed for logical operations and for the logical language (predicates, individuals, etc.). • (f τ) is a term of type U whenever τ : T and f : T → U . • λx T . τ is a term of type T → U whenever x : T , and τ : U .

• τ {U } is a term of type T [U/α] whenever τ : Λα. T , and U is a type. • Λα.τ is a term of type Πα.T whenever α is a type variable, and τ : T a term without any free occurrence of the type variable α in the type of a free variable of τ .

The later restriction is the usual one on the proof rule for quantification in propositional logic: one should not conclude that F [p] holds for any proposition p when assuming G[p] -i.e. having a free hypothesis of type G[p].

The reduction of the terms in system F or its specialised version ΛTy n is defined by the two following reduction schemes that resembles each other:

• (λx.τ)u reduces to τ [u/x] (usual β reduction). • (Λα.τ){U } reduces to τ [U/α
] (remember that α and U are types).

As an example, we earlier said that in T y n we needed a first order quantifier per sort (.e. per base type). In ΛTy n it is sufficient to have a single quantifier ∀, that is a constant of type Πα. (α → t) → t . Indeed, this quantifier can be specialised to specific types, for instance to the base type ζ, yielding ∀{ζ} : (ζ → t) → t, or even to properties of ζ objects, which are of type ζ → t, yielding ∀{ζ → t} : ((ζ → t) → t) → t. We actually do quantify over higher types, for instance in the examples below respectively quantify over propositions with a human subject, and the next one over propositions: [START_REF]Logical Aspects of Computational Linguistics -7th International Conference[END_REF] He did everything he could to stop them. [START_REF] Ben | Categorial grammars with ontology-refined types[END_REF] And he believes whatever is politically correct and sounds good.

As Girard showed [START_REF] Girard | The blind spot -lectures on logic[END_REF][START_REF] Girard | Une extension de l'interprétation de Gödel à l'analyse et son application: l'élimination des coupures dans l'analyse et la théorie des types[END_REF] reduction is strongly normalising and confluent every term of every type admits a unique normal form which is reached no matter how one proceeds. 7 The normal forms (which can be asked to be η-long) can be characterised as follows (for a reference see e.g. [START_REF] Gérard | Résolution d'équations dans des langages d[END_REF]) :

Proposition 1. A normal Λ-term N of system F , β
N = (λx Xi i | ΛX j) * h (ΠX k |X l →) * Z ({W k } | t X l l) *)
This has a good consequence for us, see e.g. [45, Chapter 3]: Property 1 (ΛTy n terms as formulae of a many-sorted logic). If the predicates, the constants and the logical connectives and quantifiers are the ones from a many sorted logic of order n (possibly n = ω) then the normal terms of ΛTy n of type t unambiguously correspond to many sorted formulae of order n.

Let us illustrate how F factors uniform behaviours. Given types α, β, two predicates P α→t , Q β→t , over entities of respective kinds α and β for any ξ with two morphisms from ξ to α and to β, see figure 2 F contains a term that can coordinate the properties P, Q of (the two images of) an entity of type ξ, every time we are in a situation to do so -i.e. when the lexicon provides the morphisms. This can apply to say, a "book ", that can be "heavy" as a "physical object", and "interesting" as an "informational content" -the limitation of possible over generation is handled by the rigid use of possible transformations, including identity to be defined thereafter.

2.4.

Organisation of the lexicon and rules for meaning assembly. The lexicon associate each word w with a principal λ-term [w] which basically is the Montague term reminded earlier, except that the types appearing in [w] belong to a much richer typed system. In particular, the numerous base types can impose some selectional restriction. In addition to this principal term, there can be optional λ-terms also called modifiers or transformations to allow, in some cases, composition that were initially ruled out by selectional restriction.

There are two ways to solve a type conflict using those modifiers. Flexible modifiers can be used without any restriction. Rigid modifiers turn the type, or the sense of a word, into another one which is incompatible with other types or senses. For a technical reason, the identity which is always a licit modifier is also specified 7 This is one way to be convinced of the soundness of F , which defines types depending on other types including themselves: as it is easily observed that there are no normal closed terms of type ΠX. X ≡ ⊥ the system is necessarily coherent. Another way is to construct a concrete model, called coherence spaces, where types are interpreted as countable sets with a binary relation (coherence spaces), and terms up to normalisation are interpreted as structure preserving functions (stable functions). [START_REF] Girard | The blind spot -lectures on logic[END_REF] to be flexible or rigid. In this later rigid case, it means that the original sense is incompatible with any other sense, although two other senses may be compatible. Consequently, every modifier, i.e. optional λ-term is declared, in the lexicon, to be either a rigid modifier, noted (r) or a flexible one, noted (f). More subtle compatibility relations between senses can be represented by using the linear version of system F as we did in [START_REF] Mery | Advances in the logical representation of lexical semantics[END_REF] The reader may be surprised that we repeat the morphisms in the lexical entries, rather than having general rules. For instance, one could also consider morphisms that are not anchored in a particular entry: in particular, they could implement the ontology at work in [START_REF] Pustejovsky | The generative lexicon[END_REF] as the type-driven approach of Asher does [START_REF] Asher | Lexical Meaning in context -a web of words[END_REF]. For instance, a place (type P l) could be viewed as a physical object (type φ) with a general morphism P 2φ turning places into physical objects that can be "vast". We are not fully enthusiastic about a general use of such rules since it is hard to tell whether they are flexible or rigid. As they can be composed they might lead to incorrect copredications, while their repetition inside each entry offers a better control of incorrect and correct copredications. One can think that some meaning transfer differs although the words have the same type. An example of such a situation in French is provided the words and "promotion", which both refer to groups of pupils. The first word "classe" (English: "class") can be coerced into the room where the pupils are taught, (the "classroom"), while the second, "promotion" (English: "class" or "promotion") cannot.

There nevertheless exist ontological inclusions that are better represented by rules on types, like "car " that are "vehicles" that are "artefacts". This is the reason why we also allow for optional terms that are available for all words of the same type. This is done by subtyping and more precisely by the notion of coercive subtlyping that is introduced in section 3.4.

A proper account of meaning transfers

In this section we shall see that the lexicon we propose, provides a proper account of the lexical phenomena that motivated its definition: ill typed readings are rejected, coerced readings are handled, felicitous copretication are analysed while infelicitous ones are rejected. Some particular case of coerced readings are given a finer analysis as the polysemy of deverbals (nouns derived verbs, like "construction"), or fictive motion. Finally we introduce coercive subtyping for system F which handles general coercions corresponding to ontological inclusion.

Coercions and copredication.

One can foresee what is going to happen, using the lexicon given in figure 3 with sentences like: (9) Liverpool is vast. [START_REF] Bierwisch | Semantische und konzeptuelle repräsentation lexikalischer einheiten[END_REF] Liverpool is vast and voted (last Sunday).

(11) # Liverpool voted and won (last Sunday).

Our purpose is not discuss whether this or that sentence is correct, nor whether this or that copredication is felicitous, but to provide a formal and computational model which given sentences that are assumed to be correct, derives the correct readings, and which given sentences that are said to be incorrect, fails to provide a reading.

Ex. 9 This sentence leads to a type mismatch vast P l→t (Liverpool T)), since "vast" applies to "places" (type P l) and not to "towns" as "Liverpool ". It is solved using the optional term t T →P l 3 provided by the entry for "Liverpool ", which turns a town (T) into a place (P l) vast P l→t (t T →P l 3 Liverpool T)) -a single optional term is used, the (f)/ (r)difference is useless. Ex. 10 In the second example, the fact that Liverpool is vast is derived as previously, and the fact Liverpool voted is obtained from the transformation of the town into people, that can vote. The two can be conjoined by the polymorphic "and " defined above as term 1 (& Π) because these transformations are flexible: one can use one and the other. We can make this precise using only the rules of the type calculus. The syntax yields the predicate (& Π (is vast) P l→t (voted) P →t) and consequently the type variables should be instantiated by α := P l and β := P and the exact term is & Π {P l}{P }(is vast) P l→t (voted) P →t which reduces to: Λξλx ξ λf ξ→α λg ξ→β (and t→t)→t (is vast (f x))(voted (g x))).

Syntax also says this term is applied to "Liverpool ". which forces the instantiation ξ := T and the term corresponding to the sentence is after some reduction steps, λf T →P l λg T →P (and (is vast (f Liverpool T))(voted (g Liverpool T)))). Fortunately the optional λ-terms t 2 : T → P and t 3 : T → P l are provided by the lexicon, and they can both be used, since none of them is rigid. Thus we obtain, as expected (and (is vastP l → t (t T →P l 3 Liverpool T))(voted P l→t (t T →P 2 Liverpool T))) Ex. [START_REF] Blutner | Lexical semantics and pragmatics[END_REF] The third example is rejected as expected. Indeed, the transformation of the town into a football club prevents any other transformation (even the identity) to be used in the polymorphic and that we defined above. We obtain the same term as above, with won instead of is vast. The term is: λf T →P l λg T →P (and (won (f Liverpool T))(voted (g Liverpool T)))) and the lexicon provides the two morphisms that would solve the type conflict, but one of them is rigid, i.e. we can solely use this one. Consequently the sentence is semantically invalid.

Fictive motion. A rather innovative extension is to apply this technique to

what Talmy called fictive motion [START_REF] Talmy | Fictive motion in language and "ception[END_REF]. Under certain circumstances, a path may introduce a virtual traveller following the path, as in sentences like:

(12) Path GR3 descends for two hours.

Because of the duration, one cannot consider that the vertical coordinate decreases as the curvilinear abscissa increases. One ought to consider someone who follows the road. We model this by one morphism associated with the "Path GR3 " and one with "descends". The first coercion turns the "Path GR3 " from an immobile object into an object of type "path" that can be followed and the second one coerce "descends" into a verb that acts upon a "path" object and introduce an individual following the path downwards -this individual, which does not need to exist, is quantified, yielding a proposition that can be paraphrased as "any individual following the path goes downwards for two hours". [START_REF] Moot | Un calcul de termes typés pour la pragmatique lexicale -chemins et voyageurs fictifs dans un corpus de récits de voyages[END_REF][START_REF] Moot | A discursive analysis of itineraries in an historical and regional corpus of travels[END_REF] 3.3. Deverbals. Deverbals are nouns that correspond to action verbs, as "building" or "signature". Usually they are ambiguous between result and process. We showed that our idiosyncratic model is well adapted since their possible senses vary from one deverbal to another, even if the verbs are similar and the suffix is the same.

(13) The building took three months. [START_REF] Chatzikyriakidis | Adjectives in a modern type-theoretical setting[END_REF] The building was painted white.

(15) * The building that took three months was painted white.

(16) The signature was illegible.

(17) The signature took three months.

(18) * Although it took three months the signature was illegible.

(19) Although it took one minute, the signature was illegible.

We showed that a systematical treatment of deverbal meaning as the one proposed by the type-driven approach does not properly account for the data. Indeed, the possible meanings of a deverbal are more diverse than result and event, and there are no known rules to make sure the deverbal refers to the event. Consequently, words must include in the lexical informations such at the possible meanings of the deverbal. These meanings can be derived from the event expressed by the verb, they usually include the event itself (but not always), the result (but not always), and other meanings as well like the place where the event happens (e.g. English noun "pasture"). This lexical information can be encoded in our framework, with one principal meaning and optional terms for accessing other senses and the flexibility or rigidity of these optional terms -they are usually ridig, and copredication on the different senses of a deverbal is generally infelicitous. W successfully applied our framework and treatment to the semantic of deverbals to the of restrictions of selection (both for the deverbal and for the predicate that may apply to the deverbal) to meaning transfers, and to the felicity of copredications on different senses of a deverbal. [START_REF] Retoré | A generative Montagovian lexicon for polysemous deverbal nouns[END_REF][START_REF] Retoré | On the semantics of deverbals in a richly typed system[END_REF] 3.4. Coercive subtyping and ontological inclusions. As we said earlier on, ontological inclusions like "Human beings are animals.", would be better modelled by optional terms that are available for any word of the type, instead of anchoring them in words and repeating these terms for every word of this type. The model we described can take these subtyping inclusions into account as standard coercions, by specifying that a word like "human being" introduces a transformation into an "animal ". But this is somehow heavy, since one should also say that "human beings" are "living beings" etc. Any predicate, that applies to a class, also applies to an ontologically smaller class. For instance, "run" that applies to "animals" also applies to "human beings", because the "human" is a subtype of "animals". These subtype coercions looks type driven, and, consequently, would be more faithfully modelled with a proper notion of subtyping.

Coercive subtyping, introduced by Luo and Soloviev [START_REF] Luo | Coercive subtyping: Theory and implementation[END_REF][START_REF] Soloviev | Coercion completion and conservativity in coercive subtyping[END_REF] for variants of Martin-Löf type theory, corresponds quite well to these particular transformations. It starts with a transitive and acyclic set of coercions between base types, with at most one coercion between any two base types, and ontological inclusions fulfil this condition. Indeed, such ontological inclusions when viewed as functions always are the identity on objects, hence there cannot be two different manners to map them in the larger type. Furthermore, other notions of subtyping that have been studied for higher order type theories are very complicated with tricky restriction on the subtyping rules. [START_REF] Cardelli | An extension of system F with subtyping[END_REF][START_REF] Longo | Coherence and transitivity of subtyping as entailment[END_REF] Coercive subtyping, noted A 0 < A, can be viewed as a short hand for allowing a predicate or a function which applies to A-objects to apply to an argument whose type A 0 is not the expected type A but a subtype A 0 of A. Hence coercive application is exactly what we were looking for: coercive application

f : A → B u : A 0 A 0 < A (f a)
: B The subtyping judgements, which have the structure of categorical combinators, are derived with very natural rules given in figure 4. These rules simply encode transitivity, covariance and contravariance of implicative types (arrow types), and quantification over type variables.

It should be observed that, given constants c i→j representing the coercions from e i to e j , any coercion derivable coercion T < U can be depicted by a linear Λ-term m : U of system F or ΛTy n with a single occurrence of the free variable x : T and occurrences of the constants c i→j . The construction of the term according to the derivation rules is defined as follows:

•

x : A < t : B z : C < u : D f : D → A < λz C t[x := f (u)] : C → B - x : A < t : B f : T → A < λw T t[x := f (w)] : T → B - x : A < t : B g : B → T < λx A .g(t) : A → T • quantification over types - u : U < t : T [X] X not f ree in U u : U < ΛX.t : ΠX.T [X] - u : U < t : ΠX.T [X] u : U < t{W } : T [W]
As an easy induction shows that:

Proposition 2. All terms derived in this system are linear, with a single occurrence of a single free variable (whose type is on the left of "¡").

From this one easily concludes that:

Proposition 3. Not all Λ-terms of system F can be derived in the subtyping system.

Any derivation c of e i < e j is equivalent to a coercion c i→j , i.e. our derivation system does not introduce new coercions between atomic types. This kind of result is similar to coherence in categories: given a compositional graph G, the free cartesian categories over G does not contain any extra morphism between object from the compositional graph. Here is the precise formulation of this coherence result: Proposition 4. Given a e i < e j -derivation whose associated Λ-term is C, the normal form C of C is a compound of c i→j applied to x : e i , which, because of the assumptions on the c i→j is some c h→k .

Proof. As seen above, a deduction of T < U clearly corresponds to a linear Λ-terms of system F , whose only free variable is x : T with the c i→j as constants. Hence it has a normal from which also has a single free variable is x : T and the c i→j as constants.

Let us show that any normal Λ-term C of type e j with a single free variable x : e i and constants c i→j : e i → e j is a compound of c i→j applied to x ei , i.e. a term of C i :

• x ei ∈ C i • if c ej ∈ C i then (c j→k (c))
C = (λx Xi i | ΛX j) * h (ΠX k |X l →) * Z ({W k } | t X l l) *)
If the term C corresponds to a proof of e i < e j there is no (λx Xi i | ΛX j) in front, because the e j is neither of the form U → V nor of the form ΠX. T [X]. What may be the head variable? It is either the only free variable of this term, namely x e i , or a constant i.e. a c k→l .

• If the head variable is x e i then, because of its type, there is no application to a type or to a normal term ({W k } | t X l l) *) arguments, hence e i = e j and the normal form is x ei , which is in C i • If the head variable is is some c k→l , which because of its type, may only be applied to a normal term t X l l of type e k . This normal term is a normal term of type e k with x ei as its single free variable and the constants c j→l . As t X l l has one symbol less than C, we can conclude that t

X l l is in C i hence C ∈ C i .
Hence in any case the normal form C : e j of the term C : e j is in C i . Now, given that the coercions c i→j enjoys c k→j • c i→j = c i→k (as part of our condition on base coercions) it is easily seen that the only term of type e j in C i is c i→j .

We think that this coherence result can be improved by showing that there is at most one normal term corresponding to a derivation S < T , although the proof is likely to use some variant of reducibility candidates. An alternative. The rules for coercive sub tying follow a natural deduction style, as lambda terms of system F . Nevertheless, an alternative formulation of the quantifier elimination rule which requires to have identity axioms (whose term is identity) to derive obvious sub tying relations.

alternative quantifier elimination rule (sequent calculus style)

s : S[T] < t : U ṡ : ΠX.S[X] < t[s := ṡ{T }]
4. Compositional semantics issues: determiners, quantifiers, plurals So far we focused on phenomena in lexical semantics that are usually left out of standard models but properly mastered by our model. But we must also have a look at compositional semantics, that is a as the logical structure of a sentence, to see whether our model still properly analyses what standard compositional models do, and, possibly provide better analysis. Hopefully sentence structure are correctly analysed but furthermore our extended setting is quite appealing for some classical issues in formal semantics like determiners and quantification, or plurals, as we show in this section. 4.1. Determiners and quantifiers. The examples presented so far only involved proper names because the determiners and quantifiers are a bit more complex than in the usual montagovian setting, let us see how they work.

In order to integrate lexical issues into compositional semantics which closely follows syntax, we should at least describe the behaviour of determiners and quantifiers in our framework. We adopt the view of quantified, definite, and indefinite noun phrases as individual terms by using generic elements (or choice functions) as initiated by Russell and formalised by Hilbert, Ackerman and Bernays see e.g. [START_REF] Hilbert | Grundlagen der Mathematik[END_REF] and adapted to linguistics by researchers like von Heusinger see e.g. [START_REF] Egli | The epsilon operator and E-type pronouns[END_REF][START_REF] Klaus Von Heusinger | Definite descriptions and choice functions[END_REF][START_REF] Klaus Von Heusinger | Choice functions and the anaphoric semantics of definite nps[END_REF].

How do we adapt our model, in particular the typing, if instead of "Liverpool " the examples used "The town", "A town", "All towns", or "Most towns"? Indefinite determiners, quantifiers, generalised quantifiers,... usually are viewed as functions from two predicates to propositions, one expressing the restriction and the other the main predicate see e.g. [START_REF] Peters | Quantifiers in Language and Logic[END_REF] As we said, and this is especially true in a categorial setting as the one Moot implemented [START_REF] Moot | Wide-coverage French syntax and semantics using Grail[END_REF] the syntactic structure closely corresponds to the semantic structure. But the usual treatment of quantification that we saw in subsection 1 infringe this correspondence: [START_REF] Girard | Une extension de l'interprétation de Gödel à l'analyse et son application: l'élimination des coupures dans l'analyse et la théorie des types[END_REF] sentence: Keith played some Beatles song. Another criticism that applies to the usual treatment of quantifiers is the symmetry that it wrongly introduces between the main predicate and the class over which one quantifies. For instance, the two sentences below [START_REF] Gérard | Résolution d'équations dans des langages d[END_REF][START_REF] Kamp | From Discourse to Logic[END_REF] usually have the same logical form (25):

(23) Some politician are crooks.

(24) ? Some crooks are politicians.

(25) ∃x.politician(x)&crook(x) Hence, in accordance with syntax, we prefer to consider that a quantified noun phrase is by itself some individual -a generic one which does not refer to a precise individual nor to a collection of individuals. As [START_REF] Klaus Von Heusinger | Definite descriptions and choice functions[END_REF] we use a η for indefinite determiners (whose interpretation picks up a new element) and ι for definite noun phrases8 (whose interpretation picks up the most salient element). In fact both ι and η correspond to Hilbert's it is only the interpretation of the two which differ. Although papers and even a book [START_REF] Leisenring | Mathematical logic and Hilbert's symbol[END_REF] have been published on the topic, up to now results on these operators do not go beyond Hilbert, Ackerman and Bernays results in [START_REF] Hilbert | Grundlagen der Mathematik[END_REF] and in particular there is not yet a sound interpretation that would match the natural proof theoretical rules given by Hilbert.

and τ , and others for generalised quantifiers. All those operators takes as arguments a predicate P involving a free variable x P (x) and return a term. The ι term is written as the term ιx. P (x) in which the variable x is bound -the syntactical behaviour of the other generic elements introduced by , τ, η, ... is just the same. The main problem is to provide a proper typing of such operators which fits in our model. 9 In a typed model, a predicate applying to α-objects is of type α → t. Consequently ι should be of type: (α → t) → α, and in order to have a single ι its type is Πα. (α → t) → α. Consequently, if we have a predicate "Dog" of "Animate" entities the term ι(Dog) (written ιx. Dog(x) in untyped models) the semantics of "the dog" is of type "Animate".... but we would like this term to be of type Dog if "dog" is a type, or to enjoy the property Dog, if Dog is a property. How do we say so, since the type Dog does not appear in ι? Indeed, only "animate" objects appear in ι as an instantiation of α. We solve this by adding a systematic presupposition that can be called an axiom, P (ι(P)) for any P of type e → t 10 The syntax of quantifiers and generalised quantifiers is defined in the same way. Existential quantification "some" is faithfully represented by Hilbert's epsilon operator: P (xP (x)) ≡ ∃x. P (x). As soon as some element enjoys the property P , the term x. P (x) enjoys P as well.

The operator τ symmetrically constructs the generic element that appear in mathematical proofs like "Let x be any integer . . . Thus for all integers . . . " This universal generic represents universal quantification because P (τ x. P (x)) ≡ ∀x. P (x): as soon as the term τ x. P (x) enjoys the property P any element does. Actually, the operator is enough, since τ x. P (x) = x.(¬P (x)) and x. P (x) = τ x.(¬P (x))

As it is well known determiners -at least some use of them -correspond to quantifiers, and that's the way determiners are modelled in our framework, see e.g. [START_REF] Retoré | Sémantique des déterminants dans un cadre richement typé[END_REF][START_REF] Retoré | A natural framework for natural language semantics: many sorted logic and Hilbert operators in type theory[END_REF]. It avoids the problems evoked in examples 20 and 24.

It should be observed that generics fit better into our typed and many sorted semantic representations. Indeed, intuitively it is easier to think of a generic "politician" or "song" than it is to think of a generic "entity" or "individual ".

One can even introduce constants that model generalised quantification. They are typed just the same way, and this construct can be applied to compute the logical form of statement including the "most" quantifier, as exposed in [START_REF] Retoré | Variable types for meaning assembly: a logical syntax for generic noun phrases introduced by "most[END_REF]. It does not mean that we have the sound and complete proof rules nor a model theoretical interpretation: we simply are able to automatically compute logical forms from sentences involving generalised quantifiers. 4.2. Individuals, plurals and sets in a type-theoretical framework. The organisation of the types also allows us to handle simple facts about plurals, as shown in [START_REF] Moot | Second order lambda calculus for meaning assembly: on the logical syntax of plurals[END_REF][START_REF] Mery | Plurals: individuals and sets in a richly typed semantics[END_REF] -which resembles some Partee's ideas of [START_REF] Partee | Noun phrase interpretation and type shifting principles[END_REF]. Here are some classical examples involving plurals, exemplifying some typical readings for plurals: [START_REF] Lafourcade | Computing trees of named word usages from a crowdsourced lexical network[END_REF] . *Keith met. 9 Actually, we first provided a type theoretical model,and then discovered earlier related work in untyped semantics, e.g. papers by Heusinger. 10 If the predicate P corresponds to a type τ i.e. P = τ , this presupposition is better written as ι(τ) : τ .

q Λαλx α λy α x = y * ΛαλP α→t λQ α→t ∀x α Q(x) ⇒ P (x) # ΛαλR (α→t)→t λS α→t)→t ∀P α→t S(P) ⇒ R(P) c ΛαλR (α→t)→t λP α→t ∀x α P (x) ⇒ ∃Q α→t Q(x) ∧ (∀y α Q(y) ⇒ P (y)) ∧ R(Q)

Figure 5. Operators for plurals Such readings are derivable in our model because one can define in F operators for handling plurals. Firstly, on can add, as a constant, a cardinality operator for predicates || || : Πα.(α → t) → N (using the internal integers of system F which are N = ΠX. (X → X) → (X → X), or predefined integers as in Gödel system T or most type theories). Next, as shown in figure 5 , we can have operators for handling plurals: q (turning an individual into a property/set), * (distributivity) # (restricted distributivity from sets of sets to its constituent subsets), c (for coverings)... The important fact is that the computation of such readings uses exactly the same mechanisms as lexical coercion. Some combinations are blocked by their types, but optional terms coming tier from the predicate or from the plural noun may allow an a priori prohibited reading. To be precise we also provided specific tools for handling groups that are singular nouns denoting a set.

Comparison with related work and conclusion

5.1. Variants and implementation. In the afore presented model, some points admit slight changes that do not affect the behaviour.

As discussed in the beginning of section 2 the base type can be discussed. We proposed to use classifiers as base types of a language with classifiers, because classifiers are linguistically and cognitively motivated classes of words and entities. But it is fairly possible that other sets of base types are better suited in particular for specific applications. [START_REF] Mery | Semantic types, lexical sorts and classifiers[END_REF] In relation to this issue, the inclusion between base types, that in our model are morphisms can be introduced with words or as general axioms. We prefer the first solution which allows idiosyncratic behaviours, dependent on words as explained in paragraph 2.4 with "classe" and "promotion". Nevertheless when dealing with ontological inclusions, or other very general coercions, we think a subtyping approach is possible and reduces the size of the lexicon, this is why we are presently exploring coercive subtyping.

The type we gave for predicate can also vary: it could be systematically e → t, but as explained in paragraph 4, types u → t are possible as well, and varying from one form to another is not complicated.

An important variant is to define the very same ideas within a compositional model like λ-DRT [START_REF] Muskens | Combining Montague Semantics and Discourse Representation[END_REF] the compositional view of Discourse Representation Theory [START_REF] Kamp | From Discourse to Logic[END_REF] which can, as its name suggest, handle discursive phenomena. Thus one can integrate the semantical and lexical issues presented here into a broader perspective. This can be done, and in fact several applications of the model presented here are already included into the Grail parser by Richard Moot, in particular for French [START_REF] Moot | Wide-coverage French syntax and semantics using Grail[END_REF]. The grammar is an automatically acquired grammar but unfortunately the refined semantic terms we need can only be typed by hand. Consequently we only tested the semantic analyses described herein on small or specific lexicon. For instance, four treatment of fictive motion (cf. subsection ?? has been tested with a detailed lexicon for spatial semantics, but with λ-DRT [START_REF] Moot | A discursive analysis of itineraries in an historical and regional corpus of travels[END_REF] rather than plain lambda calculus [START_REF] Moot | Un calcul de termes typés pour la pragmatique lexicale -chemins et voyageurs fictifs dans un corpus de récits de voyages[END_REF] .

Comparison with related work.

There are many similarities with the contemporary work by Asher and Luo described e.g. in [START_REF] Asher | Formalization of coercions in lexical semantics[END_REF][START_REF] Luo | Common nouns as types[END_REF][START_REF] Chatzikyriakidis | An account of natural language coordination in type theory with coercive subtyping[END_REF].

A first difference is the type system. Our type system, F , is quite powerful but simple: four-term building operations, and two reduction rules. Luo make use of a version of Modern Type Theories (MTT), closed to the Unifying Theory of dependent Types (UTT), whose expressive power and computational complexity is difficult to compare: it is predicative but it include dependent types. Hence it is not clear whether MTT better characterises the logic needed for meaning assembly. Quantification over type variable is quite comparable and allows ∀α : CN which is quite convenient although it can certainly be encoded within system F using the fact that finites sums can be defined in system , hence x : α, α : CN can be rephrased if there are finitely many CN -finite products can be fined as well. This is both a positive and negative feature of system F : it can encode many things, but encodings are often dull. In addition, the MTT that Luo uses, includes dependent types, i.e. types defined from terms, which are convenient -the way they are used so far can probably be encoded in system F , but encoding can be tedious. A possible solution, similar to [START_REF] Soloviev | Some Algebraic Structures in Lambda-Calculus with Inductive Types[END_REF], is too introduce predefined types F with specific reduction schemese.g. adding integers as in Gödel's system T.

Regarding coercions, Luo [START_REF] Luo | Contextual analysis of word meanings in type-theoretical semantics[END_REF] makes an extensive use of coercive subtyping, that he introduced with Soloviev [60]: as said in this paper this kind of subtyping may also work well with system F . So we can say that Luo system is very similar. Dependent types, predicative quantification, may be closer to what we wish to model, but the formal diversity of the many rules may result in an opaque formalisation.

The typed system at work in Asher's view [START_REF] Asher | Lexical Meaning in context -a web of words[END_REF] is a simple type theory extended with type constructs and operations from category theory. The theory extends cartesian closed category with a few of the many operations that one finds in a topos, like subtype. This approach is hardly compared with the two above, since it does not belong to the same family: morphisms do not represents (quotiented) proofs of some logic, they are closer to a set theoretic interpretation.

Another ingredient of our models are the base types. Asher leaves the set of base types open, but rather small(say a dozen) : e, t, physical object, etc., with a linguistically motivated subtyping relation < defined over these types. Luo, especially in his later article [START_REF] Luo | Common nouns as types[END_REF], wants to equate base types with common nouns (also with coercions between them), and this is a possible compromise between any formula and the minimal base type system which makes it difficult to express some selectional restrictions with types. However it seems that they are too many of them, since not any common noun appears as a restriction of selection for another reword in a dictionary. Classifiers as base types is a recent proposal of ours which seems cognitively and linguistically motivated. It is worth exploring this hypothesis empirically in corpora and tests.

The subtyping relation between the base types are language independent in these two models, i.e. they are not triggered by words, but simply by types. We opted for a compromise in which only ontological inclusions are type driven, using coercive sub typing.

Regarding the general organisation of the lexicon and of its composition modes, the same difference applies. While according to Asher and Luo the types determine the coercions, in our approach the coercions are provided by the terms in the lexicon, i.e. by the words themselves and not by their types, with an exception for ontological inclusions. The recent claim by Luo that base type should be common nouns (that are words) partly rubs out the differences between on one hand the type driven approaches of himself and Asher and, on the other hand, ours which is more idiosyncratic being based on words and terms.

Finally one may wonder whether we finally derive similar logical forms? They actually are quite similar: we derive higher order multi sorted logical formulae multi sorted, Asher derives formulae in an intuitionnistic set theory, which works with sorts, and Luo derives formulae of type theory. All these are more or less the same: higher order is possible although not extensively used in examples, and there are sorts or types.

A possible difference may lie in the distance with syntax and the effective computability of the semantic representation, which requires a treatment of the current constructs in compositional semantics, like determiners, quantifiers, plurals,... and to be integrated in a general analyse also including phenomena like time or aspect. For the time being we did more on such issues than the others, but I am pretty sure that a similar treatment is possible within the approach developed by Asher and Luo.

Perspectives.

A part from fixing up the optimal variant among the possible variants of our model, to study and develop the convergence with related work, or to develop the implementation there are some questions both on type theory and on linguistic modelling, both theoretical and practical, that deserve to be further studied.

The acquisition of the semantic lexicon has both theoretical and practical aspects. In particular, how could one acquire the optional lambda terms? Syntactic informations on words can be automatically acquired, and Moot's parser that we used for experimenting our type theoretical semantic analyses was automatically acquired. [START_REF] Moot | Semi-automated extraction of a wide-coverage type-logical grammar for French[END_REF][START_REF] Moot | Automated extraction of type-logical supertags from the spoken dutch corpus[END_REF] By now there are some techniques to acquire the usual semantic terms of Montague semantics of 1 that are associated with words and depicts their argument structure. [START_REF] Zettlemoyer | Learning context-dependent mappings from sentences to logical form[END_REF] Machine learning and serious games also apply to learn some relation between words see e.g. [START_REF] Cimiano | Automatic acquisition of ranked qualia structures from the web[END_REF][START_REF] Lafourcade | Computing trees of named word usages from a crowdsourced lexical network[END_REF] But up to now there are no learning algorithms for acquiring a set of base type, nor for determining given a set of base type, the optional lambda terms, and our experiments with Moot parser were performed using hand typed semantic lexicon.

On the logical side there are many intriguing questions.

• One is the relation in a type system with sorts between the (higher order) predicate calculus and the type system, exemplified by the relation between the relation between type judgements x : T that, as linguistic presuppositions, cannot be denied and predicates T (x) that can be denied. • The Hilbert operator which look more natural in this typed system deserve to be further studied. Since most of the results are false but Hilbert's original results, the study of both the deductive system and the interpretation of those operators is appealing. We are especially intrigued by the formula with Hilbert operators that have no corresponding formula in usual logic. • The coercive subtyping we introduced in this paper should also be further explored, e.g. by proving that there is at most one coercion between any two types. • It is quite clear that we do not need the full power of system F : we chose this system of variable types and quantified types for its simplicity and elegance. Nevertheless one may wonder whether a simple restriction that would be sufficient. Linear version of system F both have a lower complexity [START_REF] Lafont | Soft linear logic and polynomial time[END_REF] and allow a finer grained treatment of the constraints on sense compatibility. [START_REF] Mery | Advances in the logical representation of lexical semantics[END_REF] Regarding computational linguistics, and natural language processing application, the way the discourse context is handled, including the permanence and the propagation of constraints (e.g. on sense compatibilities) through linguistic structure. Observe that: [START_REF] Luo | Common nouns as types[END_REF] This salmon was living nearby Scottish coast. It was delicious.

(35) ? This salmon that was living nearby Scottish coast was delicious.

(36) * This salmon was living nearby Scottish coast and was delicious.

As a major challenge in the semantics of natural language on which this type theoretical and many sorted view might bring new lights is the semantics of mass nouns, like wine, which can be quantified: [START_REF] Mery | Advances in the logical representation of lexical semantics[END_REF] He drank some wine.

Term 1 .

 1 [Polymorphic AND] is defined as & Π = ΛαΛβλP α→t λQ β→t Λξλx ξ λf ξ→α λg ξ→β . (and t→t→t (P (f x))(Q (g x)))

Figure 2 .Figure 3 .

 23 Figure 2. Polymorphic conjunction: P (f (x))&Q(g(x)) with x : ξ, f : ξ → α, g : ξ → β.

B

 transitivity x : A < t : B y : B < u : C x : A < u[y := t] : C É . covariance and contravariance of implication A → T < A → T . quantification over types U < T [X] X not f ree in U U < ΠX.T [X] U < ΠX.T [X] U < T [W] .

Figure 4 .

 4 Figure 4. Rules for coercive subtyping in system F

-

(21)

 21 semantical structure: (some (Beatles songs)) (λx Keith played x) (22) syntactical structure: (Keith (played (some (Beatles song))))

(27)

 27 Keith and John met. (unambiguous).

(28)(32)(33)

 283233 *The student met. (29) The students met. (unambiguous, one meeting) (30) The committee met. (unambiguous, one meeting) (31) The committees met. (ambiguous: one big meeting, one meeting per committee, several meetings invoking several committees) The students wrote a paper. (unambiguous) The students wrote three papers. (covering)

(38)

 38 He drank all the wine. Thanks. Special thanks to Sergeï Soloviev for explanations on coercive subtyping during my CNRS sabbatical at IRIT. Many thanks to those I worked with on these questions R. Moot, , M. Abrusci, Ch. Bassac, B. Mery, L. Prévot L. Real and to the ones I discussed with, namely N. Asher, Z. Luo, M. Abrusan, C. Beyssade, H. Burnett, S.-J. Conrad, F. Corblin, A. Mari, H. Person, F. del Prete.

 e k ∈ C i We proceed by induction on the number of occurrences of variable and constants in the normal term C, whose from is, as said in proposition 1:

	sequence of	head	sequence of {• • • } and (• • •) applications
	λ and Λ abstractions	variable	to types W

k and normal terms t X l l

It can be first-order logic if reification is used, but this may induce unnatural structure and exclude some readings.

We use the standard linguistic notation: a "* " in front of a sentence points out that the sentence is incorrect, a "? " indicates that the correctness can be discussed and the absence of any symbol in front means that the sentence is correct.

We do not speak about interpretations, but if one wishes to, we do not necessarily ask for the usual requirement that sorts are disjoint: this is coherent with the fact that in type theory, nothing prevents a pure term to have several types.

For instance, a dictionary says that pregnant can be said of a "woman or female animal", but can it be said of a "grandma" or of a "veal"?

An alternative solution, used by us and others[START_REF] Retoré | Variable types for meaning assembly: a logical syntax for generic noun phrases introduced by "most[END_REF][START_REF] Chatzikyriakidis | Adjectives in a modern type-theoretical setting[END_REF] would be Πα. α → t, using quantification over types to be defined in next section.

Actually[START_REF] Klaus Von Heusinger | Definite descriptions and choice functions[END_REF] writes instead of ι. We do not follow his notation because we also use Hilbert's with its traditional meaning.

This work was achieved during my CNRS-sabbatical at IRIT and has been supported by the project ANR LOCI.