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Abstract

In this paper, we study 3 focussed sequent calculi that are based on Miller-Liang’s LKF

system [LM09] for polarised classical logic, and integrate the possibility to call a decision
procedure for some background theory T .

The main sequent calculus out of the three is LK(T ), in which we prove cut-elimination.
Changing the polarities of literals and connectives does not change the provability of formulae,
only the shape of proofs.

In order to prove this, we introduce a second sequent calculus, LK
+(T ) that extends

LK(T ) with a relaxed focussing discipline.
We then prove completeness of LK(T ) (and therefore of LK

+(T )) with respect to first-order
reasoning modulo the ground propositional lemmas of the background theory T .

A third sequent calculus is introduced, LK
p(T ), that extends LK(T ) with the possibility

to polarise literals "on the fly" during proof-search. This is used in other works [FLM12,
FGLM13] to simulate the DPLL(T ) procedure [NOT06], and we show here its completeness.

Encodings of LK
+(T ) and LK

p(T ) into the most restrictive system LK(T ) are presented
along the way.
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1 The sequent calculus LK(T )

The sequent calculus LK(T ) manipulates the formulae of first-order logic, with the specificity
that every predicate symbol is classified as either positive or negative, and boolean connectives
come in two versions: positive and negative.

Definition 1 (Formulae)

Positive formulae P ::= p | A∧+B | A∨+B | ∃xA
Negative formulae N ::= p⊥ | A∧−B | A∨−B | ∀xA
Formulae A,B ::= P | N

where p ranges over a set of elements called positive literals. Formulae of the form p⊥ are
called negative literals.

Definition 2 (Negation) Negation is extended from literals to all formulae:

(p)⊥ := p⊥ (p⊥)
⊥

:= p

(A∧+B)
⊥

:= A⊥∨−B⊥ (A∧−B)
⊥

:= A⊥∨+B⊥

(A∨+B)
⊥

:= A⊥∧−B⊥ (A∨−B)
⊥

:= A⊥∧+B⊥

(∃xA)⊥ := ∀xA⊥ (∀xA)⊥ := ∃xA⊥

Definition 3 (LK(T )) The sequent calculus LK(T ) manipulates two kinds of sequents:

Focused sequents Γ ⊢ [A]
Unfocused sequents Γ ⊢ ∆

where Γ is a multiset of negative formulae and positive literals, ∆ is a multiset of formulae,
and A is said to be in the focus of the (focused) sequent. By lit(Γ) we denote the sub-multiset
of Γ consisting of its literals.

The rules of LK(T ), given in Figure 1, are of three kinds: synchronous rules, asynchronous
rules, and structural rules. These correspond to three alternating phases in the proof-search
process that is described by the rules.

If S is a set of literals, T (S) is the call to the decision procedure on the conjunction of all
literals of S. It holds if the procedure returns UNSAT.

2 Admissible rules

Definition 4 (Assumptions on the procedure)
We assume that the procedure calls satisfy the following properties:

Weakening If T (S) then T (S, S′).

Contraction If T (S,A,A) then T (S,A).

Instantiation If T (S) then T (
{

t�x

}

S).

Consistency If T (S, p) and T (S, p⊥) then T (S).

Inconsistency T (S, p, p⊥).
where S is a set of literals.

Lemma 1 (Admissibility of weakening and contraction)
The following rules are admissible in LK(T ).

Γ ⊢ [B]

Γ, A ⊢ [B]

Γ ⊢ ∆

Γ, A ⊢ ∆

Γ, A,A ⊢ [B]

Γ, A ⊢ [B]

Γ, A,A ⊢ ∆

Γ, A ⊢ ∆

Proof: By induction on the derivation of the premiss. �
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Synchronous rules

Γ ⊢ [A] Γ ⊢ [B]

Γ ⊢ [A∧
+B]

Γ ⊢ [Ai]

Γ ⊢ [A1∨
+A2]

Γ ⊢ [
{

t�x

}

A]

Γ ⊢ [∃xA]

p positive literal
Γ, p ⊢ [p]

T (lit(Γ), p⊥)
p positive literal

Γ ⊢ [p]

Γ ⊢ N
N negative

Γ ⊢ [N ]

Aynchronous rules
Γ ⊢ A, ∆ Γ ⊢ B, ∆

Γ ⊢ A∧
−B, ∆

Γ ⊢ A1, A2, ∆

Γ ⊢ A1∨
−A2, ∆

Γ ⊢ A, ∆
x /∈ FV(Γ, ∆)

Γ ⊢ (∀xA), ∆

Γ, A⊥
⊢ ∆

A positive or literal
Γ ⊢ A, ∆

Structural rules

Γ, P ⊥
⊢ [P ]

P positive
Γ, P ⊥

⊢

T (lit(Γ))

Γ ⊢

Figure 1: System LK(T )

Lemma 2 (Admissibility of instantiation) The following rules are admissible in LK(T ).

Γ ⊢ [B]
{

t
�x

}

Γ ⊢ [
{

t
�x

}

B]

Γ ⊢ ∆
{

t
�x

}

Γ ⊢
{

t
�x

}

∆

Proof: By induction on the derivation of the premiss. �

3 Invertibility of the asynchronous phase

Lemma 3 (Invertibility of asynchronous rules) All asynchronous rules are invertible
in LK(T ).

Proof: By induction on the derivation proving the conclusion of the asynchronous rule
considered.

• Inversion of A∧−B: by case analysis on the last rule actually used

–
Γ ⊢ A∧−B,C,∆′ Γ ⊢ A∧−B,D,∆′

Γ ⊢ A∧−B,C∧−D,∆′

By induction hypothesis we get

Γ ⊢ A,C,∆′ Γ ⊢ A,D,∆′

Γ ⊢ A,C∧−D,∆′
and

Γ ⊢ B,C,∆′ Γ ⊢ B,D,∆′

Γ ⊢ B,C∧−D,∆′

–
Γ ⊢ A∧−B,C,D,∆′

Γ ⊢ A∧−B,C∨−D,∆′

By induction hypothesis we get
Γ ⊢ A,C,D,∆′

Γ ⊢ A,C∨−D,∆′
and

Γ ⊢ B,C,D,∆′

Γ ⊢ B,C∨−D,∆′

–
Γ ⊢ A∧−B,C,∆′

x /∈ FV(Γ,∆′, A∧−B)
Γ ⊢ A∧−B, (∀xC),∆′
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By induction hypothesis we get
Γ ⊢ A,C,∆′

x /∈ FV(Γ,∆′, A)
Γ ⊢ A, (∀xC),∆′

and
Γ ⊢ B,C,∆′

x /∈ FV(Γ,∆′, B)
Γ ⊢ B, (∀xC),∆′

–
Γ, C⊥ ⊢ A∧−B,∆′

C positive or literal
Γ ⊢ A∧−B,C,∆′

By induction hypothesis we get

Γ, C⊥ ⊢ A,∆′

C positive or literal
Γ ⊢ A,C,∆′

and
Γ, C⊥ ⊢ B,∆′

C positive or literal
Γ ⊢ B,C,∆′

• Inversion of A∨−B

–
Γ ⊢ A∨−B,C,∆′ Γ ⊢ A∨−B,D,∆′

Γ ⊢ A∨−B,C∧−D,∆′

By induction hypothesis we get
Γ ⊢ A,B,C,∆′ Γ ⊢ A,B,D,∆′

Γ ⊢ A,B,C∧−D,∆′

–
Γ ⊢ A∨−B,C,D,∆′

Γ ⊢ A∨−B,C∨−D,∆′

By induction hypothesis we get
Γ ⊢ A,B,C,D,∆′

Γ ⊢ A,B,C∨−D,∆′

–
Γ ⊢ A∨−B,C,∆′

x /∈ FV(Γ,∆′)
Γ ⊢ A∨−B, (∀xC),∆′

By induction hypothesis we get
Γ ⊢ A,B,C,∆′

x /∈ FV(Γ,∆′)
Γ ⊢ A,B, (∀xC),∆′

–
Γ, C⊥ ⊢ A∨−B,∆′

C positive or literal
Γ ⊢ A∨−B,C,∆′

By induction hypothesis we get
Γ, C⊥ ⊢ A,B,∆′

C positive or literal
Γ ⊢ A,B,C,∆′

• Inversion of ∀xA

–
Γ ⊢ (∀xA),C,∆′ Γ ⊢ (∀xA),D,∆′

Γ ⊢ (∀xA),C∧−D,∆′

By induction hypothesis we get
Γ ⊢ A,C,∆′ Γ ⊢ A,D,∆′

x /∈ FV(Γ,∆′)
Γ ⊢ A,C∧−D,∆′

–
Γ ⊢ (∀xA), C,D,∆′

Γ ⊢ (∀xA),C∨−D,∆′

By induction hypothesis we get
Γ ⊢ A,C,D,∆′

Γ ⊢ A,C∨−D,∆′

–
Γ ⊢ (∀xA),D,∆′

x /∈ FV(Γ,∆′)
Γ ⊢ (∀xA), (∀xD),∆′

By induction hypothesis we get
Γ ⊢ A,D,∆′

x /∈ FV(Γ,∆′)
Γ ⊢ A, (∀xD),∆′

–
Γ, C⊥ ⊢ (∀xA),∆′

C positive or literal
Γ ⊢ (∀xA), C,∆′

By induction hypothesis we get
Γ, C⊥ ⊢ A,∆′

C positive or literal
Γ ⊢ A,C,∆′

• Inversion of literals and positive formulae (A)

–
Γ ⊢ A,C,∆′ Γ ⊢ A,D,∆′

Γ ⊢ A,C∧−D,∆′

By induction hypothesis we get
Γ, A⊥ ⊢ C,∆′ Γ, A⊥ ⊢ D,∆′

Γ, A⊥ ⊢ C∧−D,∆′
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–
Γ ⊢ A,C,D,∆′

Γ ⊢ A,C∨−D,∆′

By induction hypothesis
Γ, A⊥ ⊢ C,D,∆′

Γ, A⊥ ⊢ C∨−D,∆′

–
Γ ⊢ A,D,∆′

x /∈ FV(Γ,∆′)
Γ ⊢ A, (∀xD),∆′

By induction hypothesis we get
Γ, A⊥ ⊢ D,∆′

x /∈ FV(Γ,∆′)
Γ, A⊥ ⊢ (∀xD),∆′

–
Γ, B⊥ ⊢ A,∆′

B positive or literal
Γ ⊢ A,B,∆′

By induction hypothesis we get
Γ, A⊥, B⊥ ⊢ ∆′

B positive or literal
Γ, A⊥ ⊢ B,∆′

�

4 Cut-elimination

Theorem 4 (cut1 and cut2) The following rules are admissible in LK(T ).

T (lit(Γ), p⊥) Γ, p ⊢ ∆
cut1

Γ ⊢ ∆

T (lit(Γ), p⊥) Γ, p ⊢ [B]
cut2

Γ ⊢ [B]

Proof: By simultaneous induction on the derivation of the right premiss.
We reduce cut8 by case analysis on the last rule used to prove the right premiss.

T (lit(Γ), p⊥)

Γ, p ⊢ B,∆ Γ, p ⊢ C,∆

Γ, p ⊢ B∧−C,∆
cut1

Γ ⊢ B∧−C,∆
reduces to

T (lit(Γ), p⊥) Γ, p ⊢ B,∆
cut1

Γ ⊢ B,∆

T (lit(Γ), p⊥) Γ, p ⊢ C,∆
cut1

Γ ⊢ C,∆

Γ ⊢ B∧−C,∆

T (lit(Γ), p⊥)

Γ, p ⊢ B1, B2,∆

Γ, p ⊢ B1∨−B2,∆
cut1

Γ ⊢ B1∨−B2,∆

reduces to

T (lit(Γ), p⊥) Γ, p ⊢ B1, B2,∆
cut1

Γ ⊢ B1, B2,∆

Γ ⊢ B1∨−B2,∆

T (lit(Γ), p⊥)

Γ, p ⊢ B,∆

Γ, p ⊢ ∀xB,∆
cut1

Γ ⊢ ∀xB,∆

reduces to

T (lit(Γ), p⊥) Γ, p ⊢ B,∆
cut1

Γ ⊢ B,∆

Γ ⊢ ∀xB,∆

T (lit(Γ), p⊥)

Γ, p, B⊥ ⊢ ∆

Γ, p ⊢ B,∆
cut1

Γ ⊢ B,∆

reduces to

T (lit(Γ, B⊥), p⊥) Γ, p, B⊥ ⊢ ∆
cut1

Γ, B⊥ ⊢ ∆

Γ ⊢ B,∆

We have T (lit(Γ), p⊥, B⊥) as we assume the procedure to satisfy weakening.
If P⊥ ∈ (Γ, p),

T (lit(Γ), p⊥)

Γ, p ⊢ [P ]

Γ, p ⊢
cut1

Γ ⊢

reduces to

T (lit(Γ), p⊥) Γ, p⊥ ⊢ [P ]
cut2

Γ ⊢ [P ]

Γ ⊢

as P⊥ ∈ (Γ).
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T (lit(Γ), p⊥)

T (lit(Γ), p)

Γ, p ⊢
cut1

Γ ⊢

reduces to
T (lit(Γ))

Γ ⊢

using the assumption of consistency.
We reduce cut2 again by case analysis on the last rule used to prove the right premiss.

T (lit(Γ), p⊥)

Γ, p ⊢ [B] Γ, p ⊢ [C]

Γ, p ⊢ [B∧+C]
cut2

Γ ⊢ [B∧+C]

reduces to

T (lit(Γ), p⊥) Γ, p ⊢ [B]
cut2

Γ ⊢ [B]

T (lit(Γ), p⊥) Γ, p ⊢ [C]
cut2

Γ ⊢ [C]

Γ ⊢ [B∧+C]

T (lit(Γ), p⊥)

Γ, p ⊢ [Bi]

Γ, p ⊢ [B1∨+B2]
cut2

Γ ⊢ [B1∨+B2]

reduces to

T (lit(Γ), p⊥) Γ, p ⊢ [Bi]
cut2

Γ ⊢ [Bi]

Γ ⊢ [B1∨+B2]

T (lit(Γ), p⊥)

Γ, p ⊢ [
{

t
�x

}

B]

Γ, p ⊢ [∃xB]
cut2

Γ ⊢ [∃xB]

reduces to

T (lit(Γ), p⊥) Γ, p ⊢ [
{

t
�x

}

B]
cut2

Γ ⊢ [
{

t
�x

}

B]

Γ ⊢ [∃xB]

T (lit(Γ), p⊥)

Γ, p ⊢ N

Γ, p ⊢ [N ]
cut2

Γ ⊢ [N ]

reduces to

T (lit(Γ), p⊥) Γ, p ⊢ N
cut1

Γ ⊢ N

Γ ⊢ [N ]

If p′ ∈ Γ, p,

T (lit(Γ), p⊥) Γ, p ⊢ [p′]
cut2

Γ ⊢ [p′]

reduces to
Γ ⊢ [p′]

if p′ ∈ Γ

reduces to
T (lit(Γ), p⊥)

Γ ⊢ [p′]
if p′ = p

Finally,

T (lit(Γ), p⊥)

T (lit(Γ), p, p′⊥
)

Γ, p ⊢ [p′]
cut2

Γ ⊢ [p′]

reduces to
T (lit(Γ), p′⊥

)

Γ ⊢ [p′]

since weakening gives T (lit(Γ), p⊥, p′⊥
) and consistency then gives T (lit(Γ), p′⊥

). �

Theorem 5 (cut3, cut4 and cut5) The following rules are admissible in LK(T ).

Γ ⊢ [A] Γ ⊢ A⊥,∆
cut3

Γ ⊢ ∆

Γ ⊢ N Γ, N ⊢ ∆
cut4

Γ ⊢ ∆

Γ ⊢ N Γ, N ⊢ [B]
cut5

Γ ⊢ [B]

Proof: By simultaneous induction on the following lexicographical measure:

• the size of the cut-formula (A or N)

• the fact that the cut-formula (A or N) is positive or negative
(if of equal size, a positive formula is considered smaller than a negative formula)

• the height of the derivation of the right premiss
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Weakenings and contractions (as they are admissible in the system) are implicitly used
throughout this proof.

In order to eliminate cut3, we analyse which rule is used to prove the left premiss. We
then use invertibility of the negative phase so that the last rule used in the right premiss is
its dual one.

Γ ⊢ [A] Γ ⊢ [B]

Γ ⊢ [A∧+B]

Γ ⊢ A⊥, B⊥,∆

Γ ⊢ A∨−B,∆
cut3

Γ ⊢ ∆

reduces to Γ ⊢ [B]

Γ ⊢ [A] Γ ⊢ A⊥, B⊥,∆
cut3

Γ ⊢ B⊥,∆
cut3

Γ ⊢ ∆

Γ ⊢ [Ai]

Γ ⊢ [A1∨+A2]

Γ ⊢ A⊥
1 ,∆ Γ ⊢ A⊥

2 ,∆

Γ ⊢ A1∧−A2,∆
cut3

Γ ⊢ ∆

reduces to
Γ ⊢ [Ai] Γ ⊢ A⊥

i ,∆
cut3

Γ ⊢ ∆

Γ ⊢ [
{

t
�x

}

A]

Γ ⊢ [∃xA]

Γ ⊢ A⊥,∆

Γ ⊢ (∀xA⊥),∆
cut3

Γ ⊢ ∆

reduces to Γ ⊢ [
{

t
�x

}

A]

Γ ⊢ A⊥,∆
− − − − − − − − x /∈ FV(Γ,∆)
Γ ⊢ (

{

t
�x

}

A⊥),∆
cut3

Γ ⊢ ∆
using the admissibility of instantiation.

Γ ⊢ N

Γ ⊢ [N ]

Γ, N ⊢ ∆

Γ ⊢ (N⊥),∆
cut3

Γ ⊢ ∆

reduces to
Γ ⊢ N Γ, N ⊢ ∆

cut4

Γ ⊢ ∆

We will describe below how cut4 is reduced.

Γ, p ⊢ [p]

Γ, p, p ⊢ ∆

Γ, p ⊢ (p⊥),∆
cut3

Γ, p ⊢ ∆

reduces to
Γ, p, p ⊢ ∆
− − − − −
Γ, p ⊢ ∆

using the admissibility of contraction.

T (lit(Γ), p⊥)

Γ ⊢ [p]

Γ, p ⊢ ∆

Γ ⊢ (p⊥),∆
cut3

Γ ⊢ ∆

reduces to
T (lit(Γ), p⊥) Γ, p ⊢ ∆

cut1

Γ ⊢ ∆

In order to reduce cut4, we analyse which rule is used to prove the right premiss.

Γ ⊢ N

T (lit(Γ))

Γ, N ⊢
cut4

Γ ⊢

reduces to
T (lit(Γ))

Γ ⊢

if N is not an literal (hence, it is not passed on to the procedure).

Γ, p ⊢

Γ ⊢ p⊥

T (lit(Γ), p⊥)

Γ, p⊥ ⊢
cut4

Γ ⊢

reduces to
T (lit(Γ), p⊥) Γ, p ⊢

cut1

Γ ⊢

if p⊥ is an literal passed on to the procedure.

Γ ⊢ N

Γ, N ⊢ [N⊥]

Γ, N ⊢
cut4

Γ ⊢

reduces to

Γ ⊢ N Γ, N ⊢ [N⊥]
cut5

Γ ⊢ [N⊥] Γ ⊢ N
cut3

Γ ⊢

Γ, P⊥ ⊢ N

Γ, P⊥, N ⊢ [P ]

Γ, P⊥, N ⊢
cut4

Γ, P⊥ ⊢

reduces to

Γ, P⊥ ⊢ N Γ, P⊥, N ⊢ [P ]
cut5

Γ, P⊥ ⊢ [P ]

Γ, P⊥ ⊢
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Γ ⊢ N

Γ, N ⊢ B,∆ Γ, N ⊢ C,∆

Γ, N ⊢ B∧−C,∆
cut4

Γ ⊢ B∧−C,∆
reduces to

Γ ⊢ N Γ, N ⊢ B,∆
cut4

Γ ⊢ B,∆

Γ ⊢ N Γ, N ⊢ C,∆
cut4

Γ ⊢ C,∆

Γ ⊢ B∧−C,∆

Γ ⊢ N

Γ, N ⊢ B,C,∆

Γ, N ⊢ B∨−C,∆
cut4

Γ ⊢ B∨−C,∆

reduces to

Γ ⊢ N Γ, N ⊢ B,C,∆
cut4

Γ ⊢ B,C,∆

Γ ⊢ B∨−C,∆

Γ ⊢ N

Γ, N ⊢ B,∆

Γ, N ⊢ ∀xB,∆
cut4

Γ ⊢ ∀xB,∆

reduces to

Γ ⊢ N Γ, N ⊢ B,∆
cut4

Γ ⊢ B,∆

Γ ⊢ ∀xB,∆

Γ ⊢ N

Γ, N, B⊥ ⊢ ∆

Γ, N ⊢ B,∆
cut4

Γ ⊢ B,∆

reduces to

Γ, B⊥ ⊢ N Γ, N,B⊥ ⊢ ∆
cut4

Γ, B⊥ ⊢ ∆

Γ ⊢ B,∆
using weakening, and if B is positive or a negative literal.

We have reduced all cases of cut4; we now reduce the cases for cut5 (again, by case analysis
on the last rule used to prove the right premiss).

Γ ⊢ N

Γ, N ⊢ [B] Γ, N ⊢ [C]

Γ, N ⊢ [B∧+C]
cut5

Γ ⊢ [B∧+C]

reduces to

Γ ⊢ N Γ, N ⊢ [B]
cut5

Γ ⊢ [B]

Γ ⊢ N Γ, N ⊢ [C]
cut5

Γ ⊢ [C]

Γ ⊢ [B∧+C]

Γ ⊢ N

Γ, N ⊢ [Bi]

Γ, N ⊢ [B1∨+B2]
cut5

Γ ⊢ [B1∨+B2]

reduces to
Γ ⊢ N Γ, N ⊢ [Bi]

cut5

Γ ⊢ [Bi]

Γ ⊢ N

Γ, N ⊢ [
{

t
�x

}

B]

Γ, N ⊢ [∃xB]
cut5

Γ ⊢ [∃xB]

reduces to

Γ ⊢ N Γ, N ⊢ [
{

t
�x

}

B]
cut5

Γ ⊢ [
{

t
�x

}

B]

Γ ⊢ [∃xB]

Γ ⊢ N

Γ, N ⊢ N ′

Γ, N ⊢ [N ′]
cut5

Γ ⊢ [N ′]

reduces to

Γ ⊢ N Γ, N ⊢ N ′

cut4

Γ ⊢ N ′

Γ ⊢ [N ′]

Γ ⊢ N Γ, N ⊢ [p]
cut5

Γ ⊢ [p]

reduces to
Γ ⊢ [p]

since p has to be in Γ.

Γ ⊢ N

T (lit(Γ), p⊥)

Γ, N ⊢ [p]
cut5

Γ ⊢ [p]

reduces to
T (lit(Γ), p⊥)

Γ ⊢ [p]

�

Theorem 6 (cut6, cut7, and cut8) The following rules are admissible in LK(T ).

Γ ⊢ N,∆ Γ, N ⊢ ∆
cut6

Γ ⊢ ∆

Γ ⊢ A,∆ Γ ⊢ A⊥,∆
cut7

Γ ⊢ ∆

Γ, l ⊢ ∆ Γ, l⊥ ⊢ ∆
cut8

Γ ⊢ ∆

8



Proof: cut6 is proved admissible by induction on the multiset ∆: the base case is the
admissibility of cut4, and the other cases just require the inversion of the connectives in ∆.

For cut7, we can assume without loss of generality (swapping A and A⊥) that A is negative.
Applying inversion on Γ ⊢ A⊥,∆ gives a proof of Γ, A ⊢ ∆, and cut7 is then obtained by cut6:

Γ ⊢ A,∆ Γ, A ⊢ ∆
cut6

Γ ⊢ ∆
cut8 is obtained as follows:

Γ, l⊥ ⊢ ∆

Γ ⊢ l,∆

Γ, l ⊢ ∆

Γ ⊢ l⊥,∆
cut7

Γ ⊢ ∆
�

5 Changing the Polarity of Predicates and Connect-

ives

5.1 Changing the polarity of Predicates

In this section we try to show that changing the polarity of the predicates and the connectives
that are present in a sequent, does not change the provability of the sequent in LK(T ). First,
we deal with the polarities of the predicates and then we deal with the polarities of the
connectives.

Notation 7

Let p and q be positive literals, such that q and p⊥ have the same meaning for T , i.e.
for all Γ, T (lit(Γ), p⊥) if and only if T (lit(Γ), q), and T (lit(Γ), p) if and only if T (lit(Γ), q⊥).

We write Γ′ for {p⊥, p/q, q⊥}Γ, ∆′ for := {p⊥, p/q, q⊥}∆, A′, {p⊥, p/q, q⊥}A, etc.

Lemma 8

1. If Γ ⊢LK(T ) [A], then
(a) Γ′, p ⊢LK(T ) [A′].

(b) Γ′, p⊥ ⊢LK(T ) [A′] or Γ′, p⊥ ⊢LK(T ) .

2. If Γ ⊢LK(T ) ∆ then
(a) Γ′, p ⊢LK(T ) ∆′.

(b) Γ′, p⊥ ⊢LK(T ) ∆′.

Proof: By simultaneous induction on the last rule of the derivation.

1. For the first item of the lemma, by case analysis on the last rule of the derivation, we
get

•
Γ ⊢ [A1] Γ ⊢ [A2]

Γ ⊢ [A1∧+A2]

with A = A1∧+A2.
(a) The induction hypothesis on Γ ⊢LK(T ) [A1] (1(a)) gives Γ′, p ⊢LK(T ) [A′

1] and the
induction hypothesis on Γ ⊢LK(T ) [A2] (1(a)) gives Γ′, p ⊢LK(T ) [A′

2]. Now, we
get:

Γ′, p ⊢ [A′
1] Γ′, p ⊢ [A′

2]

Γ′, p ⊢ [A′
1∧+A′

2]

(b) The induction hypothesis on Γ ⊢LK(T ) [A1] (1(b)) gives Γ′, p⊥ ⊢LK(T ) [A′
1] or

Γ′, p⊥ ⊢LK(T ) and the induction hypothesis on Γ ⊢LK(T ) [A2] (1(b)) gives Γ′, p⊥ ⊢LK(T ) [A′
2]

or Γ′, p⊥ ⊢LK(T ) .

9



If we get a proof of Γ′, p⊥ ⊢LK(T ) from one of the two applications of the
induction hypothesis, we are done. If not then we get:

Γ′, p⊥ ⊢ [A′
1] Γ′, p ⊢ [A′

2]

Γ′, p⊥ ⊢ [A′

1∧+A′

2]
•

Γ ⊢ [Ai]

Γ ⊢ [A1∨+A2]

with A = A1∨+A2.
(a) The induction hypothesis on Γ ⊢LK(T ) [Ai] 1(a) gives Γ′, p ⊢LK(T ) [A′

i]. We get:

Γ′, p ⊢ [A′
i]

Γ′, p ⊢ [A′
1∨+A′

2]

(b) The induction hypothesis on Γ ⊢LK(T ) [Ai] (1(b)) gives Γ′, p⊥ ⊢LK(T ) [A′
i] or

Γ′, p⊥ ⊢LK(T ) .
In the latter case we are done. For the former case, we get:

Γ′, p⊥ ⊢ [A′
i]

Γ′, p⊥ ⊢ [A′
1∨+A′

2]
•

Γ ⊢ [
{

t
�x

}

A]

Γ ⊢ [∃xA]

with A = ∃xA
(a) The induction hypothesis on Γ ⊢LK(T ) [

{

t�x

}

A] 1(a) gives Γ′, p ⊢LK(T ) [
{

t�x

}

A′].
We get:

Γ′, p ⊢ [
{

t
�x

}

A′]

Γ′, p ⊢ [∃xA′]

(b) The induction hypothesis on Γ ⊢LK(T ) [
{

t�x

}

A] (1(b)) gives Γ′, p⊥ ⊢LK(T ) [
{

t�x

}

A′]

or Γ′, p⊥ ⊢LK(T ) .
In the latter case we are done. For the former case, we get:

Γ′, p⊥ ⊢ [
{

t
�x

}

A′]

Γ′, p⊥ ⊢ [∃xA′]
•

Γ ⊢ A

Γ ⊢ [A]

where A is Negative .
– Either A = q⊥ and therefore:
(a) A′ = p and we get:

T (lit(Γ′), p, p⊥)

Γ′, p ⊢ [A′]

by the inconsistency of the theory T .
(b) Γ ⊢ A can only be proved by

Γ, q ⊢

Γ ⊢ A

The induction hypothesis on Γ, q ⊢LK(T ) (2(b)) gives Γ′, p⊥, p⊥ ⊢LK(T ) and
then we get:

Γ′, p⊥, p⊥ ⊢
− − − − − −

Γ′, p⊥ ⊢

by contraction.
– Or A 6= q⊥ and therefore

10



(a) The induction hypothesis on Γ ⊢LK(T ) A (2(a)) gives Γ′, p ⊢LK(T ) A
′ and we

get:
Γ′, p ⊢ A′

Γ′, p ⊢ [A′]
(b) The induction hypothesis on Γ ⊢LK(T ) A (2(b)) gives Γ′, p⊥ ⊢LK(T ) A

′ and we
get:

Γ′, p⊥ ⊢ A′

Γ′, p⊥ ⊢ [A′]

•
T (lit(Γ), p′⊥

)

Γ ⊢ [p′]

where p′ is a positive literal.
– Either p′ = q and therefore
(a) We get:

T (lit(Γ′), p, p)

Γ′, p, p ⊢
=========
Γ′, p ⊢ [p⊥]

We derive T (lit(Γ′), p, p) from T (lit(Γ), p′⊥
) since p has the same meaning as

q⊥ = p′⊥
and T satisfies the weakening.

(b) We get:

T (lit(Γ′), p⊥, p)

Γ′, p⊥, p ⊢
==========
Γ′, p⊥ ⊢ [p⊥]

using the fact that T satisfies inconsistency.
– or p′ 6= q and therefore
(a) We get:

T (lit(Γ′), p, p′⊥
)

Γ′, p ⊢ [p′]

using the fact that T satisfies weakening.
(b) We get:

T (lit(Γ′), p⊥, p′⊥
)

==============
Γ′, p⊥ ⊢ [p′]

using the fact that T satisfies weakening.

2. For the second item of the lemma, by case analysis on the last rule of the derivation, we
get:

•
Γ ⊢ A1,∆ Γ ⊢ A2,∆

Γ ⊢ A1∧−A2,∆

for ∆ = A1∧−A2,∆
(a) The induction hypothesis on Γ ⊢LK(T ) A1,∆ (2(a)) gives Γ′, p ⊢LK(T ) A

′
1,∆

′ and
the one on Γ ⊢LK(T ) A2,∆ (2(a)) gives Γ′, p ⊢LK(T ) A

′
2,∆

′.
We get:

Γ′, p ⊢ A′
1,∆

′ Γ′, p ⊢ A′
2,∆

′

Γ′, p ⊢ A′
1∧−A′

2,∆
′

(b) The induction hypothesis on Γ ⊢LK(T ) A1,∆ (2(b)) gives Γ′, p⊥ ⊢LK(T ) A
′
1,∆

′

and induction hypothesis on Γ ⊢LK(T ) A2,∆ (2(b)) gives Γ′, p⊥ ⊢LK(T ) A
′
2,∆

′.
We get:

Γ′, p⊥ ⊢ A′
1,∆

′ Γ′, p⊥ ⊢ A′
2,∆

′

Γ′, p⊥ ⊢ A′
1∧−A′

2,∆
′

11



•
Γ ⊢ A1, A2,∆

Γ ⊢ A1∨−A2,∆

for ∆ = A1∨−A2,∆
(a) The induction hypothesis on Γ ⊢LK(T ) A1, A2,∆ (2(a)) gives Γ′, p ⊢LK(T ) A

′
1, A

′
2,∆

′.
We get:

Γ′, p ⊢ A′
1, A

′
2,∆

′

Γ′, p ⊢ A′
1∨−A′

2,∆
′

(b) The induction hypothesis on Γ ⊢LK(T ) A1, A2,∆ (2(b)) gives Γ′, p⊥ ⊢LK(T ) A
′
1, A

′
2,∆

′.
We get:

Γ′, p⊥ ⊢ A′

1, A
′

2,∆
′

Γ′, p⊥ ⊢ A′
1∨−A′

2,∆
′

•
Γ ⊢ A,∆

x /∈ FV(Γ,∆)
Γ ⊢ (∀xA),∆

with ∆ = (∀xA),∆
(a) The induction hypothesis on Γ ⊢LK(T ) A,∆ (2(a)) gives Γ′, p ⊢LK(T ) A

′,∆′.
We get:

Γ ⊢ A′,∆′

x /∈ FV(Γ′,∆′)
Γ′ ⊢ (∀xA′),∆′

(b) The induction hypothesis on Γ ⊢LK(T ) A,∆ (2(b)) gives Γ′, p⊥ ⊢LK(T ) A
′,∆′.

We get:

Γ′, p⊥ ⊢ A′,∆′

x /∈ FV(Γ′,∆′)
Γ′, p⊥ ⊢ (∀xA′),∆′

•
Γ, A⊥ ⊢ ∆

Γ ⊢ A,∆

for ∆ = A,∆ where A is positive or negative literal.
(a) The induction hypothesis on Γ, A⊥ ⊢LK(T ) ∆ (2(a)) gives Γ′, p, A′⊥

⊢LK(T ) ∆′

and we get:

Γ′, p, A′⊥
⊢ ∆′

Γ′, p ⊢ A′,∆′

(b) The induction hypothesis on Γ, A ⊢LK(T ) ∆ (2(b)) gives Γ′, p⊥, A′⊥
⊢LK(T ) ∆′

and we get:

Γ′, p⊥, A′⊥
⊢ ∆′

Γ′, p⊥ ⊢ A′,∆′

•
Γ ⊢ [A]

Γ ⊢

with A is positive and A⊥ ∈ Γ.
– Either A = q, and then q⊥ ∈ Γ and T (lit(Γ), q⊥)
(a) We get:

T (lit(Γ′), p)

Γ′, p ⊢

since p and q⊥ have the same meaning for T
(b) We get:

T (lit(Γ′), p⊥)

Γ′, p⊥ ⊢

since p ∈ Γ′ and by using the fact that T is inconsistent.
– or A 6= q

12



(a) The induction hypothesis on Γ ⊢LK(T ) [A] gives Γ′, p ⊢LK(T ) [A′] and we get

Γ′, p ⊢ [A′]

Γ′, p ⊢
(b) The induction hypothesis on Γ ⊢LK(T ) [A] gives either Γ′, p⊥ ⊢LK(T ) [A′] or

Γ′, p⊥ ⊢LK(T ) . For the latter case we are done and for the former case we
get:

Γ′, p⊥ ⊢ [A′]

Γ′, p⊥ ⊢
�

Corollary 9 (Changing the polarity of a predicate) If Γ ⊢LK(T ) ∆ then Γ′ ⊢LK(T ) ∆′.

Proof: Lemma 8 (2) provides Γ′, p ⊢LK(T ) ∆′ and Γ′, p⊥ ⊢LK(T ) ∆′. Then we can construct:

Γ′, p′ ⊢ ∆′ Γ′, p′⊥
⊢ ∆′

cut8

Γ′ ⊢ ∆′

and we use the admissibility of cut8. �

We have proven that changing the polarities of the predicate that are present in a sequent,
does not change the provability of that sequent in LK(T ).

5.2 Changing the polarity of connectives

Definition 5 (LK
+(T )) The sequent calculus LK

+(T ) manipulates one kind of sequent:

Γ ⊢ [X ]∆ where X :: • | A

Here Γ is a multiset of negative formulae and positive literals, ∆ is a multiset of formulae,
X is said to be in the focus of the (focused) system. By lit(Γ) we denote the sub-multiset of
Γ consisting of its literals and lit(∆) we denote the sub-multiset of ∆ consisting of its literals.

The rules of LK
+(T ), given in Figure 2, are of three kinds: synchronous rules, asynchronous

rules, and structural rules. These correspond to three alternating phases in the proof-search
process that is described by the rules.

The LK
+(T ) system is an extension system of LK(T ).

Remark 10 As in LK(T ), weakening and contraction are admissible in LK
+(T ).

Lemma 11 (Identities) ⊢ [A⊥]A is provable in LK
+(T ).

Proof: By induction on A using an extended but well founded order on formulae:
a formula is smaller than another one when either it contains fewer connectives, or the number
of connectives is equal the former formula is negative and the latter is positive.

• A = A1∧−A2

⊢ [A1
⊥]A1

⊢ [A1
⊥∨+A2

⊥]A1

⊢ [A2
⊥]A2

⊢ [A1
⊥∨+A2

⊥]A2

⊢ [A1
⊥∨+A2

⊥]A1∧−A2

We can complete the proof on the left-hand side by applying the induction hypothesis
on A1 and on the right-hand side by applying the induction hypothesis on A2.

• A = A1∨−A2

⊢ [A1
⊥]A1

− − − − − − − WK
⊢ [A1

⊥]A1, A2

⊢ [A2
⊥]A2

− − − − − − − WK
⊢ [A2

⊥]A1, A2

⊢ [A1
⊥∧+A2

⊥]A1, A2

⊢ [A1
⊥∧+A2

⊥]A1∨−A2

We can complete the proof on the left-hand side by applying the induction hypothesis
on A1 and on the right-hand side by applying the induction hypothesis on A2.
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Synchronous rules

Γ ⊢ [A]∆ Γ ⊢ [B]∆

Γ ⊢ [A∧
+B]∆

Γ ⊢ [Ai]∆

Γ ⊢ [A1∨
+A2]∆

Γ ⊢ [
{

t�x

}

A]∆

Γ ⊢ [∃xA]∆

p positive literal
Γ, p ⊢ [p]∆

T (lit(Γ), p⊥, lit(∆))
p positive literal

Γ ⊢ [p]∆

Γ ⊢ [•]N
N negative

Γ ⊢ [N ]

Aynchronous rules
Γ ⊢ [X ]A, ∆ Γ ⊢ [X ]B, ∆

Γ ⊢ [X ]A∧
−B, ∆

Γ ⊢ [X ]A1, A2, ∆

Γ ⊢ [X ]A1∨
−A2, ∆

Γ ⊢ [X ]A, ∆
x /∈ FV(Γ, X , ∆)

Γ ⊢ [X ](∀xA), ∆

Γ, A⊥
⊢ [X ]∆

A positive or literal
Γ ⊢ [X ]A, ∆

Structural rules

Γ, P ⊥
⊢ [P ]∆

P positive
Γ, P ⊥

⊢ [•]∆

T (lit(Γ), lit(∆))

Γ ⊢ [•]∆

Figure 2: System LK+(T )

• A = ∀xA
⊢ [A⊥]A

− − − − − − − choosing t=x
⊢ [{t/x}A⊥]A

⊢ [∃xA⊥]A
x /∈ FV(∃xA⊥)

⊢ [∃xA⊥]∀xA

We can complete the proof by applying the induction hypothesis on A.

• A = p⊥

p ⊢ [p]

⊢ [p]p⊥

• A = P where P is all positive formulae:

⊢ [P ]P⊥

− − − − − − WK
P⊥ ⊢ [P ]P⊥

P⊥ ⊢ [•]P⊥

P⊥ ⊢ [P⊥]

⊢ [P⊥]P

We can complete the proof by applying the induction hypothesis on P .
�

Lemma 12 (Invertibility of asynchronous rules)
All asynchronous rules are height-preserving invertible in LK

+(T ).

Proof: By induction on the derivation proving the conclusion of the asynchronous rule
considered.
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• Inversion of A∧−B: by case analysis on the last rule actually used

–
Γ ⊢ [X ]A∧−B,C,∆′ Γ ⊢ [X ]A∧−B,D,∆′

Γ ⊢ [X ]A∧−B,C∧−D,∆′

By induction hypothesis we get

Γ ⊢ [X ]A,C,∆′ Γ ⊢ [X ]A,D,∆′

Γ ⊢ [X ]A,C∧−D,∆′
and

Γ ⊢ [X ]B,C,∆′ Γ ⊢ [X ]B,D,∆′

Γ ⊢ [X ]B,C∧−D,∆′

–
Γ ⊢ [X ]A∧−B,C,D,∆′

Γ ⊢ [X ]A∧−B,C∨−D,∆′

By induction hypothesis we get:
Γ ⊢ [X ]A,C,D,∆′

Γ ⊢ [X ]A,C∨−D,∆′
and

Γ ⊢ [X ]B,C,D,∆′

Γ ⊢ [X ]B,C∨−D,∆′

–
Γ ⊢ [X ]A∧−B,C,∆′

x /∈ FV(Γ,X ,∆′, A∧−B)
Γ ⊢ [X ]A∧−B, (∀xC),∆′

By induction hypothesis we get:

Γ ⊢ [X ]A,C,∆′

x /∈ FV(Γ,X ,∆′, A)
Γ ⊢ [X ]A, (∀xC),∆′

and
Γ ⊢ [X ]B,C,∆′

x /∈ FV(Γ,X ,∆′, B)
Γ ⊢ [X ]B, (∀xC),∆′

–
Γ, C⊥ ⊢ [X ]A∧−B,∆′

C positive or literal
Γ ⊢ [X ]A∧−B,C,∆′

By induction hypothesis we get:

Γ, C⊥ ⊢ [X ]A,∆′

C positive or literal
Γ ⊢ [X ]A,C,∆′

and
Γ, C⊥ ⊢ [X ]B,∆′

C positive or literal
Γ ⊢ [X ]B,C,∆′

–
Γ ⊢ [C]A∧−B,∆′ Γ ⊢ [D]A∧−B,∆′

Γ ⊢ [C∧+D, ]A∧−B,∆′

By induction hypothesis we get

Γ ⊢ [C]A,∆′ Γ ⊢ [D]A,∆′

Γ ⊢ [C∧+D]A,∆′
and

Γ ⊢ [C]B,∆′ Γ ⊢ [D]B,∆′

Γ ⊢ [C∧+D]B,∆′

–
Γ ⊢ [Ci]A∧−B,∆′

Γ ⊢ [C1∨+C2]A∧−B,∆′

By induction hypothesis we get

Γ ⊢ [Ci]A,∆
′

Γ ⊢ [C1∨+C2]A,∆′
and

Γ ⊢ [Ci]B,∆
′

Γ ⊢ [C1∨+C2]B,∆′

–
Γ ⊢ [

{

t
�x

}

C]A∧−B,∆′

Γ ⊢ [∃xC]A∧−B,∆′

By induction hypothesis we get

Γ ⊢ [
{

t
�x

}

C]A,∆′

Γ ⊢ [∃xC]A,∆′
and

Γ ⊢ [
{

t
�x

}

C]B,∆′

Γ ⊢ [∃xC]B,∆′

• Inversion of A∨−B

–
Γ ⊢ [X ]A∨−B,C,∆′ Γ ⊢ [X ]A∨−B,D,∆′

Γ ⊢ [X ]A∨−B,C∧−D,∆′

By induction hypothesis we get
Γ ⊢ [X ]A,B,C,∆′ Γ ⊢ [X ]A,B,D,∆′

Γ ⊢ [X ]A,B,C∧−D,∆′

–
Γ ⊢ [X ]A∨−B,C,D,∆′

Γ ⊢ [X ]A∨−B,C∨−D,∆′

By induction hypothesis we get
Γ ⊢ [X ]A,B,C,D,∆′

Γ ⊢ [X ]A,B,C∨−D,∆′
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–
Γ ⊢ [X ]A∨−B,C,∆′

x /∈ FV(Γ,X ,∆′)
Γ ⊢ [X ]A∨−B, (∀xC),∆′

By induction hypothesis we get
Γ ⊢ [X ]A,B,C,∆′

x /∈ FV(Γ,X ,∆′)
Γ ⊢ [X ],A,B, (∀xC),∆′

–
Γ, C⊥ ⊢ [X ],A∨−B,∆′

C positive or literal
Γ ⊢ [X ],A∨−B,C,∆′

By induction hypothesis we get
Γ, C⊥ ⊢ [X ],A,B,∆′

C positive or literal
Γ ⊢ [X ],A,B,C,∆′

–
Γ ⊢ [C]A∨−B,∆′ Γ ⊢ [D]A∨−B,∆′

Γ ⊢ [C∧+D]A∨−B,∆′

By induction hypothesis we get
Γ ⊢ [C]A,B,∆′ Γ ⊢ [D]A,B,∆′

Γ ⊢ [C∧+D]A,B,C∧−D,∆′

–
Γ ⊢ [Ci]A∨−B,∆′

Γ ⊢ [C1∨+C2]A∨−B,∆′

By induction hypothesis we get
Γ ⊢ [Ci]A,B,∆

′

Γ ⊢ [C1∨+C2]A,B,∆′

–
Γ ⊢ [

{

t
�x

}

C]A∨−B,∆′

Γ ⊢ [∃xC]A∨−B,∆′

By induction hypothesis we get
Γ ⊢ [

{

t
�x

}

C]A,B,∆′

Γ ⊢ [∃xC]A,B,∆′

• Inversion of ∀xA

–
Γ ⊢ [X ],(∀xA),C,∆′ Γ ⊢ [X ],(∀xA),D,∆′

Γ ⊢ [X ],(∀xA),C∧−D,∆′

By induction hypothesis we get
Γ ⊢ [X ],A,C,∆′ Γ ⊢ [X ],A,D,∆′

x /∈ FV(Γ,X ,∆′)
Γ ⊢ [X ],A,C∧−D,∆′

–
Γ ⊢ [X ],(∀xA), C,D,∆′

Γ ⊢ [X ],(∀xA),C∨−D,∆′

By induction hypothesis we get
Γ ⊢ [X ],A,C,D,∆′

Γ ⊢ [X ],A,C∨−D,∆′

–
Γ ⊢ [X ],(∀xA),D,∆′

x /∈ FV(Γ,X ,∆′)
Γ ⊢ [X ],(∀xA), (∀xD),∆′

By induction hypothesis we get
Γ ⊢ [X ],A,D,∆′

x /∈ FV(Γ,X ,∆′)
Γ ⊢ [X ],A, (∀xD),∆′

–
Γ, C⊥ ⊢ [X ],(∀xA),∆′

C positive or literal
Γ ⊢ [X ],(∀xA), C,∆′

By induction hypothesis we get
Γ, C⊥ ⊢ [X ],A,∆′

Cpositive or literal
Γ ⊢ [X ],A,C,∆′

–
Γ ⊢ [C],(∀xA),∆′ Γ ⊢ [D],(∀xA),∆′

Γ ⊢ [C∧+D](∀xA),∆′

By induction hypothesis we get
Γ ⊢ [C],A,∆′ Γ ⊢ [D],A,∆′

x /∈ FV(Γ, C∧+D,∆′)
Γ ⊢ [C∧+D],A,∆′

–
Γ ⊢ [Ci],(∀xA),∆′

Γ ⊢ [C1∨+C2],(∀xA),∆′

By induction hypothesis we get
Γ ⊢ [Ci],A,∆

′

Γ ⊢ [C1∨+C2],A,∆′
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–
Γ ⊢ [

{

t
�x

}

D](∀xA),∆′

x /∈ FV(Γ,∃xD,∆′)
Γ ⊢ [∃xD],(∀xA),∆′

By induction hypothesis we get
Γ ⊢ [

{

t
�x

}

D],A,∆′

x /∈ FV(Γ,∃xD,∆′)
Γ ⊢ [∃xD],A,∆′

• Inversion of literals and positive formulae (A)

–
Γ ⊢ [X ],A,C,∆′ Γ ⊢ [X ],A,D,∆′

Γ ⊢ [X ],A,C∧−D,∆′

By induction hypothesis we get
Γ, A⊥ ⊢ [X ],C,∆′ Γ, A⊥ ⊢ [X ],D,∆′

Γ, A⊥ ⊢ [X ],C∧−D,∆′

–
Γ ⊢ [X ],A,C,D,∆′

Γ ⊢ [X ],A,C∨−D,∆′

By induction hypothesis
Γ, A⊥ ⊢ [X ],C,D,∆′

Γ, A⊥ ⊢ [X ],C∨−D,∆′

–
Γ ⊢ [X ],A,D,∆′

x /∈ FV(Γ,X ,∆′)
Γ ⊢ [X ],A, (∀xD),∆′

By induction hypothesis we get
Γ, A⊥ ⊢ [X ],D,∆′

x /∈ FV(Γ,X ,∆′)
Γ, A⊥ ⊢ [X ],(∀xD),∆′

–
Γ, B⊥ ⊢ [X ],A,∆′

B positive or literal
Γ ⊢ [X ],A,B,∆′

By induction hypothesis we get
Γ, A⊥, B⊥ ⊢ [X ],∆′

B positive or literal
Γ, A⊥ ⊢ [X ],B,∆′

–
Γ ⊢ [C],A,∆′ Γ ⊢ [D],A,∆′

Γ ⊢ [C∧+D, ],A,∆′

By induction hypothesis we get
Γ, A⊥ ⊢ [C],∆′ Γ, A⊥ ⊢ [D]∆′

Γ, A⊥ ⊢ [C∧+D, ],∆′

–
Γ ⊢ [Ci],A,∆

′

Γ ⊢ [C1∨+C2],A,∆′

By induction hypothesis
Γ, A⊥ ⊢ [Ci]∆

′

Γ, A⊥ ⊢ [C1∨+C2],∆′

–
Γ ⊢ [

{

t
�x

}

D],A,∆′

Γ ⊢ [∃xD]A,∆′

By induction hypothesis we get
Γ, A⊥ ⊢ [

{

t
�x

}

D]∆′

Γ, A⊥ ⊢ [∃xD],∆′

�

Lemma 13 (Encoding LK
+(T ) in LK(T ))

1. If Γ ⊢ [A] is provable in LK
+(T ), then Γ ⊢ [A] is provable in LK(T ).

2. If Γ ⊢ [•]∆ is provable in LK
+(T ), then Γ ⊢ ∆ is provable in LK(T ).

Proof: By simultaneous induction on the assumed derivation.

1. For the first item we get, by case analysis on the last rule of the derivation:
•

Γ ⊢ [A1] Γ ⊢ [A2]

Γ ⊢ [A1∧+A2]

with A = A1∧+A2. The induction hypothesis on Γ ⊢LK+(T ) [A1] gives Γ ⊢LK(T ) [A1]
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and the induction hypothesis on Γ ⊢LK+(T ) [A2] gives Γ ⊢LK(T ) [A2]. We get:

Γ ⊢ [A1] Γ ⊢ [A2]

Γ ⊢ [A1∧+A2]

•
Γ ⊢ [Ai]

Γ ⊢ [A1∨+A2]

with A = A1∨+A2.
The induction hypothesis on Γ ⊢LK+(T ) [Ai] gives Γ ⊢LK(T ) [Ai]. We get:

Γ ⊢ [Ai]

Γ ⊢ [A1∨+A2]

•
Γ ⊢ [{t/x}A]

Γ ⊢ [∃xA]

with A = ∃xA.
The induction hypothesis on Γ ⊢LK+(T ) [{t/x}A] gives Γ ⊢LK(T ) [{t/x}A]. We get:

Γ ⊢ [{t/x}A]

Γ ⊢ [∃xA]

•
T (lit(Γ), p⊥)

Γ ⊢ [p]

with A = p where p is a positive literal. We can perform the same step in LK(T ):

T (lit(Γ), p⊥)

Γ ⊢ [p]

•
Γ ⊢ [•]N

Γ ⊢ [N ]

with A = N and N is negative.
The induction hypothesis on Γ ⊢LK+(T ) [•]N gives Γ ⊢LK(T ) N . We get:

Γ ⊢ N

Γ ⊢ [N ]

2. For the second item, we use the height-preserving invertibility of the asynchronous rules,
so that we can assume without loss of generality that if ∆ is not empty then the last
rule of the derivation decomposes one of its formulae.

•
Γ ⊢ [•]A1,∆1 Γ ⊢ [•]A2,∆1

Γ ⊢ [•]A1∧−A2,∆1

with ∆ = A1∧−A2,∆1. The induction hypothesis on Γ ⊢LK+(T ) [•]A1,∆1 gives

Γ ⊢LK(T ) A1,∆1 and the induction hypothesis on Γ ⊢LK+(T ) [•]A2,∆2 gives Γ ⊢LK(T ) A2,∆2.
We get:

Γ ⊢ A1,∆1 Γ ⊢ A2,∆1

Γ ⊢ A1∧−A2,∆1

•
Γ ⊢ [•]A1, A2,∆1

Γ ⊢ [•]A1∨−A2,∆1
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with ∆ = A1∨−A2,∆1. The induction hypothesis on Γ ⊢LK+(T ) [•]A1, A2∆1 gives

Γ ⊢LK(T ) A1, A2∆1 and we get:

Γ ⊢ A1, A2,∆1

Γ ⊢ A1∨−A2,∆1

•
Γ ⊢ [•]A,∆1

x 6∈ FV(Γ,∆1)
Γ ⊢ [•]∀xA,∆1

with ∆ = ∀xA,∆1.
The induction hypothesis on Γ ⊢LK+(T ) [•]A,∆1 gives Γ ⊢LK(T ) A,∆1. We get:

Γ ⊢ A,∆1

x 6∈ FV(Γ,∆1)
Γ ⊢ ∀xA,∆1

•
Γ, A⊥ ⊢ [•]∆1

Γ ⊢ [•]A,∆1

with ∆ = A,∆1 and A is a positive or literal.
The induction hypothesis on Γ, A⊥ ⊢LK+(T ) [•]∆1 gives Γ, A⊥ ⊢LK(T ) ∆1. We get:

Γ, A⊥ ⊢ ∆1

Γ ⊢ A,∆1

•
Γ, P⊥ ⊢ [P ]∆

Γ, P⊥ ⊢ [•]∆

where P is positive.
As already mentioned, we can assume without loss of generality that ∆ is empty.
The induction hypothesis on Γ, P⊥ ⊢LK+(T ) [P ] (1) gives Γ, P⊥ ⊢LK(T ) [P ]. We get:

Γ, P⊥ ⊢ [P ]

Γ, P⊥ ⊢

•
T (lit(Γ), lit(∆))

Γ ⊢ [•]∆

As already mentioned, we can assume without loss of generality that ∆ is empty.
We get:

T (lit(Γ))

Γ ⊢
�

Lemma 14 We have:

1. ⊢LK(T ) (A∧+B)
⊥
, (A∧−B)

2. ⊢LK(T ) (A∧−B)
⊥
, (A∧+B).

Proof:

1. For the first item we get:
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⊢ [A⊥]A
− − − − − WK
A ⊢ [A⊥]A

A ⊢ [•]A

⊢ [•]A⊥, A
− − − − − − −− WK

⊢ [•]A⊥, B⊥, A

⊢ [B⊥]B
− − − − − WK
B ⊢ [B⊥]B

B ⊢ [•]B

⊢ [•]B⊥, B
− − − − − − −− WK

⊢ [•]A⊥, B⊥, B
======================================

⊢ [•](A⊥∨−B⊥), (A∧−B)

⊢ [•](A∧+B)
⊥
, (A∧−B)

Lemma 13(2)
⊢ (A∧+B)

⊥
, (A∧−B)

Both left hand side and right hand side can be closed by Lemma 11.

2. For the second item, we get:

⊢ [A⊥]A

⊢ [A⊥∨+B⊥]A
− − − − − − − − − −− WK
A∧−B ⊢ [A⊥∨+B⊥]A

A∧−B ⊢ [•]A
Lemma 13(2)

A∧−B ⊢ A
− − − − − − − − − − − − WK
(A∧−B), (A⊥∨−B⊥) ⊢ A

⊢ [B⊥]B

⊢ [A⊥∨+B⊥]B
− − − − − − − − − −− WK
A∧−B ⊢ [A⊥∨+B⊥]B

A∧−B ⊢ [•]B
Lemma 13(2)

A∧−B ⊢ B
− − − − − − − WK
A∧−B ⊢ A⊥, B

− − − − − − − − − − − − − − WK
(A∧−B), (A⊥∨−B⊥) ⊢ A⊥, B

⊢ [A]A⊥

− − − − − −− WK
⊢ [A]A⊥, B⊥

⊢ [B]B⊥

− − − − − −− WK
⊢ [B]A⊥, B⊥

⊢ [A∧+B]A⊥, B⊥

− − − − − − − − − − − − − WK
A⊥∨−B⊥ ⊢ [A∧+B]A⊥, B⊥

A⊥∨−B⊥ ⊢ [•]A⊥, B⊥

Lemma 13(2)
A⊥∨−B⊥ ⊢ A⊥, B⊥

− − − − − − − − − − − − − − − WK
(A∧−B), (A⊥∨−B⊥) ⊢ A⊥, B⊥

cut7

(A∧−B), (A⊥∨−B⊥) ⊢ A⊥

cut7

(A∧−B), (A∧+B)
⊥

⊢
==================
⊢ (A∧−B)

⊥
, (A∧+B)

All branches are closed by Lemma 11. �

Lemma 15 If Γ ⊢LK(T ) ∆, C and Γ ⊢LK(T ) D,C
⊥ then Γ ⊢LK(T ) ∆,D.

Proof:

Γ ⊢ ∆, C
− − − − − − WK
Γ ⊢ D,∆, C

Γ ⊢ D,C⊥

− − − − − −− WK
Γ ⊢ ∆,D,C⊥

cut7

Γ ⊢ ∆,D
�

Corollary 16 (Changing the polarity of connectives)

1. If Γ ⊢ A∧+B,∆ then Γ ⊢ A∧−B,∆. Proof: By Lemma 15 and Lemma 14(1). �

2. If Γ ⊢ A∧−B,∆ then Γ ⊢ A∧+B,∆. Proof: By Lemma 15 and Lemma 14(2). �

3. If Γ ⊢ A∨+B,∆ then Γ ⊢ A∨−B,∆. Proof: By Lemma 15 and Lemma 14(1). �

4. If Γ ⊢ A∨−B,∆ then Γ ⊢ A∨+B,∆. Proof: By Lemma 15 and Lemma 14(2). �

We have proven that changing the polarities of the connectives that are present in a
sequent, does not change the provability of that sequent in LK(T ).

6 Completeness

Definition 6 (Formulae)
Let A be a set, whose elements will be called atoms.
The formulae of first-order logic are given by the following grammar:
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Formulae A,B, . . . ::= a | A ∨B | A ∧B | ∀xA | ∃xA | ¬A

where a ranges over atoms.

Definition 7 (ψ and ψ̄) Let ψ be a function that maps every atom to a polarised literal
that has the same meaning for T .

Let ψ̄ be the function that maps every formula of first-order logic to a set of polarised
formulae defined as follows:

ψ̄(a) := {ψ(a)}
ψ̄(A ∧B) := {A′∧−B′, A′∧+B′ | A′ ∈ ψ(A),B′ ∈ ψ(B)}
ψ̄(A ∨B) := {A′∨−B′, A′∨+B′ | A′ ∈ ψ(A),B′ ∈ ψ(B)}
ψ̄(∃xA) := {∃xA′ | A′ ∈ ψ(A)}
ψ̄(∀xA) := {∀xA′ | A′ ∈ ψ(A)}

ψ̄(¬A) := {A′⊥ | A′ ∈ ψ(A)}
ψ̄(∆, A) := {∆′, A′ | ∆′ ∈ ψ(∆), A′ ∈ ψ(A)}
ψ̄(∅) := ∅

Remark 17 ψ̄(A) 6= ∅

Remark 18 If A′ ∈ ψ̄(A), then
{

t�x

}

A′ ∈ ψ̄(
{

t�x

}

A′).

If C′ ∈ ψ̄(
{

t�x

}

A), then C′ =
{

t�x

}

A′ for some A′ ∈ ψ̄(A).

Notation 19 In the rest of this section we will use the notation A ∧? B (resp. A ∨? B)
to ambiguously represent either A∧+B or A∧−B (resp. A∨+B or A∨−B). This will make
the proofs more compact, noticing that Corollary 16(2) and 16(4) respectively imply the
admissibility of

Γ ⊢ ∆, A∧−B

Γ ⊢ ∆, A ∧? B

Γ ⊢ ∆, A∨−B

Γ ⊢ ∆, A ∨? B

Lemma 20 For all A′, A′′ ∈ ψ̄(A), we have ⊢LK(T ) A
′, A′′⊥

Proof: In the proof below, for any formula A, the notations A′ and A′′ will systematically
designate elements of ψ(A).

The proof is by induction on A:

1. A = a.

Let A′, A′′ ∈ ψ̄(a) = {ψ(a)}. Therefore A′ = A′′ = A = ψ(a).

ψ(a) ⊢ [ψ(a)]

ψ⊥(a), ψ(a) ⊢

⊢ ψ(a), ψ⊥(a)

2. A = A1 ∧ A2

Let A′
1, A

′′
1 ∈ ψ̄(A1) , A′

2, A
′′
2 ∈ ψ̄(A2) and A′ = A′

1 ∧? A′
2, A′′ = A′′

1 ∧? A′′
2 .

⊢ A′
1, A

′′
1

⊥

WK
⊢ A′

1, A
′′
1

⊥
, A′′

2
⊥

⊢ A′
2, A

′′
2

⊥

WK
⊢ A′

2, A
′′
1

⊥
, A′′

2
⊥

=======================================
⊢ A′

1∧−A′
2, A

′′
1

⊥
∨−A′′

2
⊥

⊢ A′, A′′
1

⊥
∨−A′′

2
⊥

⊢ A′, A′′⊥

We can complete the proof on the left-hand side by applying the induction on A1 and
on the right-hand side by applying the induction hypothesis on A2.
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3. A = A1 ∨ A2

Let A′
1, A

′′
1 ∈ ψ̄(A1) , A′

2, A
′′
2 ∈ ψ̄(A2) and A′ = A′

1 ∨? A′
2, A′′ = A′′

1 ∨? A′′
2 .

⊢ A′
1, A

′′
1

⊥

WK
⊢ A′

1, A
′
2, A

′′
1

⊥

⊢ A′
2, A

′′
2

⊥

WK
⊢ A′

1, A
′
2, A

′′
2

⊥

=====================================
⊢ A′

1∨−A′
2, A

′′
1

⊥
∧−A′′

2
⊥

⊢ A′, A′′
1

⊥
∧−A′′

2
⊥

⊢ A′, A′′⊥

We can complete the proof on the left-hand side by applying the induction on A1 and
on the right-hand side by applying the induction hypothesis on A2.

4. A = ∀xA1

Let A′ = ∀xA′
1 and A′′ = ∀xA′′

1 .

⊢ [A′′
1

⊥
]A′′

1

⊢ [∃xA′′
1 ]A′′

1
=========== WK
∀xA′′

1 ⊢ [•]A′′
1

=========== Lemma 13(2)
⊢ A′′

1 ,∃xA
′′
1

⊥
⊢ A′

1, A
′′
1

⊥

Lemma 15
⊢ A′

1, ∃xA
′′

1
⊥

⊢ ∀xA′
1,∃xA

′′
1

⊥

We can complete the proof on the left-hand side by Lemma 11 and the right-hand side
by applying the induction hypothesis on A1.

5. A = ∃xA1

Let A′ = ∃xA′
1 and A′′ = ∃xA′′

1 .

⊢ [A′
1

⊥
]A′

1
==========
⊢ [A′

1]∃xA′
1

===========
A′

1 ⊢ [•]∃xA′
1

=========== Lemma 13(2)
⊢ A′

1
⊥
, ∃xA′

1 ⊢ A′
1, A

′′
1

⊥

Lemma 15
⊢ ∃xA′

1, A
′′
1

⊥

⊢ ∃xA′
1,∀xA

′′
1

⊥

We can complete the proof on the left-hand side by Lemma 11 and the right-hand side
by applying the induction hypothesis on A1.

6. A = ¬A1

Let A′, A′′ ∈ ψ̄(¬A1).

Let A′ = A′
1

⊥
with A′

1 ∈ ψ̄(A1) and A′′ = A′′
1

⊥
with A′′

1 ∈ ψ̄(A1).

The induction hypothesis on A1 we get: ⊢LK(T ) A
′, A′′⊥

and we are done.
�

Theorem 21 (Completeness of LK(T ))

Let ΓT = {l1 ∨ · · · ∨ ln | T (l1
⊥, · · · , ln

⊥)} .

If ΓT ,∆ ⊢FOL A then for all A′ ∈ ψ̄(A) and ∆′ ∈ ψ̄(∆), we have ⊢LK(T ) A
′,∆′⊥

.

Proof:
For any formula A, the notation A′ will systematically designate elements of ψ(A) and for

any multiset of formulae ∆, the notation ∆′ will systematically designate elements of ψ(∆).
The proof is by induction of ΓT ,∆ ⊢FOL A, and case analysis on the last rule:

• Axiom:
A ∈ ΓT ,∆

ΓT ,∆ ⊢ A

By case analysis:
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– If A ∈ ∆ then:

⊢ A′, A′′⊥

WK
⊢ A′,∆′⊥

with A′, A′′ ∈ ψ̄(A).
We can close the branch by Lemma 20.

– If A ∈ ΓT then:

A is of the form l1 ∨ · · · ∨ ln with T (ψ(l1)⊥, · · · , ψ(ln)⊥). Let C′ ∈ ψ̄(A). C′ is of
the form ψ(l1) ∨? · · · ∨? ψ(ln).

T (ψ(l1)⊥, · · · , ψ(ln)⊥)

ψ(l1)⊥, · · · , ψ(ln)⊥ ⊢

⊢ ψ(l1), · · · , ψ(ln))
===================
⊢ ψ(l1)∨− · · · ∨−ψ(ln))

⊢ C′

− − − − − WK
⊢ ∆′⊥

, C′

This is a complete proof since T (ψ(l1)⊥, · · · , ψ(ln)⊥) returns UNSAT .

• And Intro:
ΓT ,∆ ⊢ A1 ΓT ,∆ ⊢ A2

ΓT ,∆ ⊢ A1 ∧A2

A′ ∈ ψ̄(A1 ∧A2) is of the form A′
1 ∧? A′

2 with A′
1 ∈ ψ(A1) and A′

2 ∈ ψ(A2).

The induction hypothesis on ΓT ,∆ ⊢FOL A1 gives ⊢LK(T ) A
′
1,∆

′⊥
and the induction

hypothesis on ΓT ,∆ ⊢FOL A2 gives ⊢LK(T ) A
′
2,∆

′⊥
. We build:

⊢ A′
1,∆

′⊥
⊢ A′

2,∆
′⊥

⊢ A′
1∧−A′

2,∆
′⊥

⊢ A′
1 ∧? A′

2,∆
′⊥

• And Elim
ΓT ,∆ ⊢ A ∧B

ΓT ,∆ ⊢ A
–

Since ψ̄(B) 6= ∅, let B′ ∈ ψ̄(B) and C′ = A′∧−B′ (C′ ∈ ψ̄(A ∧B)).

The induction hypothesis on the premise, with ∆′ and C′, gives ⊢LK(T ) C
′,∆′⊥

and we get:

⊢ C′,∆′⊥

⊢ A′,∆′⊥

by Lemma 3.

ΓT ,∆ ⊢ A ∧B

ΓT ,∆ ⊢ B
–

Since ψ̄(A) 6= ∅, let A′ ∈ ψ̄(A) and C′ = A′∧−B′ (C′ ∈ ψ̄(A ∧B)).

The induction hypothesis on the premise, with ∆′ and C′, gives ⊢LK(T ) C
′,∆′⊥

and we get:

⊢ C′,∆′⊥

⊢ B′,∆′⊥

by Lemma 3.

• Or Intro
ΓT ,∆ ⊢ Ai

ΓT ,∆ ⊢ A1 ∨A2
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A′ ∈ ψ̄(A1 ∨A2) is of the form A′
1 ∨? A′

2 with A′
1 ∈ ψ(A1) and A′

2 ∈ ψ(A2).

The induction hypothesis on ΓT ,∆ ⊢FOL Ai gives ⊢LK(T ) A
′
i,∆

′⊥
and we build:

⊢ A′
i,∆

′⊥

WK
⊢ A′

1, A
′
2,∆

′⊥

⊢ A′
1∨−A′

2,∆
′⊥

⊢ A′
1 ∨? A′

2,∆
′⊥

• Or Elim
ΓT ,∆ ⊢ A1 ∨ A2 ΓT ,∆, A1 ⊢ C ΓT ,∆, A2 ⊢ C

ΓT ,∆ ⊢ C

Let D′ = A′
1∨−A′

2 with A′
1 ∈ ψ(A1) and A′

2 ∈ ψ(A2).

The induction hypothesis on ΓT ,∆ ⊢FOL A1 ∨ A2 gives ⊢LK(T ) D
′,∆′⊥

, the induction

hypothesis on ΓT , A1,∆ ⊢FOL C gives ⊢LK(T ) A
′
1

⊥
, C′,∆′⊥

and the induction hypothesis

on ΓT , A2,∆ ⊢FOL C gives ⊢LK(T ) A
′
2

⊥
, C′,∆′⊥

. We get:

⊢ D′, C′,∆′⊥

⊢ A′
1

⊥
, C′,∆′⊥

⊢ A′
2

⊥
, C′,∆′⊥

⊢ A′
1

⊥
∧+A′

2
⊥
, C′,∆′⊥

⊢ (A′
1∨−A′

2)
⊥
, C′,∆′⊥

cut7
⊢ C′,∆′⊥

• Universal quantifier Intro

ΓT ,∆ ⊢ A
x 6∈ Γ

ΓT ,∆ ⊢ ∀xA

C′ ∈ ψ̄(∀xA) is of the form ∀xA′ with A′ ∈ ψ̄(A).

The induction hypothesis on ΓT ,∆ ⊢FOL A gives ⊢LK(T ) A
′,∆′⊥

. We get:

⊢ A′,∆′⊥

⊢ ∀xA′,∆′⊥

• Universal quantifier Elim

ΓT ,∆ ⊢ ∀xA

ΓT ,∆ ⊢
{

t
�x

}

A

C′ ∈ ψ̄(
{

t�x

}

A) is of the form
{

t�x

}

A′ with A′ ∈ ψ(A) (by remark 18).

The induction hypothesis on ΓT ,∆ ⊢FOL ∀xA gives ⊢LK(T ) ∀xA′,∆′⊥
. We get:

⊢ ∀xA′,∆′⊥

⊢ A′,∆′⊥

− − − − − − −−
⊢

{

t
�x

}

A′,∆′⊥

by Lemma 3 and Lemma 2.

• Existential quantifier Intro

ΓT ,∆ ⊢
{

t
�x

}

A

ΓT ,∆ ⊢ ∃xA

C′ ∈ ψ̄(∃xA) is of the form ∃xA′ with A′ ∈ ψ̄(A).

Let A′
t =

{

t�x

}

A′ (A′
t ∈ ψ̄(

{

t�x

}

A) by remark 18).

The induction hypothesis on ΓT ,∆ ⊢FOL

{

t�x

}

A gives ⊢LK(T ) A
′
t,∆

′⊥
.

By Lemma 15 it suffices to prove ⊢LK(T ) ∃xA′, A′
t

⊥
in order to get ⊢LK(T ) C

′,∆′⊥
:

24



⊢ [A′
t]A

′
t

⊥

⊢ [∃xA′]A′
t

⊥

============= WK
∀xA′⊥

⊢ [•]A′
t

⊥

============= Lemma 13(2)
⊢ ∃xA′, A′

t

⊥

We can complete the proof by applying Lemma 11.

• Existential quantifier Elim

ΓT ,∆ ⊢ ∃xA Γ,∆, A ⊢ B
x 6∈ Γ, B

ΓT ,∆ ⊢ B

Let C′ = ∃xA′ with A′ ∈ ψ̄(A).

⊢ C′,∆′⊥

⊢ A′⊥
, B′,∆′⊥

⊢ ∀xA′⊥
, B′,∆′⊥

⊢ C′⊥
, B′,∆′⊥

cut7
⊢ B′,∆′⊥

We can complete the proof on the left-hand side by applying the induction hypothesis
on ΓT ,∆ ⊢FOL ∃xA and on the right-hand side by applying the induction hypothesis on
ΓT ,∆, A ⊢FOL B.

• Negation Intro

ΓT ,∆, A ⊢ B ∧ ¬B

ΓT ,∆ ⊢ ¬A

If C′ ∈ ψ̄(¬A) then C′⊥
∈ ψ̄(A). Let D′ = D′

1∧−D′
2 with D′

1 ∈ ψ̄(B) and D′
2 ∈ ψ̄(¬B).

Therefore D′
2

⊥
∈ ψ̄(B), D′ ∈ ψ̄(B ∧ ¬B) and ∆′, C′⊥

∈ ψ̄(∆, A).

⊢ ∆′⊥
, C′,D′

⊢ D′
1

⊥
,D′

2
⊥

⊢ D′
1

⊥
∨−D′

2
⊥

Corollary 16(4)
⊢ D′⊥

− − − − − − −− WK
⊢ ∆′⊥

, C′,D′⊥

cut7
⊢ ∆′⊥

, C′

We can complete the proof on the left-hand side by applying the induction hypothesis on
ΓT ,∆, A ⊢ B∧ ¬B and on the right-hand side by applying Lemma 20 with A′′⊥

= D′
1

⊥

and A′ = D′
2

⊥
.

• Negation Elimination

ΓT ,∆ ⊢ ¬¬A

ΓT ,∆ ⊢ A

A′ ∈ ψ̄(A) is such that A′ ∈ ψ̄(¬¬A).

The induction hypothesis on ΓT ,∆ ⊢ ¬¬A gives ⊢ ∆′⊥
, A′ and we are done.

�

7 The LK
p(T ) sequent calculus:

on-the-fly polarisation of literals

Definition 8 (Literals) From now on we distinguish polarised literals and unpolarised lit-
erals. The former are those literals used so far in LK(T ); the later are introduce as follows:

Let L be a set of elements called unpolarised literals, equipped with an involutive function
called negation from L to L. In the rest of this paper, a possibly primed or indexed lowercase
l always denotes a literal, and l⊥ its negation.

From now on, the expression literals refers to unpolarised literals.
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Definition 9 (Formulae, negation) The formulae LK
p(T ) are given by the following

grammar:

Formulae A,B, . . . ::= l | A∧+B | A∨+B | A∧−B | A∨−B

where l ranges over literals.
A polarisation set P is a set of literals (P ⊆ L) such that if l ∈ P , then l⊥ 6∈ P .
Given such a set, we define P-positive formulae and P-negative formulae as the formulae

generated by the following grammars:

P-positive formulae P, . . . ::= l | A∧+B | A∨+B

P-negative formulae N, . . . ::= l⊥ | A∧−B | A∨−B

where l ranges over P .
Negation is extended from literals to all formulae using the following definitions:

(A∧+B)
⊥

:= A⊥∨−B⊥ (A∧−B)
⊥

:= A⊥∨+B⊥

(A∨+B)
⊥

:= A⊥∧−B⊥ (A∨−B)
⊥

:= A⊥∧+B⊥

(∃xA)⊥ := ∀xA⊥ (∀xA)⊥ := ∃xA⊥

Definition 10 (System LK
p(T )) The sequent calculus LK

p(T ) is given by the rules of Fig-
ure 3, where Γ and ∆ are multisets of formulae.

Γ ⊢
P [A] Γ ⊢

P [B]

Γ ⊢
P [A∧

+B]

Γ ⊢
P [Ai]

Γ ⊢
P [A1∨

+A2]

T (lit(Γ), l⊥)

Γ ⊢
P,l [l]

Γ ⊢
P N

N is not P-positive
Γ ⊢

P [N ]

Γ ⊢
P A, ∆ Γ ⊢

P B, ∆

Γ ⊢
P A∧

−B, ∆

Γ ⊢
P A1, A2, ∆

Γ ⊢
P A1∨

−A2, ∆

Γ ⊢
P,l ∆

Γ ⊢
P ∆

Γ, A⊥
⊢

P Γ′

A is P-positive
or a P-negative literalΓ ⊢

P A, Γ′

Γ, P ⊥
⊢

P [P ]
P is P-positive

Γ, P ⊥
⊢

P

T (lit(Γ))

Γ ⊢ P

Figure 3: System LKp(T )

Definition 11 (φ compatible with P) Let φ be a function that maps every unpolarised
literal to a polarised literal that has the same meaning for T and such that φ(l⊥) = φ(l)⊥ for
all l.

• φ is said to be compatible with a polarisation set P if for all l ∈ P , φ (l) is a positive
literal of LK(T ).

• φ is extended into a mapping of formulae, and multisets of formulae, so that we can
write φ (A) ,φ (B) φ (Γ) , φ (∆), etc. .

Theorem 22 (Encoding LK
p(T ) in LK(T ))

1. If Γ ⊢P ∆ in LK
p(T ), then for all φ compatible with P, φ(Γ) ⊢ φ(∆) in LK(T ).

2. If Γ ⊢P [A] in LK
p(T ), then:

(a) either for all φ compatible with P, φ(Γ) ⊢ in LK(T );
(b) or there exists a polarisation set P ′ ⊇ P such that:

i. for all φ compatible with P ′, φ(Γ) ⊢ [φ(A)] in LK(T );
ii. for all l ∈ P ′ \ P, for all φ compatible with P, φ(Γ) ⊢ φ(l⊥) in LK(T ).
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Proof: In our proof we use Γ′ for φ(Γ), A′ for φ(A), B′ for φ(B) and ∆′ for φ(∆), etc.

1.
Γ ⊢P [A1] Γ ⊢P [A2]

Γ ⊢P [A1∧+A2]

for A = A1∧+A2.

We apply the induction hypothesis (2.) on Γ ⊢P [A1] and on Γ ⊢P [A2].
• If we get (2.a) for either of the two sides, then it proves (2.a) for Γ ⊢P [A1∧+A2]

(same statement).
• If we get (2.b) for both sides, then we get two polarisation sets P1 ⊇ P and P2 ⊇ P .

Let P ′ := P1 ∪ P2.
– If P ′ is not a polarisation set, then it means there is a literal l ∈ P1 \ P and
l⊥ ∈ P2\P. The induction hypothesis (2.b.ii) ensures that for any φ compatible
with P , Γ′ ⊢ φ(l) and Γ′ ⊢ φ(l)⊥ in LK(T ), and using cut7 (Theorem 6), we
get Γ′ ⊢ in LK(T ).
This is exactly (2.a) for Γ ⊢P [A1∧+A2].

– If on the other hand, P ′ is a polarisation set, then:
∗ Any φ compatible with P ′ is compatible with both P1 and P2, so the in-

duction hypothesis (2.b.i) provides Γ′ ⊢ [A′
1] and Γ′ ⊢ [A′

2] in LK(T ), and
therefore Γ′ ⊢ [A′

1∧+A′
2] in LK(T ).

This is (2.b.i) for Γ ⊢P [A1∧+A2].
∗ If l ∈ P ′ \ P, then l ∈ Pi \ P for i = 1 or i = 2, and induction hypothesis

(2.b.ii) on side i provides Γ′ ⊢ φ(l)⊥ for any φ compatible with P .
This is (2.b.ii) for Γ ⊢P [A1∧+A2].

2.
Γ ⊢P [Ai]

Γ ⊢P [A1∨+A2]

for A = A1∨+A2.
We apply the induction hypothesis (2.) on Γ ⊢P [Ai].

• If we get (2.a), then it proves (2.a) for Γ ⊢P [A1∨+A2] (same statement).
• If we get (2.b), then we get a polarisation set Pi ⊇ P .

We prove (2.b) for Γ ⊢P [A1∨+A2], choosing P ′ := Pi:
– (2.b.ii) for Γ ⊢P [A1∨+A2] is the same statement as for Γ ⊢P [Ai];
– in order to prove (2.b.i) for Γ ⊢P [A1∨+A2], let φ be compatible with P ′; the

induction hypothesis (2.b.i) provides Γ ⊢P [Ai] in LK(T ), from which we get
Γ ⊢P [A1∨+A2].

3.
T (lit(Γ), l⊥)

Γ ⊢P,l

T
[l]

for A = l.
Let p = φ(l) and we can build:

T (lit(Γ′), p⊥)

Γ′ ⊢ [p]

4.
Γ ⊢P N

Γ ⊢P [N ]

where A = N is not P-positive.

We apply the induction hypothesis (1.) on Γ ⊢P N :
for any φ compatible with P we have Γ′ ⊢ N ′ in LK(T ).

• If N is P-negative, then N ′ is negative, and therefore for any φ compatible with P
we can apply the same rule in LK(T ):

Γ′ ⊢ N ′

Γ′ ⊢ [N ′]
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This proves (2.b) for Γ ⊢P [N ], chosing P ′ := P .
• IfN is not P-negative, then it is necessarily a literal l whose polarity is undetermined

by P , and we then prove (2.b) for Γ ⊢P [N ], this time chosing P ′ := P ∪ {l⊥}.
(2.b.i) holds because for any φ compatible with P ′ we can apply the same rule in
LK(T ):

Γ′ ⊢ φ(l)

Γ′ ⊢ [φ(l)]

(2.b.ii) holds because P ′ \ P = {l⊥}, and for any φ compatible with P , induction
hypothesis (1.) provides Γ′ ⊢ φ(l) in LK(T ).

5.
Γ ⊢P,l ∆

Γ ⊢P ∆

Let φ be compatible with P .
• If φ(l) is positive, then the induction hypothesis gives φ(Γ) ⊢ φ(∆).
• If φ(l) is negative, let p be a positive literal with the same meaning as φ(l) for T .

Then let φ′ be defined as:







φ′(l′) = φ(l′) if l′ 6= l and l′ 6= l⊥

φ′(l) = p

φ′(l⊥) = p⊥

φ′ is compatible with P , l, so by induction hypothesis we get φ′(Γ) ⊢ φ′(∆). By
corollary 9, we have {φ(l), φ(l)⊥/φ′(l), φ′(l)⊥}φ′(Γ) ⊢ φ′(∆).

6.
Γ ⊢P A1,∆ Γ ⊢P A2,∆

Γ ⊢P A1∧−A2,∆

for ∆ = A1∧−A2,∆
The induction hypothesis on Γ ⊢P A1,∆ gives Γ′ ⊢ A′

1,∆
′ in LK(T ) and the induction

hypothesis on Γ ⊢P A2,∆ gives Γ′ ⊢ A′
2,∆

′ in LK(T ). We get:

Γ′ ⊢ A′,∆′ Γ′ ⊢ B′,∆′

Γ′ ⊢ A′∧−B′,∆′

7.
Γ ⊢P A1, A2,∆

Γ ⊢P A1∨−A2,∆

for ∆ = A1∨−A2,∆.
The induction hypothesis on Γ ⊢P A1, A2,∆ gives Γ′ ⊢ A′

1, A
′
2,∆

′ in LK(T ). We get:

Γ′ ⊢ A′

1, A
′

2,∆
′

Γ′ ⊢ A′
1∨−A′

2,∆
′

8.
Γ, A⊥ ⊢P

T ∆

Γ ⊢P
T A,∆

for ∆ = A,∆ where A is P-positive or literal.

The induction hypothesis on Γ, A⊥ ⊢P ∆ gives Γ′, A′⊥
⊢ ∆′ in LK(T ). We get:

Γ′, A′⊥
⊢ ∆′

Γ′ ⊢ A′,∆′
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9.
Γ, P⊥ ⊢P [P ]

P is P-positive
Γ, P⊥ ⊢P

where P is P-positive.

We apply the induction hypothesis (2.) on Γ, P⊥ ⊢P [P ].
• If we get (2.a), then it proves (1) for Γ, P⊥ ⊢P (same statement).
• If we get (2.b), then there exists a polarisation set P̂ ⊇ P , such that for all φ′

compatible with P̂ we get : φ′(Γ, P⊥) ⊢ [φ′(P )] in LK(T ).
Let φ be compatible with P . Since φ is not necessarily compatible with P̂, let φ̂ be
defined from φ and P̂ :

φ̂(l) := p if l ∈ P̂, where p is a positive literal with the same meaning as φ(l) for T

φ̂(l) := p⊥ if l⊥ ∈ P̂ , where p⊥ is a negative literal with the same meaning as φ(l) for T

φ̂(l) := φ(l) if l 6∈ P̂ and l⊥ 6∈ P̂

By construction, φ̂ is compatible with P̂ and therefore we get: φ̂(Γ, P⊥) ⊢ [φ̂(P )].
Then we construct:

φ̂(Γ, P⊥) ⊢ [φ̂(P )]

φ̂(Γ, P⊥) ⊢

By corollary 9, we get φ(Γ, P⊥) ⊢ in LK(T ) from φ̂(Γ, P⊥) ⊢ in LK(T ), since φ
and φ̂ differ on a finite number of literals.

10.
T (lit(Γ))

Γ ⊢

We get:
T (lit(Γ′))

Γ′ ⊢

�

We can also add those two cuts in LK
p(T ) (the former is a particular case of the latter).

Since they are instances of cuts in LK(T ) (Theorem 6), the previous theorem also holds for
LK

p(T ) with cuts.

• Analytic cut:

Γ ⊢P l Γ ⊢P l⊥

Γ ⊢P

• General cut:

Γ ⊢P A Γ ⊢P A⊥

Γ ⊢P

Definition 12 (Removing polarities) Let A be a subset of L such that the image of A
by ⊥ is its complement in L: L \ A.

For any formula A, in the grammar of Definition 9, let A be the formula, in the grammar
of Definition 6, obtained by removing all polarities on connectives and interpreting l ∈ A as
l and l ∈ L \ A as ¬l.

Theorem 23 (Completeness of LK
p(T )) Let ΓT = {l1 ∨ · · · ∨ ln | T (l1

⊥, · · · , ln
⊥)} .

If ΓT ⊢ F in propositional logic, then for all A such that A = F , and all polarisation set
P, we have ⊢P A in LK

p(T ).

Proof: The hypothesis is a particular case of ΓT ⊢FOL F . Let φ be compatible with P , and
let ψ be the restriction of φ to A. By a straightforward induction on F , φ(A) ∈ ψ̄(F ), so by
Theorem 21 we get ⊢LK(T ) φ(A). Let P ′ ⊇ P be the (finite) set of all literals that appear
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in A and are mapped by φ to positive literals. The proof of ⊢LK(T ) φ(A) is isomorphic to a

proof of ⊢P
′

A in LK
p(T ), and then we can finish the proof with polarisation steps:

⊢P
′

A
=====
⊢P A

�

8 Conclusion

It is worth noting that an instance of such a theory is the theory where T (S) holds if and
only if there is a literal p ∈ S such that p⊥ ∈ S.
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