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Abstract

In this paper, we study 3 focussed sequent calculi that are based on Miller-Liang's LKF
system for polarised classical logic, and integrate the possibility to call a decision procedure.

The main sequent calculus out of the three is LK(T), in which we prove cut-elimination.
The second one is less focussed, and is introduced for the proof that changing polarities do
not change provability, only the shape of proofs.

The third one features the possibility to polarise literals "on the �y", and is used in other
works to simulate the DPLL(T) procedure.

Finally, completeness of the 3 calculi is proved.
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1 The sequent calculus LK(T )

The sequent calculus LK(T ) manipulates the formulae of �rst-order logic, with the speci�city
that every predicate symbol is classi�ed as either positive or negative, and boolean connectives
come in two versions: positive and negative.

De�nition 1 (Formulae)

Positive formulae P ::= p | A∧+B | A∨+B | ∃xA
Negative formulae N ::= p⊥ | A∧−B | A∨−B | ∀xA
Formulae A,B ::= P | N

where p ranges over a set of elements called positive literals. Formulae of the form p⊥ are
called negative literals.

De�nition 2 (Negation) Negation is extended from literals to all formulae:

(p)⊥ := p⊥ (p⊥)
⊥

:= p

(A∧+B)
⊥

:= A⊥∨−B⊥ (A∧−B)
⊥

:= A⊥∨+B⊥

(A∨+B)
⊥

:= A⊥∧−B⊥ (A∨−B)
⊥

:= A⊥∧+B⊥

(∃xA)⊥ := ∀xA⊥ (∀xA)⊥ := ∃xA⊥

De�nition 3 (LK(T )) The sequent calculus LK(T ) manipulates two kinds of sequents:

Focused sequents Γ ⊢ [A]
Unfocused sequents Γ ⊢ ∆

where Γ is a multiset of negative formulae and positive literals, ∆ is a multiset of formulae,
and A is said to be in the focus of the (focused) sequent. By lit(Γ) we denote the sub-multiset
of Γ consisting of its literals.

The rules of LK(T ), given in Figure 1, are of three kinds: synchronous rules, asynchronous
rules, and structural rules. These correspond to three alternating phases in the proof-search
process that is described by the rules.

If S is a set of literals, T (S) is the call to the decision procedure on the conjunction of all
literals of S. It holds if the procedure returns UNSAT.

2 Admissible rules

De�nition 4 (Assumptions on the procedure)
We assume that the procedure calls satisfy the following properties:

Weakening If T (S) then T (S, S′).

Contraction If T (S,A,A) then T (S,A).

Instantiation If T (S) then T (
{

t�x

}

S).

Consistency If T (S, p) and T (S, p⊥) then T (S).

Inconsistency T (S, p, p⊥).

where S is a set of literals.

Lemma 1 (Admissibility of weakening and contraction)
The following rules are admissible in LK(T ).

Γ ⊢ [B]

Γ, A ⊢ [B]

Γ ⊢ ∆

Γ, A ⊢ ∆

Γ, A,A ⊢ [B]

Γ, A ⊢ [B]

Γ, A,A ⊢ ∆

Γ, A ⊢ ∆

Proof: By induction on the derivation of the premiss. �
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Synchronous rules

Γ ⊢ [A] Γ ⊢ [B]

Γ ⊢ [A∧
+B]

Γ ⊢ [Ai]

Γ ⊢ [A1∨
+A2]

Γ ⊢ [
{

t�x

}

A]

Γ ⊢ [∃xA]

p positive literal
Γ, p ⊢ [p]

T (lit(Γ), p⊥)
p positive literal

Γ ⊢ [p]

Γ ⊢ N
N negative

Γ ⊢ [N ]

Aynchronous rules
Γ ⊢ A,∆ Γ ⊢ B,∆

Γ ⊢ A∧−B,∆

Γ ⊢ A1, A2,∆

Γ ⊢ A1∨
−A2,∆

Γ ⊢ A,∆
x /∈ FV(Γ,∆)

Γ ⊢ (∀xA),∆

Γ, A⊥
⊢ ∆

A positive or literal
Γ ⊢ A,∆

Structural rules

Γ, P⊥
⊢ [P ]

P positive
Γ, P⊥

⊢

T (lit(Γ))

Γ ⊢

Figure 1: System LK(T )

Lemma 2 (Admissibility of instantiation) The following rules are admissible in LK(T ).
Γ ⊢ [B]

{

t
�x

}

Γ ⊢ [
{

t
�x

}

B]

Γ ⊢ ∆
{

t
�x

}

Γ ⊢
{

t
�x

}

∆

Proof: By induction on the derivation of the premiss. �

3 Invertibility of the asynchronous phase

Lemma 3 (Invertibility of asynchronous rules) All asynchronous rules are invertible
in LK(T ).

Proof: By induction on the derivation proving the conclusion of the asynchronous rule
considered.

• Inversion of A∧−B: by case analysis on the last rule actually used

�
Γ ⊢ A∧−B,C,∆′ Γ ⊢ A∧−B,D,∆′

Γ ⊢ A∧−B,C∧−D,∆′

By induction hypothesis we get

Γ ⊢ A,C,∆′ Γ ⊢ A,D,∆′

Γ ⊢ A,C∧−D,∆′
and

Γ ⊢ B,C,∆′ Γ ⊢ B,D,∆′

Γ ⊢ B,C∧−D,∆′

�
Γ ⊢ A∧−B,C,D,∆′

Γ ⊢ A∧−B,C∨−D,∆′

By induction hypothesis we get
Γ ⊢ A,C,D,∆′

Γ ⊢ A,C∨−D,∆′
and

Γ ⊢ B,C,D,∆′

Γ ⊢ B,C∨−D,∆′

�
Γ ⊢ A∧−B,C,∆′

x /∈ FV(Γ,∆′, A∧−B)
Γ ⊢ A∧−B, (∀xC),∆′
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By induction hypothesis we get
Γ ⊢ A,C,∆′

x /∈ FV(Γ,∆′, A)
Γ ⊢ A, (∀xC),∆′

and
Γ ⊢ B,C,∆′

x /∈ FV(Γ,∆′, B)
Γ ⊢ B, (∀xC),∆′

�
Γ, C⊥ ⊢ A∧−B,∆′

C positive or literal
Γ ⊢ A∧−B,C,∆′

By induction hypothesis we get
Γ, C⊥ ⊢ A,∆′

C positive or literal
Γ ⊢ A,C,∆′

and
Γ, C⊥ ⊢ B,∆′

C positive or literal
Γ ⊢ B,C,∆′

• Inversion of A∨−B

�
Γ ⊢ A∨−B,C,∆′ Γ ⊢ A∨−B,D,∆′

Γ ⊢ A∨−B,C∧−D,∆′

By induction hypothesis we get
Γ ⊢ A,B,C,∆′ Γ ⊢ A,B,D,∆′

Γ ⊢ A,B,C∧−D,∆′

�
Γ ⊢ A∨−B,C,D,∆′

Γ ⊢ A∨−B,C∨−D,∆′

By induction hypothesis we get
Γ ⊢ A,B,C,D,∆′

Γ ⊢ A,B,C∨−D,∆′

�
Γ ⊢ A∨−B,C,∆′

x /∈ FV(Γ,∆′)
Γ ⊢ A∨−B, (∀xC),∆′

By induction hypothesis we get
Γ ⊢ A,B,C,∆′

x /∈ FV(Γ,∆′)
Γ ⊢ A,B, (∀xC),∆′

�
Γ, C⊥ ⊢ A∨−B,∆′

C positive or literal
Γ ⊢ A∨−B,C,∆′

By induction hypothesis we get
Γ, C⊥ ⊢ A,B,∆′

C positive or literal
Γ ⊢ A,B,C,∆′

• Inversion of ∀xA

�
Γ ⊢ (∀xA), C,∆′ Γ ⊢ (∀xA), D,∆′

Γ ⊢ (∀xA), C∧−D,∆′

By induction hypothesis we get
Γ ⊢ A,C,∆′ Γ ⊢ A,D,∆′

x /∈ FV(Γ,∆′)
Γ ⊢ A,C∧−D,∆′

�
Γ ⊢ (∀xA), C,D,∆′

Γ ⊢ (∀xA), C∨−D,∆′

By induction hypothesis we get
Γ ⊢ A,C,D,∆′

Γ ⊢ A,C∨−D,∆′

�
Γ ⊢ (∀xA), D,∆′

x /∈ FV(Γ,∆′)
Γ ⊢ (∀xA), (∀xD),∆′

By induction hypothesis we get
Γ ⊢ A,D,∆′

x /∈ FV(Γ,∆′)
Γ ⊢ A, (∀xD),∆′

�
Γ, C⊥ ⊢ (∀xA),∆′

C positive or literal
Γ ⊢ (∀xA), C,∆′

By induction hypothesis we get
Γ, C⊥ ⊢ A,∆′

C positive or literal
Γ ⊢ A,C,∆′

• Inversion of literals and positive formulae (A)

�
Γ ⊢ A,C,∆′ Γ ⊢ A,D,∆′

Γ ⊢ A,C∧−D,∆′

By induction hypothesis we get
Γ, A⊥ ⊢ C,∆′ Γ, A⊥ ⊢ D,∆′

Γ, A⊥ ⊢ C∧−D,∆′
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�
Γ ⊢ A,C,D,∆′

Γ ⊢ A,C∨−D,∆′

By induction hypothesis
Γ, A⊥ ⊢ C,D,∆′

Γ, A⊥ ⊢ C∨−D,∆′

�
Γ ⊢ A,D,∆′

x /∈ FV(Γ,∆′)
Γ ⊢ A, (∀xD),∆′

By induction hypothesis we get
Γ, A⊥ ⊢ D,∆′

x /∈ FV(Γ,∆′)
Γ, A⊥ ⊢ (∀xD),∆′

�
Γ, B⊥ ⊢ A,∆′

B positive or literal
Γ ⊢ A,B,∆′

By induction hypothesis we get
Γ, A⊥, B⊥ ⊢ ∆′

B positive or literal
Γ, A⊥ ⊢ B,∆′

�

4 Cut-elimination

Theorem 4 (cut1 and cut2) The following rules are admissible in LK(T ).

T (lit(Γ), p⊥) Γ, p ⊢ ∆
cut1

Γ ⊢ ∆

T (lit(Γ), p⊥) Γ, p ⊢ [B]
cut2

Γ ⊢ [B]

Proof: By simultaneous induction on the derivation of the right premiss.
We reduce cut8 by case analysis on the last rule used to prove the right premiss.

T (lit(Γ), p⊥)

Γ, p ⊢ B,∆ Γ, p ⊢ C,∆

Γ, p ⊢ B∧−C,∆
cut1

Γ ⊢ B∧−C,∆
reduces to

T (lit(Γ), p⊥) Γ, p ⊢ B,∆
cut1

Γ ⊢ B,∆

T (lit(Γ), p⊥) Γ, p ⊢ C,∆
cut1

Γ ⊢ C,∆

Γ ⊢ B∧−C,∆

T (lit(Γ), p⊥)

Γ, p ⊢ B1, B2,∆

Γ, p ⊢ B1∨
−B2,∆

cut1
Γ ⊢ B1∨

−B2,∆

reduces to

T (lit(Γ), p⊥) Γ, p ⊢ B1, B2,∆
cut1

Γ ⊢ B1, B2,∆

Γ ⊢ B1∨
−B2,∆

T (lit(Γ), p⊥)

Γ, p ⊢ B,∆

Γ, p ⊢ ∀xB,∆
cut1

Γ ⊢ ∀xB,∆

reduces to

T (lit(Γ), p⊥) Γ, p ⊢ B,∆
cut1

Γ ⊢ B,∆

Γ ⊢ ∀xB,∆

T (lit(Γ), p⊥)

Γ, p, B⊥ ⊢ ∆

Γ, p ⊢ B,∆
cut1

Γ ⊢ B,∆

reduces to

T (lit(Γ, B⊥), p⊥) Γ, p, B⊥ ⊢ ∆
cut1

Γ, B⊥ ⊢ ∆

Γ ⊢ B,∆
We have T (lit(Γ), p⊥, B⊥) as we assume the procedure to satisfy weakening.
If P⊥ ∈ (Γ, p),

T (lit(Γ), p⊥)

Γ, p ⊢ [P ]

Γ, p ⊢
cut1

Γ ⊢

reduces to

T (lit(Γ), p⊥) Γ, p⊥ ⊢ [P ]
cut2

Γ ⊢ [P ]

Γ ⊢
as P⊥ ∈ (Γ).
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T (lit(Γ), p⊥)

T (lit(Γ), p)

Γ, p ⊢
cut1

Γ ⊢

reduces to
T (lit(Γ))

Γ ⊢

using the assumption of consistency.
We reduce cut2 again by case analysis on the last rule used to prove the right premiss.

T (lit(Γ), p⊥)

Γ, p ⊢ [B] Γ, p ⊢ [C]

Γ, p ⊢ [B∧+C]
cut2

Γ ⊢ [B∧+C]
reduces to

T (lit(Γ), p⊥) Γ, p ⊢ [B]
cut2

Γ ⊢ [B]

T (lit(Γ), p⊥) Γ, p ⊢ [C]
cut2

Γ ⊢ [C]

Γ ⊢ [B∧+C]

T (lit(Γ), p⊥)

Γ, p ⊢ [Bi]

Γ, p ⊢ [B1∨
+B2]

cut2
Γ ⊢ [B1∨

+B2]

reduces to

T (lit(Γ), p⊥) Γ, p ⊢ [Bi]
cut2

Γ ⊢ [Bi]

Γ ⊢ [B1∨
+B2]

T (lit(Γ), p⊥)

Γ, p ⊢ [
{

t
�x

}

B]

Γ, p ⊢ [∃xB]
cut2

Γ ⊢ [∃xB]

reduces to

T (lit(Γ), p⊥) Γ, p ⊢ [
{

t
�x

}

B]
cut2

Γ ⊢ [
{

t
�x

}

B]

Γ ⊢ [∃xB]

T (lit(Γ), p⊥)

Γ, p ⊢ N

Γ, p ⊢ [N ]
cut2

Γ ⊢ [N ]

reduces to

T (lit(Γ), p⊥) Γ, p ⊢ N
cut1

Γ ⊢ N

Γ ⊢ [N ]
If p′ ∈ Γ, p,

T (lit(Γ), p⊥) Γ, p ⊢ [p′]
cut2

Γ ⊢ [p′]

reduces to
Γ ⊢ [p′]

if p′ ∈ Γ

reduces to
T (lit(Γ), p⊥)

Γ ⊢ [p′]
if p′ = p

Finally,

T (lit(Γ), p⊥)

T (lit(Γ), p, p′
⊥
)

Γ, p ⊢ [p′]
cut2

Γ ⊢ [p′]

reduces to
T (lit(Γ), p′

⊥
)

Γ ⊢ [p′]

since weakening gives T (lit(Γ), p⊥, p′
⊥
) and consistency then gives T (lit(Γ), p′

⊥
). �

Theorem 5 (cut3, cut4 and cut5) The following rules are admissible in LK(T ).

Γ ⊢ [A] Γ ⊢ A⊥,∆
cut3

Γ ⊢ ∆

Γ ⊢ N Γ, N ⊢ ∆
cut4

Γ ⊢ ∆

Γ ⊢ N Γ, N ⊢ [B]
cut5

Γ ⊢ [B]

Proof: By simultaneous induction on the following lexicographical measure:

• the size of the cut-formula (A or N)

• the fact that the cut-formula (A or N) is positive or negative
(if of equal size, a positive formula is considered smaller than a negative formula)

• the height of the derivation of the right premiss

Weakenings and contractions (as they are admissible in the system) are implicitly used
throughout this proof.
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In order to eliminate cut3, we analyse which rule is used to prove the left premiss. We
then use invertibility of the negative phase so that the last rule used in the right premiss is
its dual one.

Γ ⊢ [A] Γ ⊢ [B]

Γ ⊢ [A∧+B]

Γ ⊢ A⊥, B⊥,∆

Γ ⊢ A∨−B,∆
cut3

Γ ⊢ ∆

reduces to Γ ⊢ [B]

Γ ⊢ [A] Γ ⊢ A⊥, B⊥,∆
cut3

Γ ⊢ B⊥,∆
cut3

Γ ⊢ ∆
Γ ⊢ [Ai]

Γ ⊢ [A1∨
+A2]

Γ ⊢ A⊥

1 ,∆ Γ ⊢ A⊥

2 ,∆

Γ ⊢ A1∧
−A2,∆

cut3
Γ ⊢ ∆

reduces to
Γ ⊢ [Ai] Γ ⊢ A⊥

i ,∆
cut3

Γ ⊢ ∆

Γ ⊢ [
{

t
�x

}

A]

Γ ⊢ [∃xA]

Γ ⊢ A⊥,∆

Γ ⊢ (∀xA⊥),∆
cut3

Γ ⊢ ∆

reduces to Γ ⊢ [
{

t
�x

}

A]

Γ ⊢ A⊥,∆
−−−−−−− − x /∈ FV(Γ,∆)
Γ ⊢ (

{

t
�x

}

A⊥),∆
cut3

Γ ⊢ ∆
using the admissibility of instantiation.

Γ ⊢ N

Γ ⊢ [N ]

Γ, N ⊢ ∆

Γ ⊢ (N⊥),∆
cut3

Γ ⊢ ∆

reduces to
Γ ⊢ N Γ, N ⊢ ∆

cut4
Γ ⊢ ∆

We will describe below how cut4 is reduced.

Γ, p ⊢ [p]

Γ, p, p ⊢ ∆

Γ, p ⊢ (p⊥),∆
cut3

Γ, p ⊢ ∆

reduces to
Γ, p, p ⊢ ∆
−−−− −
Γ, p ⊢ ∆

using the admissibility of contraction.

T (lit(Γ), p⊥)

Γ ⊢ [p]

Γ, p ⊢ ∆

Γ ⊢ (p⊥),∆
cut3

Γ ⊢ ∆

reduces to
T (lit(Γ), p⊥) Γ, p ⊢ ∆

cut1
Γ ⊢ ∆

In order to reduce cut4, we analyse which rule is used to prove the right premiss.

Γ ⊢ N

T (lit(Γ))

Γ, N ⊢
cut4

Γ ⊢

reduces to
T (lit(Γ))

Γ ⊢

if N is not an literal (hence, it is not passed on to the procedure).

Γ, p ⊢

Γ ⊢ p⊥

T (lit(Γ), p⊥)

Γ, p⊥ ⊢
cut4

Γ ⊢

reduces to
T (lit(Γ), p⊥) Γ, p ⊢

cut1
Γ ⊢

if p⊥ is an literal passed on to the procedure.

Γ ⊢ N

Γ, N ⊢ [N⊥]

Γ, N ⊢
cut4

Γ ⊢

reduces to

Γ ⊢ N Γ, N ⊢ [N⊥]
cut5

Γ ⊢ [N⊥] Γ ⊢ N
cut3

Γ ⊢

Γ, P⊥ ⊢ N

Γ, P⊥, N ⊢ [P ]

Γ, P⊥, N ⊢
cut4

Γ, P⊥ ⊢

reduces to

Γ, P⊥ ⊢ N Γ, P⊥, N ⊢ [P ]
cut5

Γ, P⊥ ⊢ [P ]

Γ, P⊥ ⊢

Γ ⊢ N

Γ, N ⊢ B,∆ Γ, N ⊢ C,∆

Γ, N ⊢ B∧−C,∆
cut4

Γ ⊢ B∧−C,∆
reduces to

Γ ⊢ N Γ, N ⊢ B,∆
cut4

Γ ⊢ B,∆

Γ ⊢ N Γ, N ⊢ C,∆
cut4

Γ ⊢ C,∆

Γ ⊢ B∧−C,∆
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Γ ⊢ N

Γ, N ⊢ B,C,∆

Γ, N ⊢ B∨−C,∆
cut4

Γ ⊢ B∨−C,∆

reduces to

Γ ⊢ N Γ, N ⊢ B,C,∆
cut4

Γ ⊢ B,C,∆

Γ ⊢ B∨−C,∆

Γ ⊢ N

Γ, N ⊢ B,∆

Γ, N ⊢ ∀xB,∆
cut4

Γ ⊢ ∀xB,∆

reduces to

Γ ⊢ N Γ, N ⊢ B,∆
cut4

Γ ⊢ B,∆

Γ ⊢ ∀xB,∆

Γ ⊢ N

Γ, N,B⊥ ⊢ ∆

Γ, N ⊢ B,∆
cut4

Γ ⊢ B,∆

reduces to

Γ, B⊥ ⊢ N Γ, N,B⊥ ⊢ ∆
cut4

Γ, B⊥ ⊢ ∆

Γ ⊢ B,∆
using weakening, and if B is positive or a negative literal.
We have reduced all cases of cut4; we now reduce the cases for cut5 (again, by case analysis

on the last rule used to prove the right premiss).

Γ ⊢ N

Γ, N ⊢ [B] Γ, N ⊢ [C]

Γ, N ⊢ [B∧+C]
cut5

Γ ⊢ [B∧+C]

reduces to

Γ ⊢ N Γ, N ⊢ [B]
cut5

Γ ⊢ [B]

Γ ⊢ N Γ, N ⊢ [C]
cut5

Γ ⊢ [C]

Γ ⊢ [B∧+C]

Γ ⊢ N

Γ, N ⊢ [Bi]

Γ, N ⊢ [B1∨
+B2]

cut5
Γ ⊢ [B1∨

+B2]

reduces to
Γ ⊢ N Γ, N ⊢ [Bi]

cut5
Γ ⊢ [Bi]

Γ ⊢ N

Γ, N ⊢ [
{

t
�x

}

B]

Γ, N ⊢ [∃xB]
cut5

Γ ⊢ [∃xB]

reduces to

Γ ⊢ N Γ, N ⊢ [
{

t
�x

}

B]
cut5

Γ ⊢ [
{

t
�x

}

B]

Γ ⊢ [∃xB]

Γ ⊢ N

Γ, N ⊢ N ′

Γ, N ⊢ [N ′]
cut5

Γ ⊢ [N ′]

reduces to

Γ ⊢ N Γ, N ⊢ N ′

cut4
Γ ⊢ N ′

Γ ⊢ [N ′]

Γ ⊢ N Γ, N ⊢ [p]
cut5

Γ ⊢ [p]

reduces to
Γ ⊢ [p]

since p has to be in Γ.

Γ ⊢ N

T (lit(Γ), p⊥)

Γ, N ⊢ [p]
cut5

Γ ⊢ [p]

reduces to
T (lit(Γ), p⊥)

Γ ⊢ [p]

�
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Theorem 6 (cut6, cut7, cut8, and cut9) The following rules are admissible in LK(T ).

Γ ⊢ N,∆ Γ, N ⊢ ∆
cut6

Γ ⊢ ∆

Γ ⊢ A,∆ Γ ⊢ A⊥,∆
cut7

Γ ⊢ ∆

Γ, l ⊢ ∆ Γ, l⊥ ⊢ ∆
cut8

Γ ⊢ ∆

Γ, l1, . . . , ln ⊢ ∆ Γ, (l⊥1 ∨− . . .∨−l⊥n ) ⊢ ∆
cut9

Γ ⊢ ∆

Proof: cut6 is proved admissible by induction on the multiset ∆: the base case is the
admissibility of cut4, and the other cases just require the inversion of the connectives in ∆.

For cut7, we can assume without loss of generality (swapping A and A⊥) that A is negative.
Applying inversion on Γ ⊢ A⊥,∆ gives a proof of Γ, A ⊢ ∆, and cut7 is then obtained by cut6:

Γ ⊢ A,∆ Γ, A ⊢ ∆
cut6

Γ ⊢ ∆
cut8 is obtained as follows:

Γ, l⊥ ⊢ ∆

Γ ⊢ l,∆

Γ, l ⊢ ∆

Γ ⊢ l⊥,∆
cut7

Γ ⊢ ∆
cut9 is obtained as follows:

Γ, (l⊥1 ∨− . . .∨−l⊥n ) ⊢ ∆

Γ ⊢ l1∧
+ . . .∧+ln,∆

Γ, l1, . . . , ln ⊢ ∆
=============
Γ ⊢ l⊥1 , . . . , l⊥n ,∆

Γ ⊢ (l⊥1 ∨− . . .∨−l⊥n ),∆
cut7

Γ ⊢ ∆
�

5 Changing the Polarity of Predicates and Connec-
tives

5.1 Changing the polarity of Predicates

In this section we try to show that changing the polarity of the predicates and the connectives
that are present in a sequent, does not change the provability of the sequent in LK(T ). First,
we deal with the polarities of the predicates and then we deal with the polarities of the
connectives.

Lemma 7 Let p and q be positive literals, and let us write Γ′ = {p⊥, p/q, q⊥}Γ, ∆′ =
{p⊥, p/q, q⊥}∆, A′ = {p⊥, p/q, q⊥}A. Assume that q and p⊥ have the same meaning for
T , i.e. T (lit(Γ)) if and only if T (lit(Γ′)).

1. If Γ ⊢LK(T ) [A], then

(a) Γ′, p ⊢LK(T ) [A′].

(b) Γ′, p⊥ ⊢LK(T ) [A′] or Γ′, p⊥ ⊢LK(T ) .

2. If Γ ⊢LK(T ) ∆ then

(a) Γ′, p ⊢LK(T ) ∆′.

(b) Γ′, p⊥ ⊢LK(T ) ∆′.

Proof: By simultaneous induction on the last rule of the derivation.

1. For the �rst item of the lemma, by case analysis on the last rule of the derivation, we
get

•
Γ ⊢ [A1] Γ ⊢ [A2]

Γ ⊢ [A1∧
+A2]

with A = A1∧
+A2.
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(a) The induction hypothesis on Γ ⊢LK(T ) [A1] (1(a)) gives Γ
′, p ⊢LK(T ) [A′

1] and
the induction hypothesis on Γ ⊢LK(T ) [A2] (1(a)) gives Γ

′, p ⊢LK(T ) [A′
2]. Now,

we get:
Γ′, p ⊢ [A′

1] Γ′, p ⊢ [A′

2]

Γ′, p ⊢ [A′

1∧
+A′

2]

(b) The induction hypothesis on Γ ⊢LK(T ) [A1] (1(b)) gives Γ
′, p⊥ ⊢LK(T ) [A′

1] or

Γ′, p⊥ ⊢LK(T ) and the induction hypothesis on Γ ⊢LK(T ) [A2] (1(b)) gives

Γ′, p⊥ ⊢LK(T ) [A′
2] or Γ

′, p⊥ ⊢LK(T ) .

If we get a proof of Γ′, p⊥ ⊢LK(T ) from one of the two applications of the
induction hypothesis, we are done. If not then we get:

Γ′, p⊥ ⊢ [A′

1] Γ′, p ⊢ [A′

2]

Γ′, p⊥ ⊢ [A′

1∧
+A′

2]
•

Γ ⊢ [Ai]

Γ ⊢ [A1∨
+A2]

with A = A1∨
+A2.

(a) The induction hypothesis on Γ ⊢LK(T ) [Ai] 1(a) gives Γ′, p ⊢LK(T ) [A′
i]. We

get:
Γ′, p ⊢ [A′

i]

Γ′, p ⊢ [A′

1∨
+A′

2]

(b) The induction hypothesis on Γ ⊢LK(T ) [Ai] (1(b)) gives Γ′, p⊥ ⊢LK(T ) [A′
i] or

Γ′, p⊥ ⊢LK(T ) .
In the latter case we are done. For the former case, we get:

Γ′, p⊥ ⊢ [A′

i]

Γ′, p⊥ ⊢ [A′

1∨
+A′

2]
•

Γ ⊢ [
{

t
�x

}

A]

Γ ⊢ [∃xA]

with A = ∃xA

(a) The induction hypothesis on Γ ⊢LK(T ) [
{

t�x

}

A] 1(a) gives Γ′, p ⊢LK(T ) [
{

t�x

}

A′].
We get:

Γ′, p ⊢ [
{

t
�x

}

A′]

Γ′, p ⊢ [∃xA′]

(b) The induction hypothesis on Γ ⊢LK(T ) [
{

t�x

}

A] (1(b)) gives Γ′, p⊥ ⊢LK(T ) [
{

t�x

}

A′]

or Γ′, p⊥ ⊢LK(T ) .
In the latter case we are done. For the former case, we get:

Γ′, p⊥ ⊢ [
{

t
�x

}

A′]

Γ′, p⊥ ⊢ [∃xA′]
•

Γ ⊢ A

Γ ⊢ [A]

where A is Negative .

� Either A = q⊥ and therefore:

(a) A′ = p and we get:

T (lit(Γ′), p, p⊥)

Γ′, p ⊢ [A′]

by the inconsistency of the theory T .
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(b) Γ ⊢ A can only be proved by
Γ, q ⊢

Γ ⊢ A

The induction hypothesis on Γ, q ⊢LK(T ) (2(b)) gives Γ′, p⊥, p⊥ ⊢LK(T ) and
then we get:

Γ′, p⊥, p⊥ ⊢
−−−−− −
Γ′, p⊥ ⊢

by contraction.

� Or A 6= q⊥ and therefore
(a) The induction hypothesis on Γ ⊢LK(T ) A (2(a)) gives Γ′, p ⊢LK(T ) A′ and

we get :
Γ′, p ⊢ A′

Γ′, p ⊢ [A′]

(b) The induction hypothesis on Γ ⊢LK(T ) A (2(b)) gives Γ′, p⊥ ⊢LK(T ) A′ and
we get:

Γ′, p⊥ ⊢ A′

Γ′, p⊥ ⊢ [A′]

•
T (lit(Γ), p′

⊥
)

Γ ⊢ [p′]

where p′ is a positive literal.
� Either p′ = q and therefore
(a) We get:

T (lit(Γ′), p, p)

Γ′, p, p ⊢
=========
Γ′, p ⊢ [p⊥]

We derive T (lit(Γ′), p, p) from T (lit(Γ), p′
⊥
) since p has the same meaning as

q⊥ = p′
⊥
and T satis�es the weakening.

(b) We get:

T (lit(Γ′), p⊥, p)

Γ′, p⊥, p ⊢
==========
Γ′, p⊥ ⊢ [p⊥]

using the fact that T satis�es inconsistency.

� or p′ 6= q and therefore
(a) We get:

T (lit(Γ′), p, p′
⊥
)

Γ′, p ⊢ [p′]

using the fact that T satis�es weakening.

(b) We get :

T (lit(Γ′), p⊥, p′
⊥
)

==============
Γ′, p⊥ ⊢ [p′]

using the fact that T satis�es weakening.

2. For the second item of the lemma, by case analysis on the last rule of the derivation, we
get:

•
Γ ⊢ A1,∆ Γ ⊢ A2,∆

Γ ⊢ A1∧
−A2,∆

for ∆ = A1∧
−A2,∆
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(a) The induction hypothesis on Γ ⊢LK(T ) A1,∆ (2(a)) gives Γ′, p ⊢LK(T ) A′
1,∆

′

and the one on Γ ⊢LK(T ) A2,∆ (2(a)) gives Γ′, p ⊢LK(T ) A′
2,∆

′.
We get:

Γ′, p ⊢ A′

1,∆
′ Γ′, p ⊢ A′

2,∆
′

Γ′, p ⊢ A′

1∧
−A′

2,∆
′

(b) The induction hypothesis on Γ ⊢LK(T ) A1,∆ (2(b)) gives Γ′, p⊥ ⊢LK(T ) A′
1,∆

′

and induction hypothesis on Γ ⊢LK(T ) A2,∆ (2(b)) gives Γ′, p⊥ ⊢LK(T ) A′
2,∆

′.
We get:

Γ′, p⊥ ⊢ A′

1,∆
′ Γ′, p⊥ ⊢ A′

2,∆
′

Γ′, p⊥ ⊢ A′

1∧
−A′

2,∆
′

•
Γ ⊢ A1, A2,∆

Γ ⊢ A1∨
−A2,∆

for ∆ = A1∨
−A2,∆

(a) The induction hypothesis on Γ ⊢LK(T ) A1, A2,∆ (2(a)) gives Γ′, p ⊢LK(T ) A′
1, A

′
2,∆

′.
We get:

Γ′, p ⊢ A′

1, A
′

2,∆
′

Γ′, p ⊢ A′

1∨
−A′

2,∆
′

(b) The induction hypothesis on Γ ⊢LK(T ) A1, A2,∆ (2(b)) gives Γ′, p⊥ ⊢LK(T ) A′
1, A

′
2,∆

′.
We get:

Γ′, p⊥ ⊢ A′

1, A
′

2,∆
′

Γ′, p⊥ ⊢ A′

1∨
−A′

2,∆
′

•
Γ ⊢ A,∆

x /∈ FV(Γ,∆)
Γ ⊢ (∀xA),∆

with ∆ = (∀xA),∆

(a) The induction hypothesis on Γ ⊢LK(T ) A,∆ (2(a)) gives Γ′, p ⊢LK(T ) A′,∆′.
We get:

Γ ⊢ A′,∆′

x /∈ FV(Γ′,∆′)
Γ′ ⊢ (∀xA′),∆′

(b) The induction hypothesis on Γ ⊢LK(T ) A,∆ (2(b)) gives Γ′, p⊥ ⊢LK(T ) A′,∆′.
We get:

Γ′, p⊥ ⊢ A′,∆′

x /∈ FV(Γ′,∆′)
Γ′, p⊥ ⊢ (∀xA′),∆′

•
Γ, A⊥ ⊢ ∆

Γ ⊢ A,∆

for ∆ = A,∆ where A is positive or negative literal.

(a) The induction hypothesis on Γ, A⊥ ⊢LK(T ) ∆ (2(a)) gives Γ′, p, A′⊥ ⊢LK(T ) ∆′

and we get:

Γ′, p, A′⊥ ⊢ ∆′

Γ′, p ⊢ A′,∆′

(b) The induction hypothesis on Γ, A ⊢LK(T ) ∆ (2(b)) gives Γ′, p⊥, A′⊥ ⊢LK(T ) ∆′

and we get:

Γ′, p⊥, A′⊥ ⊢ ∆′

Γ′, p⊥ ⊢ A′,∆′

•
Γ ⊢ [A]

Γ ⊢

with A is positive and A⊥ ∈ Γ.
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� Either A = q, and then q⊥ ∈ Γ and T (lit(Γ), q⊥)

(a) We get :
T (lit(Γ′), p)

Γ′, p ⊢

since p and q⊥ have the same meaning for T

(b) We get :

T (lit(Γ′), p⊥)

Γ′, p⊥ ⊢

since p ∈ Γ′ and by using the fact that T is inconsistent.

� or A 6= q

(a) The induction hypothesis on Γ ⊢LK(T ) [A] gives Γ′, p ⊢LK(T ) [A′] and we get

Γ′, p ⊢ [A′]

Γ′, p ⊢

(b) The induction hypothesis on Γ ⊢LK(T ) [A] gives either Γ′, p⊥ ⊢LK(T ) [A′] or

Γ′, p⊥ ⊢LK(T ) . For the latter case we are done and for the former case we
get:

Γ′, p⊥ ⊢ [A′]

Γ′, p⊥ ⊢

�

Corollary 8 If Γ ⊢LK(T ) ∆ then Γ′ ⊢LK(T ) ∆′.

Proof: Lemma 7 (2) provides Γ′, p ⊢LK(T ) ∆′ and Γ′, p⊥ ⊢LK(T ) ∆′. Then we can con-
struct:

Γ′, p′ ⊢ ∆′ Γ′, p′
⊥

⊢ ∆′

cut8
Γ′ ⊢ ∆′

and we use the admissibility of cut8. �

We have proven that changing the polarities of the predicate that are present in a sequent,
does not change the provability of that sequent in LK(T ).

5.2 Changing the polarity of connectives

De�nition 5 (LK+(T )) The sequent calculus LK
+(T ) manipulates one kind of sequent:

Γ ⊢ [X ]∆ where X :: • | A

Here Γ is a multiset of negative formulae and positive literals, ∆ is a multiset of formulae,
X is said to be in the focus of the (focused) system. By lit(Γ) we denote the sub-multiset of
Γ consisting of its literals and lit(∆) we denote the sub-multiset of ∆ consisting of its literals.

The rules of LK+(T ), given in Figure 2, are of three kinds: synchronous rules, asynchronous
rules, and structural rules. These correspond to three alternating phases in the proof-search
process that is described by the rules.

The LK
+(T ) system is an extension system of LK(T ).

Remark 9 As in LK(T ), weakening and contraction are admissible in LK
+(T ).

Lemma 10 ⊢ [A⊥]A is provable in LK
+(T ).

Proof: By induction on A using an extended but well founded order on formulae:
a formula is smaller than another one when either it contains fewer connectives, or the number
of connectives is equal the former formula is negative and the latter is positive.

13



Synchronous rules

Γ ⊢ [A]∆ Γ ⊢ [B]∆

Γ ⊢ [A∧+B]∆

Γ ⊢ [Ai]∆

Γ ⊢ [A1∨
+A2]∆

Γ ⊢ [
{

t�x

}

A]∆

Γ ⊢ [∃xA]∆

p positive literal
Γ, p ⊢ [p]∆

T (lit(Γ), p⊥, lit(∆))
p positive literal

Γ ⊢ [p]∆

Γ ⊢ [•]N
N negative

Γ ⊢ [N ]

Aynchronous rules
Γ ⊢ [X ]A,∆ Γ ⊢ [X ]B,∆

Γ ⊢ [X ]A∧−B,∆

Γ ⊢ [X ]A1, A2,∆

Γ ⊢ [X ]A1∨
−A2,∆

Γ ⊢ [X ]A,∆
x /∈ FV(Γ,X ,∆)

Γ ⊢ [X ](∀xA),∆

Γ, A⊥
⊢ [X ]∆

A positive or literal
Γ ⊢ [X ]A,∆

Structural rules

Γ, P⊥
⊢ [P ]∆

P positive
Γ, P⊥

⊢ [•]∆

T (lit(Γ), lit(∆))

Γ ⊢ [•]∆

Figure 2: System LK+(T )

• A = A1∧
−A2

⊢ [A1
⊥]A1

⊢ [A1
⊥∨+A2

⊥]A1

⊢ [A2
⊥]A2

⊢ [A1
⊥∨+A2

⊥]A2

⊢ [A1
⊥∨+A2

⊥]A1∧
−A2

We can complete the proof on the left-hand side by applying the induction hypothesis
on A1 and on the right-hand side by applying the induction hypothesis on A2.

• A = A1∨
−A2

⊢ [A1
⊥]A1

−−−−−− − WK
⊢ [A1

⊥]A1, A2

⊢ [A2
⊥]A2

−−−−−− − WK
⊢ [A2

⊥]A1, A2

⊢ [A1
⊥∧+A2

⊥]A1, A2

⊢ [A1
⊥∧+A2

⊥]A1∨
−A2

We can complete the proof on the left-hand side by applying the induction hypothesis
on A1 and on the right-hand side by applying the induction hypothesis on A2.

• A = ∀xA
⊢ [A⊥]A

−−−−−− − choosing t=x
⊢ [{t/x}A⊥]A

⊢ [∃xA⊥]A
x /∈ FV(∃xA⊥)

⊢ [∃xA⊥]∀xA

We can complete the proof by applying the induction hypothesis on A.

• A = p⊥

p ⊢ [p]

⊢ [p]p⊥
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• A = P where P is all positive formulae:

⊢ [P ]P⊥

−−−−− − WK
P⊥ ⊢ [P ]P⊥

P⊥ ⊢ [•]P⊥

P⊥ ⊢ [P⊥]

⊢ [P⊥]P

We can complete the proof by applying the induction hypothesis on P .

�

Lemma 11 (Invertibility of asynchronous rules)
All asynchronous rules are height-preserving invertible in LK

+(T ).

Proof: By induction on the derivation proving the conclusion of the asynchronous rule
considered.

• Inversion of A∧−B: by case analysis on the last rule actually used

�
Γ ⊢ [X ]A∧−B,C,∆′ Γ ⊢ [X ]A∧−B,D,∆′

Γ ⊢ [X ]A∧−B,C∧−D,∆′

By induction hypothesis we get

Γ ⊢ [X ]A,C,∆′ Γ ⊢ [X ]A,D,∆′

Γ ⊢ [X ]A,C∧−D,∆′
and

Γ ⊢ [X ]B,C,∆′ Γ ⊢ [X ]B,D,∆′

Γ ⊢ [X ]B,C∧−D,∆′

�
Γ ⊢ [X ]A∧−B,C,D,∆′

Γ ⊢ [X ]A∧−B,C∨−D,∆′

By induction hypothesis we get:
Γ ⊢ [X ]A,C,D,∆′

Γ ⊢ [X ]A,C∨−D,∆′
and

Γ ⊢ [X ]B,C,D,∆′

Γ ⊢ [X ]B,C∨−D,∆′

�
Γ ⊢ [X ]A∧−B,C,∆′

x /∈ FV(Γ,X ,∆′, A∧−B)
Γ ⊢ [X ]A∧−B, (∀xC),∆′

By induction hypothesis we get:

Γ ⊢ [X ]A,C,∆′

x /∈ FV(Γ,X ,∆′, A)
Γ ⊢ [X ]A, (∀xC),∆′

and
Γ ⊢ [X ]B,C,∆′

x /∈ FV(Γ,X ,∆′, B)
Γ ⊢ [X ]B, (∀xC),∆′

�
Γ, C⊥ ⊢ [X ]A∧−B,∆′

C positive or literal
Γ ⊢ [X ]A∧−B,C,∆′

By induction hypothesis we get:

Γ, C⊥ ⊢ [X ]A,∆′

C positive or literal
Γ ⊢ [X ]A,C,∆′

and
Γ, C⊥ ⊢ [X ]B,∆′

C positive or literal
Γ ⊢ [X ]B,C,∆′

�
Γ ⊢ [C]A∧−B,∆′ Γ ⊢ [D]A∧−B,∆′

Γ ⊢ [C∧+D, ]A∧−B,∆′

By induction hypothesis we get

Γ ⊢ [C]A,∆′ Γ ⊢ [D]A,∆′

Γ ⊢ [C∧+D]A,∆′
and

Γ ⊢ [C]B,∆′ Γ ⊢ [D]B,∆′

Γ ⊢ [C∧+D]B,∆′

�
Γ ⊢ [Ci]A∧−B,∆′

Γ ⊢ [C1∨
+C2]A∧−B,∆′

By induction hypothesis we get

Γ ⊢ [Ci]A,∆′

Γ ⊢ [C1∨
+C2]A,∆′

and
Γ ⊢ [Ci]B,∆′

Γ ⊢ [C1∨
+C2]B,∆′
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�
Γ ⊢ [

{

t
�x

}

C]A∧−B,∆′

Γ ⊢ [∃xC]A∧−B,∆′

By induction hypothesis we get

Γ ⊢ [
{

t
�x

}

C]A,∆′

Γ ⊢ [∃xC]A,∆′
and

Γ ⊢ [
{

t
�x

}

C]B,∆′

Γ ⊢ [∃xC]B,∆′

• Inversion of A∨−B

�
Γ ⊢ [X ]A∨−B,C,∆′ Γ ⊢ [X ]A∨−B,D,∆′

Γ ⊢ [X ]A∨−B,C∧−D,∆′

By induction hypothesis we get
Γ ⊢ [X ]A,B,C,∆′ Γ ⊢ [X ]A,B,D,∆′

Γ ⊢ [X ]A,B,C∧−D,∆′

�
Γ ⊢ [X ]A∨−B,C,D,∆′

Γ ⊢ [X ]A∨−B,C∨−D,∆′

By induction hypothesis we get
Γ ⊢ [X ]A,B,C,D,∆′

Γ ⊢ [X ]A,B,C∨−D,∆′

�
Γ ⊢ [X ]A∨−B,C,∆′

x /∈ FV(Γ,X ,∆′)
Γ ⊢ [X ]A∨−B, (∀xC),∆′

By induction hypothesis we get
Γ ⊢ [X ]A,B,C,∆′

x /∈ FV(Γ,X ,∆′)
Γ ⊢ [X ],A,B, (∀xC),∆′

�
Γ, C⊥ ⊢ [X ],A∨−B,∆′

C positive or literal
Γ ⊢ [X ],A∨−B,C,∆′

By induction hypothesis we get
Γ, C⊥ ⊢ [X ],A,B,∆′

C positive or literal
Γ ⊢ [X ],A,B,C,∆′

�
Γ ⊢ [C]A∨−B,∆′ Γ ⊢ [D]A∨−B,∆′

Γ ⊢ [C∧+D]A∨−B,∆′

By induction hypothesis we get
Γ ⊢ [C]A,B,∆′ Γ ⊢ [D]A,B,∆′

Γ ⊢ [C∧+D]A,B,C∧−D,∆′

�
Γ ⊢ [Ci]A∨−B,∆′

Γ ⊢ [C1∨
+C2]A∨−B,∆′

By induction hypothesis we get
Γ ⊢ [Ci]A,B,∆′

Γ ⊢ [C1∨
+C2]A,B,∆′

�
Γ ⊢ [

{

t
�x

}

C]A∨−B,∆′

Γ ⊢ [∃xC]A∨−B,∆′

By induction hypothesis we get
Γ ⊢ [

{

t
�x

}

C]A,B,∆′

Γ ⊢ [∃xC]A,B,∆′

• Inversion of ∀xA

�
Γ ⊢ [X ],(∀xA), C,∆′ Γ ⊢ [X ],(∀xA), D,∆′

Γ ⊢ [X ],(∀xA), C∧−D,∆′

By induction hypothesis we get
Γ ⊢ [X ],A, C,∆′ Γ ⊢ [X ],A,D,∆′

x /∈ FV(Γ,X ,∆′)
Γ ⊢ [X ],A, C∧−D,∆′

�
Γ ⊢ [X ],(∀xA), C,D,∆′

Γ ⊢ [X ],(∀xA), C∨−D,∆′

By induction hypothesis we get
Γ ⊢ [X ],A, C,D,∆′

Γ ⊢ [X ],A, C∨−D,∆′

�
Γ ⊢ [X ],(∀xA), D,∆′

x /∈ FV(Γ,X ,∆′)
Γ ⊢ [X ],(∀xA), (∀xD),∆′

16



By induction hypothesis we get
Γ ⊢ [X ],A,D,∆′

x /∈ FV(Γ,X ,∆′)
Γ ⊢ [X ],A, (∀xD),∆′

�
Γ, C⊥ ⊢ [X ],(∀xA),∆′

C positive or literal
Γ ⊢ [X ],(∀xA), C,∆′

By induction hypothesis we get
Γ, C⊥ ⊢ [X ],A,∆′

Cpositive or literal
Γ ⊢ [X ],A, C,∆′

�
Γ ⊢ [C],(∀xA),∆′ Γ ⊢ [D],(∀xA),∆′

Γ ⊢ [C∧+D](∀xA),∆′

By induction hypothesis we get
Γ ⊢ [C],A,∆′ Γ ⊢ [D],A,∆′

x /∈ FV(Γ, C∧+D,∆′)
Γ ⊢ [C∧+D],A,∆′

�
Γ ⊢ [Ci],(∀xA),∆′

Γ ⊢ [C1∨
+C2],(∀xA),∆′

By induction hypothesis we get
Γ ⊢ [Ci],A,∆′

Γ ⊢ [C1∨
+C2],A,∆′

�
Γ ⊢ [

{

t
�x

}

D](∀xA),∆′

x /∈ FV(Γ, ∃xD,∆′)
Γ ⊢ [∃xD],(∀xA),∆′

By induction hypothesis we get
Γ ⊢ [

{

t
�x

}

D],A,∆′

x /∈ FV(Γ, ∃xD,∆′)
Γ ⊢ [∃xD],A,∆′

• Inversion of literals and positive formulae (A)

�
Γ ⊢ [X ],A, C,∆′ Γ ⊢ [X ],A,D,∆′

Γ ⊢ [X ],A, C∧−D,∆′

By induction hypothesis we get
Γ, A⊥ ⊢ [X ],C,∆′ Γ, A⊥ ⊢ [X ],D,∆′

Γ, A⊥ ⊢ [X ],C∧−D,∆′

�
Γ ⊢ [X ],A, C,D,∆′

Γ ⊢ [X ],A, C∨−D,∆′

By induction hypothesis
Γ, A⊥ ⊢ [X ],C,D,∆′

Γ, A⊥ ⊢ [X ],C∨−D,∆′

�
Γ ⊢ [X ],A,D,∆′

x /∈ FV(Γ,X ,∆′)
Γ ⊢ [X ],A, (∀xD),∆′

By induction hypothesis we get
Γ, A⊥ ⊢ [X ],D,∆′

x /∈ FV(Γ,X ,∆′)
Γ, A⊥ ⊢ [X ],(∀xD),∆′

�
Γ, B⊥ ⊢ [X ],A,∆′

B positive or literal
Γ ⊢ [X ],A,B,∆′

By induction hypothesis we get
Γ, A⊥, B⊥ ⊢ [X ],∆′

B positive or literal
Γ, A⊥ ⊢ [X ],B,∆′

�
Γ ⊢ [C],A,∆′ Γ ⊢ [D],A,∆′

Γ ⊢ [C∧+D, ],A,∆′

By induction hypothesis we get
Γ, A⊥ ⊢ [C],∆′ Γ, A⊥ ⊢ [D]∆′

Γ, A⊥ ⊢ [C∧+D, ],∆′

�
Γ ⊢ [Ci],A,∆′

Γ ⊢ [C1∨
+C2],A,∆′

By induction hypothesis
Γ, A⊥ ⊢ [Ci]∆

′

Γ, A⊥ ⊢ [C1∨
+C2],∆

′

�
Γ ⊢ [

{

t
�x

}

D],A,∆′

Γ ⊢ [∃xD]A,∆′

17



By induction hypothesis we get
Γ, A⊥ ⊢ [

{

t
�x

}

D]∆′

Γ, A⊥ ⊢ [∃xD],∆′

�

Lemma 12

1. If Γ ⊢ [A] is provable in LK
+(T ), then Γ ⊢ [A] is provable in LK(T ).

2. If Γ ⊢ [•]∆ is provable in LK
+(T ), then Γ ⊢ ∆ is provable in LK(T ).

Proof: By simultaneous induction on the assumed derivation.

1. For the �rst item we get, by case analysis on the last rule of the derivation:

•
Γ ⊢ [A1] Γ ⊢ [A2]

Γ ⊢ [A1∧
+A2]

withA = A1∧
+A2. The induction hypothesis on Γ ⊢LK+(T ) [A1] gives Γ ⊢LK(T ) [A1]

and the induction hypothesis on Γ ⊢LK+(T ) [A2] gives Γ ⊢LK(T ) [A2]. We get:

Γ ⊢ [A1] Γ ⊢ [A2]

Γ ⊢ [A1∧
+A2]

•
Γ ⊢ [Ai]

Γ ⊢ [A1∨
+A2]

with A = A1∨
+A2.

The induction hypothesis on Γ ⊢LK+(T ) [Ai] gives Γ ⊢LK(T ) [Ai]. We get:

Γ ⊢ [Ai]

Γ ⊢ [A1∨
+A2]

•
Γ ⊢ [{t/x}A]

Γ ⊢ [∃xA]

with A = ∃xA.
The induction hypothesis on Γ ⊢LK+(T ) [{t/x}A] gives Γ ⊢LK(T ) [{t/x}A]. We
get:

Γ ⊢ [{t/x}A]

Γ ⊢ [∃xA]
•

T (lit(Γ), p⊥)

Γ ⊢ [p]

with A = p where p is a positive literal.
The induction hypothesis on T (lit(Γ), p⊥) gives T (lit(Γ, p⊥)) in LK(T )and we get:

T (lit(Γ), p⊥)

Γ ⊢ [p]
•

Γ ⊢ [•]N

Γ ⊢ [N ]

with A = N and N is negative.
The induction hypothesis on Γ ⊢LK+(T ) [•]N gives Γ ⊢LK(T ) N . We get:

Γ ⊢ N

Γ ⊢ [N ]

2. For the second item, we use the height-preserving invertibility of the asynchronous rules,
so that we can assume without loss of generality that if ∆ is not empty then the last
rule of the derivation decomposes one of its formulae.
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•
Γ ⊢ [•]A1,∆1 Γ ⊢ [•]A2,∆1

Γ ⊢ [•]A1∧
−A2,∆1

with ∆ = A1∧
−A2,∆1. The induction hypothesis on Γ ⊢LK+(T ) [•]A1,∆1 gives

Γ ⊢LK(T ) A1,∆1 and the induction hypothesis on Γ ⊢LK+(T ) [•]A2,∆2 gives Γ ⊢LK(T ) A2,∆2.
We get :

Γ ⊢ A1,∆1 Γ ⊢ A2,∆1

Γ ⊢ A1∧
−A2,∆1

•
Γ ⊢ [•]A1, A2,∆1

Γ ⊢ [•]A1∨
−A2,∆1

with ∆ = A1∨
−A2,∆1. The induction hypothesis on Γ ⊢LK+(T ) [•]A1, A2∆1 gives

Γ ⊢LK(T ) A1, A2∆1 and we get :

Γ ⊢ A1, A2,∆1

Γ ⊢ A1∨
−A2,∆1

•
Γ ⊢ [•]A,∆1

x 6∈ FV(Γ,∆1)
Γ ⊢ [•]∀xA,∆1

with ∆ = ∀xA,∆1.
The induction hypothesis on Γ ⊢LK+(T ) [•]A,∆1 gives Γ ⊢LK(T ) A,∆1. We get:

Γ ⊢ A,∆1

x 6∈ FV(Γ,∆1)
Γ ⊢ ∀xA,∆1

•
Γ, A⊥ ⊢ [•]∆1

Γ ⊢ [•]A,∆1

with ∆ = A,∆1 and A is a positive or literal.
The induction hypothesis on Γ, A⊥ ⊢LK+(T ) [•]∆1 gives Γ, A⊥ ⊢LK(T ) ∆1. We get
:

Γ, A⊥ ⊢ ∆1

Γ ⊢ A,∆1
•

Γ, P⊥ ⊢ [P ]∆

Γ, P⊥ ⊢ [•]∆

where P is positive.
As already mentioned, we can assume without loss of generality that ∆ is empty.
The induction hypothesis on Γ, P⊥ ⊢LK+(T ) [P ] (1) gives Γ, P⊥ ⊢LK(T ) [P ]. We
get:

Γ, P⊥ ⊢ [P ]

Γ, P⊥ ⊢
•

T (lit(Γ), lit(∆))

Γ ⊢ [•]∆

As already mentioned, we can assume without loss of generality that ∆ is empty.
We get:

T (lit(Γ))

Γ ⊢

�
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Lemma 13 We have:

1. ⊢LK(T ) (A∧+B)
⊥
, (A∧−B) and

2. ⊢LK(T ) (A∧−B)
⊥
, (A∧+B).

Proof:

1. For the �rst item we get:

⊢ [A⊥]A
−−−− − WK
A ⊢ [A⊥]A

A ⊢ [•]A

⊢ [•]A⊥, A
−−−−−−−− WK
⊢ [•]A⊥, B⊥, A

⊢ [B⊥]B
−−−− − WK
B ⊢ [B⊥]B

B ⊢ [•]B

⊢ [•]B⊥, B
−−−−−−−− WK
⊢ [•]A⊥, B⊥, B

======================================
⊢ [•](A⊥∨−B⊥), (A∧−B)

⊢ [•](A∧+B)
⊥
, (A∧−B)

Lemma 12(2)
⊢ (A∧+B)

⊥
, (A∧−B)

Both left hand side and right hand side can be closed by Lemma 10.

2. For the second item, we get:

⊢ [A⊥]A

⊢ [A⊥∨+B⊥]A
−−−−−−−−−−− WK
A∧−B ⊢ [A⊥∨+B⊥]A

A∧−B ⊢ [•]A
Lemma 12(2)

A∧−B ⊢ A
−−−−−−−−−−− − WK
(A∧−B), (A⊥∨−B⊥) ⊢ A

⊢ [B⊥]B

⊢ [A⊥∨+B⊥]B
−−−−−−−−−−− WK
A∧−B ⊢ [A⊥∨+B⊥]B

A∧−B ⊢ [•]B
Lemma 12(2)

A∧−B ⊢ B
−−−−−− − WK
A∧−B ⊢ A⊥, B

−−−−−−−−−−−−− − WK
(A∧−B), (A⊥∨−B⊥) ⊢ A⊥, B

⊢ [A]A⊥

−−−−−−− WK
⊢ [A]A⊥, B⊥

⊢ [B]B⊥

−−−−−−− WK
⊢ [B]A⊥, B⊥

⊢ [A∧+B]A⊥, B⊥

−−−−−−−−−−−− − WK
A⊥∨−B⊥ ⊢ [A∧+B]A⊥, B⊥

A⊥∨−B⊥ ⊢ [•]A⊥, B⊥

Lemma 12(2)
A⊥∨−B⊥ ⊢ A⊥, B⊥

−−−−−−−−−−−−−−− WK
(A∧−B), (A⊥∨−B⊥) ⊢ A⊥, B⊥

cut7
(A∧−B), (A⊥∨−B⊥) ⊢ A⊥

(A∧−B), (A∧+B)
⊥

⊢
==================
⊢ (A∧−B)

⊥
, (A∧+B)

All branches are closed by Lemma 10. �

Lemma 14 If Γ ⊢LK(T ) ∆, C and Γ ⊢LK(T ) D,C⊥ then Γ ⊢LK(T ) ∆, D.

Proof:
Γ ⊢ ∆, C

−−−−−− WK
Γ ⊢ D,∆, C

Γ ⊢ D,C⊥

−−−−−−− WK
Γ ⊢ ∆, D,C⊥

cut7
Γ ⊢ ∆, D

�

Corollary 15

1. If Γ ⊢ A∧+B,∆ then Γ ⊢ A∧−B,∆. Proof: By Lemma 14 and Lemma 13(1). �

2. If Γ ⊢ A∧−B,∆ then Γ ⊢ A∧+B,∆. Proof: By Lemma 14 and Lemma 13(2). �

3. If Γ ⊢ A∨+B,∆ then Γ ⊢ A∨−B,∆. Proof: By Lemma 14 and Lemma 13(1). �

4. If Γ ⊢ A∨−B,∆ then Γ ⊢ A∨+B,∆. Proof: By Lemma 14 and Lemma 13(2). �
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We have proven that changing the polarities of the connectives that are present in a
sequent, does not change the provability of that sequent in LK(T ).

6 The LKp(T ) sequent calculus: on-the-�y polarisa-
tion of literals

De�nition 6 (Literals) From now on we distinguish polarised literals and unpolarised lit-
erals. The former are those literals used so far in LK(T ); the later are introduce as follows:

Let L be a set of elements called unpolarised literals, equipped with an involutive function
called negation from L to L. In the rest of this paper, a possibly primed or indexed lowercase
l always denotes a literal, and l⊥ its negation.

From now on, the expression literals refers to unpolarised literals.

De�nition 7 (Formulae, negation) The formulae LKp(T ) are given by the following gram-
mar:

Formulae A,B, . . . ::= l | A∧+B | A∨+B | A∧−B | A∨−B
where l ranges over literals.
Let P ⊆ L such that if l ∈ P, l⊥ 6∈ P .
We de�ne P-positive formulae and P-negative formulae as the formulae generated by the

following grammars:

P-positive formulae P, . . . ::= l | A∧+B | A∨+B

P-negative formulae N, . . . ::= l⊥ | A∧−B | A∨−B
where l ranges over P.
Negation is extended from literals to all formulae using the following de�nitions:

(A∧+B)
⊥

:= A⊥∨−B⊥ (A∧−B)
⊥

:= A⊥∨+B⊥

(A∨+B)
⊥

:= A⊥∧−B⊥ (A∨−B)
⊥

:= A⊥∧+B⊥

(∃xA)⊥ := ∀xA⊥ (∀xA)⊥ := ∃xA⊥

De�nition 8 (System LK
p(T )) The sequent calculus LKp(T ) is given by the rules of Fig-

ure 3, where Γ and ∆ are multisets of formulae.

Γ ⊢
P

T [A] Γ ⊢
P

T [B]

Γ ⊢
P

T [A∧+B]

Γ ⊢
P

T [Ai]

Γ ⊢
P

T [A1∨
+A2]

T (lit(Γ), l⊥)
l is P-positive

Γ ⊢
P,l
T

[l]

Γ ⊢
P

T N
N is P-negative

Γ ⊢
P

T [N ]

Γ ⊢
P

T A,∆ Γ ⊢
P

T B,∆

Γ ⊢
P

T A∧
−B,∆

Γ ⊢
P

T A1, A2,∆

Γ ⊢
P

T A1∨
−A2,∆

Γ, A⊥
⊢
P

T Γ′

A is P-positive or literal
Γ ⊢

P

T A,Γ′

Γ ⊢
P,l
T

Γ ⊢
P

T

Γ, P⊥
⊢
P

T [P ]
P is P-positive

Γ, P⊥
⊢
P

T

T (lit(Γ))

Γ ⊢
P

T

Figure 3: System LKp(T )

There are two cuts that we use in LKp(T ).

• Analytic cut:
Γ, l ⊢P

T Γ, l⊥ ⊢P
T

Γ ⊢P
T

• General cut:
Γ, l1, . . . , ln ⊢P Γ, (l⊥1 ∨− . . .∨−l⊥n ) ⊢P

Γ ⊢P
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De�nition 9 (φ compatible with P) Let φ be a function that maps every unpolarised
literal to a polarised literal that has the same meaning for T and such that φ(l⊥) = φ(l)⊥ for
all l. Let P be a set of literals of LK

p(T ).

• φ is said to be compatible with P if ∀l ∈ P, φ (l) is a positive literal of LK(T ).

• φ is extended into a mapping of formulae, and multisets of formulae, so that we can
write φ (A) ,φ (B) φ (Γ) , φ (∆), etc. .

Corollary 16

• If Γ ⊢P ∆ in LK
p(T ) then for all φ compatible with P, φ(Γ) ⊢ φ(∆) in LK(T ).

• If Γ ⊢P [A] in LK
p(T ) then for all φ compatible with P, φ(Γ) ⊢ [φ(A)] in LK(T ).

Proof: In our proof we use Γ′ for φ(Γ), A′ for φ(A), B′ for φ(B) and ∆′ for φ(∆), etc.

1.
Γ ⊢P,l

Γ ⊢P

since φ is compatible with P, l.

• If φ(l) is positive, then the induction hypothesis gives φ(Γ) ⊢.

• If φ(l) is negative, let p be a positive literal with the same meaning as φ(l) for T .
Then let φ′ be de�ned as:







φ′(l′) = φ(l′) if l′ 6= l and l′ 6= l⊥

φ′(l) = p

φ′(l⊥) = p⊥

φ′ is compatible with P, l, so by induction hypothesis we get φ′(Γ) ⊢. By corollary 8,
we have {φ(l), φ(l)⊥/φ′(l), φ′(l)⊥}φ′Γ ⊢.

2.
Γ ⊢P [A1] Γ ⊢P [A2]

Γ ⊢P [A1∧
+A2]

for A = A1∧
+A2.

The induction hypothesis on Γ ⊢P [A1] gives Γ′ ⊢ [A′
1] in LK(T ) and the induction

hypothesis on Γ ⊢P [A2] gives Γ
′ ⊢ [A′

2] in LK(T ). We build:

Γ′ ⊢ [A′

1] Γ′ ⊢ [A′

2]

Γ′ ⊢ [A′

1∧
+A′

2]

3.
Γ ⊢P [Ai]

Γ ⊢P [A1∨
+A2]

for A = A1∨
+A2.

The induction hypothesis on Γ ⊢P [Ai] gives Γ
′ ⊢ [A′

i] in LK(T ) and then we build:

Γ′ ⊢ [A′

i]

Γ′ ⊢ [A′

1∨
+A′

2]

4.
T (lit(Γ), l⊥)

Γ ⊢P,l

T
[l]

for A = l.
Let p = φ(l) and we can build:

T (lit(Γ′), p⊥)

Γ′ ⊢ [p]
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5.
Γ ⊢P N

Γ ⊢P [N ]

for A = N where N is P-negative.
The induction hypothesis on Γ ⊢P N gives Γ′ ⊢ N ′ in LK(T ) then we build:

Γ′ ⊢ N ′

Γ′ ⊢ [N ′]

6.
Γ ⊢P A1,∆ Γ ⊢P A2,∆

Γ ⊢P A1∧
−A2,∆

for ∆ = A1∧
−A2,∆

The induction hypothesis on Γ ⊢P A1,∆ gives Γ′ ⊢ A′
1,∆

′ in LK(T ) and the induction
hypothesis on Γ ⊢P A2,∆ gives Γ′ ⊢ A′

2,∆
′ in LK(T ). We get:

Γ′ ⊢ A′,∆′ Γ′ ⊢ B′,∆′

Γ′ ⊢ A′∧−B′,∆′

7.
Γ ⊢P A1, A2,∆

Γ ⊢P A1∨
−A2,∆

for ∆ = A1∨
−A2,∆.

The induction hypothesis on Γ ⊢P A1, A2,∆ gives Γ′ ⊢ A′
1, A

′
2,∆

′ in LK(T ). We get:

Γ′ ⊢ A′

1, A
′

2,∆
′

Γ′ ⊢ A′

1∨
−A′

2,∆
′

8.
Γ, A⊥ ⊢P

T ∆

Γ ⊢P
T A,∆

for ∆ = A,∆ where A is P-positive or literal.

The induction hypothesis on Γ, A⊥ ⊢P ∆ gives Γ′, A′⊥ ⊢ ∆′ in LK(T ). We get:

Γ′, A′⊥ ⊢ ∆′

Γ′ ⊢ A′,∆′

9.
Γ, P⊥ ⊢P [P ]

P is P-positive
Γ, P⊥ ⊢P

where P is P-positive.

The induction hypothesis on Γ, P⊥ ⊢P [P ] gives Γ, P ′⊥ ⊢ [P ′] in LK(T ). We get:

Γ, P ′⊥ ⊢ [P ′]

Γ′, P ′⊥ ⊢

10.
T (lit(Γ))

Γ ⊢

We get:
T (lit(Γ′))

Γ′ ⊢
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11.
Γ, l ⊢P Γ, l⊥ ⊢P

Γ ⊢P

For analytic cut in LKp(T ).
The induction hypothesis on Γ, l ⊢P gives Γ′, l′ ⊢ in LK(T ) and the induction hypoth-

esis on Γ, l⊥ ⊢P gives Γ′, l′
⊥

⊢ in LK(T ). Then we build:

Γ′, l′ ⊢ Γ′, l′
⊥

⊢
cut8

Γ′ ⊢

and we eliminate the cut8 by Theorem 6.

12.
Γ, l1, . . . , ln ⊢P Γ, (l⊥1 ∨− . . .∨−l⊥n ) ⊢P

Γ ⊢P

The induction hypothesis on Γ, l1, . . . , ln ⊢P gives Γ′, l′1, . . . , l
′
n ⊢ and the induction

hypothesis on Γ, (l⊥1 ∨− . . .∨−l⊥n ) ⊢P gives Γ′, (l′1
⊥
∨− . . .∨−l′n

⊥
) ⊢ . Then we build:

Γ′, l′1, . . . , l
′

n ⊢ Γ′, (l′1
⊥
∨− . . .∨−l′n

⊥
) ⊢

cut9
Γ′ ⊢

and we eliminate cut9 by Theorem 6.

�

7 Completeness

De�nition 10 (Formulae) Let L be the set of unpolarised literals as de�ned in Section 6.
Let A be a subset of L, whose elements will be called atoms, and such that the image of

A by ⊥ is its complement in L: L \ A.
The formulae of �rst-order logic are given by the following grammar:

Formulae A,B, . . . ::= a | A ∨B | A ∧B | ∀xA | ∃xA | ¬A
where a ranges over atoms.

De�nition 11 (φ and φ̄) Let φ be a function that maps every atom to a polarised literal
that has the same meaning for T .

Let φ̄ be the function that maps every formula of �rst-order logic to a set of polarised
formulae de�ned as follows:

φ̄(a) = {φ(a)}
φ̄(A ∧B) = {A′∧−B′, A′∧+B′ | A′ ∈ φ(A), B′ ∈ φ(B)}
φ̄(A ∨B) = {A′∨−B′, A′∨+B′ | A′ ∈ φ(A), B′ ∈ φ(B)}
φ̄(∃xA) = {∃xA′ | A′ ∈ φ(A)}
φ̄(∀xA) = {∀xA′ | A′ ∈ φ(A)}

φ̄(¬A) = {A′⊥ | A′ ∈ φ(A)}
φ̄(∆, A) = {∆′, A′ | ∆′ ∈ φ(∆), A′ ∈ φ(A)}
φ̄(∅) = ∅

Remark 17 φ̄(A) 6= ∅

Remark 18 If A′ ∈ φ̄(A), then
{

t�x

}

A′ ∈ φ̄(
{

t�x

}

A′).
If C′ ∈ φ̄(

{

t�x

}

A), then C′ =
{

t�x

}

A′ for some A′ ∈ φ̄(A).

Notation 19 In the rest of this section we will use the notation A ∧? B (resp. A ∨? B)
to ambiguously represent either A∧+B or A∧−B (resp. A∨+B or A∨−B). This will make
the proofs more compact, noticing that Corollary 15(2) and 15(4) respectively imply the
admissibility of

Γ ⊢ ∆, A∧−B

Γ ⊢ ∆, A ∧? B

Γ ⊢ ∆, A∨−B

Γ ⊢ ∆, A ∨? B
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Lemma 20 For all A′, A′′ ∈ φ̄(A), we have ⊢LK(T ) A′, A′′⊥

Proof: In the proof below, for any formula A, the notations A′ and A′′ will systematically
designate elements of φ(A).

The proof is by induction on A:

1. A = a.

Let A′, A′′ ∈ φ̄(a) = {φ(a)}. Therefore A′ = A′′ = A = φ(a).

φ(a) ⊢ [φ(a)]

φ⊥(a), φ(a) ⊢

⊢ φ(a), φ⊥(a)

2. A = A1 ∧A2

Let A′
1, A

′′
1 ∈ φ̄(A1) , A

′
2, A

′′
2 ∈ φ̄(A2) and A′ = A′

1 ∧
? A′

2, A
′′ = A′′

1 ∧? A′′
2 .

⊢ A′

1, A
′′

1
⊥

WK
⊢ A′

1, A
′′

1
⊥
, A′′

2
⊥

⊢ A′

2, A
′′

2
⊥

WK
⊢ A′

2, A
′′

1
⊥
, A′′

2
⊥

=======================================
⊢ A′

1∧
−A′

2, A
′′

1
⊥
∨−A′′

2
⊥

⊢ A′, A′′

1
⊥
∨−A′′

2
⊥

⊢ A′, A′′⊥

We can complete the proof on the left-hand side by applying the induction on A1 and
on the right-hand side by applying the induction hypothesis on A2.

3. A = A1 ∨A2

Let A′
1, A

′′
1 ∈ φ̄(A1) , A

′
2, A

′′
2 ∈ φ̄(A2) and A′ = A′

1 ∨
? A′

2, A
′′ = A′′

1 ∨? A′′
2 .

⊢ A′

1, A
′′

1
⊥

WK
⊢ A′

1, A
′

2, A
′′

1
⊥

⊢ A′

2, A
′′

2
⊥

WK
⊢ A′

1, A
′

2, A
′′

2
⊥

=====================================
⊢ A′

1∨
−A′

2, A
′′

1
⊥
∧−A′′

2
⊥

⊢ A′, A′′

1
⊥
∧−A′′

2
⊥

⊢ A′, A′′⊥

We can complete the proof on the left-hand side by applying the induction on A1 and
on the right-hand side by applying the induction hypothesis on A2.

4. A = ∀xA1

Let A′ = ∀xA′
1 and A′′ = ∀xA′′

1 .

⊢ [A′′

1
⊥
]A′′

1

⊢ [∃xA′′

1 ]A
′′

1
=========== WK
∀xA′′

1 ⊢ [•]A′′

1
=========== Lemma 12(2)
⊢ A′′

1 , ∃xA
′′

1
⊥

⊢ A′

1, A
′′

1
⊥

Lemma 14
⊢ A′

1, ∃xA
′′

1
⊥

⊢ ∀xA′

1, ∃xA
′′

1
⊥

We can complete the proof on the left-hand side by Lemma 10 and the right-hand side
by applying the induction hypothesis on A1.

5. A = ∃xA1

Let A′ = ∃xA′
1 and A′′ = ∃xA′′

1 .
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⊢ [A′

1
⊥
]A′

1
==========
⊢ [A′

1]∃xA
′

1
===========
A′

1 ⊢ [•]∃xA′

1
=========== Lemma 12(2)
⊢ A′

1
⊥
, ∃xA′

1 ⊢ A′

1, A
′′

1
⊥

Lemma 14
⊢ ∃xA′

1, A
′′

1
⊥

⊢ ∃xA′

1, ∀xA
′′

1
⊥

We can complete the proof on the left-hand side by Lemma 10 and the right-hand side
by applying the induction hypothesis on A1.

6. A = ¬A1

Let A′, A′′ ∈ φ̄(¬A1).

Let A′ = A′
1
⊥
with A′

1 ∈ φ̄(A1) and A′′ = A′′
1
⊥
with A′′

1 ∈ φ̄(A1).

The induction hypothesis on A1 we get: ⊢LK(T ) A′, A′′⊥ and we are done.

�

Theorem 21 Let ΓT = {l1 ∨ · · · ∨ ln | T (l1
⊥, · · · , ln

⊥) returns UNSAT} .

If ΓT ,∆ ⊢FOL A then for all A′ ∈ φ̄(A) and ∆′ ∈ φ̄(∆), ⊢LK(T ) A′,∆′⊥.

Proof:
For any formula A, the notation A′ will systematically designate elements of φ(A) and for

any multiset of formulae ∆, the notation ∆′ will systematically designate elements of φ(∆).
The proof is by induction of ΓT ,∆ ⊢FOL A, and case analysis on the last rule:

• Axiom:
A ∈ ΓT ,∆

ΓT ,∆ ⊢ A

By case analysis:

� If A ∈ ∆ then:

⊢ A′, A′′⊥

WK
⊢ A′,∆′⊥

with A′, A′′ ∈ φ̄(A).
We can close the branch by Lemma 20.

� If A ∈ ΓT then:

A is of the form l1 ∨ · · · ∨ ln with T (φ(l1)
⊥, · · · , φ(ln)

⊥). Let C′ ∈ φ̄(A). C′ is of
the form φ(l1) ∨

? · · · ∨? φ(ln).

T (φ(l1)
⊥, · · · , φ(ln)

⊥)

φ(l1)
⊥, · · · , φ(ln)

⊥ ⊢

⊢ φ(l1), · · · , φ(ln))
==================
⊢ φ(l1)∨

− · · · ∨−φ(ln))

⊢ C′

−−−− − WK
⊢ ∆′⊥, C′

This is a complete proof since T (φ(l1)
⊥, · · · , φ(ln)

⊥) returns UNSAT .

• And Intro:
ΓT ,∆ ⊢ A1 ΓT ,∆ ⊢ A2

ΓT ,∆ ⊢ A1 ∧A2

A′ ∈ φ̄(A1 ∧A2) is of the form A′
1 ∧

? A′
2 with A′

1 ∈ φ(A1) and A′
2 ∈ φ(A2).

The induction hypothesis on ΓT ,∆ ⊢FOL A1 gives ⊢LK(T ) A′
1,∆

′⊥ and the induction

hypothesis on ΓT ,∆ ⊢FOL A2 gives ⊢LK(T ) A′
2,∆

′⊥. We build:
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⊢ A′

1,∆
′⊥ ⊢ A′

2,∆
′⊥

⊢ A′

1∧
−A′

2,∆
′⊥

⊢ A′

1 ∧
? A′

2,∆
′⊥

• And Elim
ΓT ,∆ ⊢ A ∧B

ΓT ,∆ ⊢ A
� Since φ̄(B) 6= ∅, let B′ ∈ φ̄(B) and C′ = A′∧−B′ (C′ ∈ φ̄(A ∧B)).

The induction hypothesis on the premise, with ∆′ and C′, gives ⊢LK(T ) C′,∆′⊥

and we get:

⊢ C′,∆′⊥

⊢ A′,∆′⊥

by Lemma 3.
ΓT ,∆ ⊢ A ∧B

ΓT ,∆ ⊢ B
� Since φ̄(A) 6= ∅, let A′ ∈ φ̄(A) and C′ = A′∧−B′ (C′ ∈ φ̄(A ∧B)).

The induction hypothesis on the premise, with ∆′ and C′, gives ⊢LK(T ) C′,∆′⊥

and we get:

⊢ C′,∆′⊥

⊢ B′,∆′⊥

by Lemma 3.

• Or Intro
ΓT ,∆ ⊢ Ai

ΓT ,∆ ⊢ A1 ∨A2

A′ ∈ φ̄(A1 ∨A2) is of the form A′
1 ∨

? A′
2 with A′

1 ∈ φ(A1) and A′
2 ∈ φ(A2).

The induction hypothesis on ΓT ,∆ ⊢FOL Ai gives ⊢LK(T ) A′
i,∆

′⊥ and we build:

⊢ A′

i,∆
′⊥

WK
⊢ A′

1, A
′

2,∆
′⊥

⊢ A′

1∨
−A′

2,∆
′⊥

⊢ A′

1 ∨
? A′

2,∆
′⊥

• Or Elim
ΓT ,∆ ⊢ A1 ∨A2 ΓT ,∆, A1 ⊢ C ΓT ,∆, A2 ⊢ C

ΓT ,∆ ⊢ C

Let D′ = A′
1∨

−A′
2 with A′

1 ∈ φ(A1) and A′
2 ∈ φ(A2).

The induction hypothesis on ΓT ,∆ ⊢FOL A1 ∨ A2 gives ⊢LK(T ) D′,∆′⊥, the induc-

tion hypothesis on ΓT , A1,∆ ⊢FOL C gives ⊢LK(T ) A′
1
⊥
, C′,∆′⊥ and the induction

hypothesis on ΓT , A2,∆ ⊢FOL C gives ⊢LK(T ) A′
2
⊥
, C′,∆′⊥. We get:

⊢ D′, C′,∆′⊥

⊢ A′

1
⊥
, C′,∆′⊥ ⊢ A′

2
⊥
, C′,∆′⊥

⊢ A′

1
⊥
∧+A′

2
⊥
, C′,∆′⊥

⊢ (A′

1∨
−A′

2)
⊥
, C′,∆′⊥

cut7
⊢ C′,∆′⊥

• Universal quanti�er Intro
ΓT ,∆ ⊢ A

x 6∈ Γ
ΓT ,∆ ⊢ ∀xA

C′ ∈ φ̄(∀xA) is of the form ∀xA′ with A′ ∈ φ̄(A).

The induction hypothesis on ΓT ,∆ ⊢FOL A gives ⊢LK(T ) A′,∆′⊥. We get:

⊢ A′,∆′⊥

⊢ ∀xA′,∆′⊥

• Universal quanti�er Elim
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ΓT ,∆ ⊢ ∀xA

ΓT ,∆ ⊢
{

t
�x

}

A

C′ ∈ φ̄(
{

t�x

}

A) is of the form
{

t�x

}

A′ with A′ ∈ φ(A) (by remark 18).

The induction hypothesis on ΓT ,∆ ⊢FOL ∀xA gives ⊢LK(T ) ∀xA′,∆′⊥. We get:

⊢ ∀xA′,∆′⊥

⊢ A′,∆′⊥

−−−−−− −
⊢

{

t
�x

}

A′,∆′⊥

by Lemma 3 and Lemma 2.

• Existential quanti�er Intro

ΓT ,∆ ⊢
{

t
�x

}

A

ΓT ,∆ ⊢ ∃xA
C′ ∈ φ̄(∃xA) is of the form ∃xA′ with A′ ∈ φ̄(A).

Let A′
t =

{

t�x

}

A′ (A′
t ∈ φ̄(

{

t�x

}

A) by remark 18).

The induction hypothesis on ΓT ,∆ ⊢FOL

{

t�x

}

A gives ⊢LK(T ) A′
t,∆

′⊥.

By Lemma 14 it su�ces to prove ⊢LK(T ) ∃xA′, A′
t
⊥
in order to get ⊢LK(T ) C′,∆′⊥:

⊢ [A′

t]A
′

t

⊥

⊢ [∃xA′]A′

t

⊥

============= WK
∀xA′⊥ ⊢ [•]A′

t

⊥

============= Lemma 12(2)
⊢ ∃xA′, A′

t

⊥

We can complete the proof by applying Lemma 10.

• Existential quanti�er Elim
ΓT ,∆ ⊢ ∃xA Γ,∆, A ⊢ B

x 6∈ Γ, B
ΓT ,∆ ⊢ B

Let C′ = ∃xA′ with A′ ∈ φ̄(A).

⊢ C′,∆′⊥

⊢ A′⊥, B′,∆′⊥

⊢ ∀xA′⊥, B′,∆′⊥

⊢ C′⊥, B′,∆′⊥

cut7
⊢ B′,∆′⊥

We can complete the proof on the left-hand side by applying the induction hypothesis
on ΓT ,∆ ⊢FOL ∃xA and on the right-hand side by applying the induction hypothesis
on ΓT ,∆, A ⊢FOL B.

• Negation Intro
ΓT ,∆, A ⊢ B ∧ ¬B

ΓT ,∆ ⊢ ¬A

If C′ ∈ φ̄(¬A) then C′⊥ ∈ φ̄(A). Let D′ = D′
1∧

−D′
2 with D′

1 ∈ φ̄(B) and D′
2 ∈ φ̄(¬B).

Therefore D′
2
⊥
∈ φ̄(B), D′ ∈ φ̄(B ∧ ¬B) and ∆′, C′⊥ ∈ φ̄(∆, A).

⊢ ∆′⊥, C′, D′

⊢ D′

1
⊥
, D′

2
⊥

⊢ D′

1
⊥
∨−D′

2
⊥

Corollary 15(4)
⊢ D′⊥

−−−−−−−− WK
⊢ ∆′⊥, C′, D′⊥

cut7
⊢ ∆′⊥, C′

We can complete the proof on the left-hand side by applying the induction hypothesis on
ΓT ,∆, A ⊢ B∧¬B and on the right-hand side by applying Lemma 20 with A′′⊥ = D′

1
⊥

and A′ = D′
2
⊥
.

• Negation Elimination
ΓT ,∆ ⊢ ¬¬A

ΓT ,∆ ⊢ A
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A′ ∈ φ̄(A) is such that A′ ∈ φ̄(¬¬A).

The induction hypothesis on ΓT ,∆ ⊢ ¬¬A gives ⊢ ∆′⊥, A′ and we are done.

�

8 Conclusion

It is worth noting that an instance of such a theory is the theory where T (S) holds if and
only if there is a literal p ∈ S such that p⊥ ∈ S.

We proved the admissibility of cut8 and cut9 as they are used to simulate the DPLL(T )
procedure [NOT06] as the proof-search mechanism of LK(T ).
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