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Abstract

We propose a new scripting language called DSLM based on the syn-
chronous/reactive model. In DSLM, systems are composed of several
sites executed asynchronously, and each site is running agents in a
synchronous way. Each agent executes its script in synchronous par-
allel way. Scripts may call functions that are considered in an abstract
way: their effect on the memory is not considered,

but only their “orchestration” i.e. the organisation of their calls
in time and in place (the site where they are called). The mapping
of sites onto cores allows one to benefit from multicore architectures.
Two properties are assumed by DSL: reactivity of sites and absence
of interferences between scripts run by distinct sites. We consider
several variants of DSL. In the first variant, functions are defined in
FunLoft. In the second variant of DSL, functions are defined in Re-
activeML and the JoCaml system is used for asynchronous inter-sites
communications. The third variant is based on SugarCubes which is
a Java based framework for reactive programming. Finally, in the
fourth variant, functions are defined in Scheme/Bigloo.

∗with support from ANR-08-EMER-010, project PARTOUT
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1 Introduction

Concurrency and parallelism are among the main problems of systems and
programming languages. Up to now, issues concerning parallelism and con-
currency were concentrated at the operating system level and left to experts
of this domain.

Nowadays, multi-core machines are everywhere: in servers, PCs and even
in mobile phones. These machines are widely used by the public. Con-
currency problems are no more expert problems but they now also concern
software programmers.

There exist several approaches to concurrent programming. In this pa-
per, we are mainly considering the shared memory concurrency model [14] :
the first and most used variant is called preemptive multi-threading. In this
model, concurrent programs are system threads scheduled and preempted by
the system in an arbitrary way. This model major problem is the freedom
schedulers have in choosing the threads to be executed; this leads to so-called
time-dependent errors which are generally considered as extremely difficult
to tame [17].

Another model is cooperative multi-threading [9] [25]. In this model, the
system loses the possibility to arbitrarily preempt threads. In order to be
given to a new thread, the control must be explicitly released by the cur-
rently executing thread. Thanks to this, time-dependent errors do not occur
anymore. However, the cooperative approach suffers from major drawback
as a single thread can freeze the whole system if it never releases the control,
preventing thus the system from giving it to the other threads.

The intrinsic difficulty of problems raised by concurrency and parallelism
calls for formal techniques, and more specifically formal semantics. Among
formal techniques, are operational semantics [18] which are usually classified
in two categories: structural operational or small-step semantics, and natural
or big-step semantics. Small-step semantics is close to program execution
and describes each step of evaluation by an abstract interpretor. On the
other hand, big-step semantics describes how the overall execution result is
obtained, possibly using abstract means such as least fix-points of functionals.
Small-step semantics are closer to implementation than big-step semantics,
but more difficult to reason with.

Other models of concurrency and parallelism have also been proposed
like the Actor model [3], Petri nets [22], Transactional memory [19], etc.
Among these proposals, is the synchronous approach[2] that we now describe
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by means of an example written in the Esterel language [4]. Let us consider
a program made of two parallel statements, one awaiting for an event e, then
producing event f , and the other producing event e. Such a statement is
written in Esterel as:

P1 = await immediate e; emit f|| emit e

Due to the synchronous parallelism used in Esterel, the program P1 imme-
diately emits both e and f , and this is the only possible outcome. Actually,
there is a general demand of Esterel that all programs are deterministic:
Esterel thus defines a synchronous and deterministic parallel operator. The
small-step semantics of Esterel over program P1 considers the various pos-
sible interleavings of the two branches of the parallel statement, and let the
control progress until both emissions of e and f are performed. On the
contrary, the big-step semantics guesses that e and f are present, and then
verifies that this is a coherent outcome. Actually, the small-step semantics
of P1 takes several steps, while the big-step semantics takes only one step.

Deterministic synchronous parallelism has difficulties to cope with mem-
ory. Indeed, uncontrolled concurrent accesses to memory, as in:

P2 = x:=1 || x:=2

produces non-deterministic results: the outcome can be either x = 1 (if
the second branche is executed first) or x = 2 otherwise. Moreover, non-
determinism can result from non-atomic access to the memory. Thus deter-
ministic parallel programming demands for means to get atomicity in memory
access. Atomicity is usually provided by locks, in the context of preemptive
multi-threading. Locks, however, are problematic as they can produce dead-
lock situations, when used, and time-dependent errors when programmers
forget to use them [24].

In the synchronous model, memory is difficult to deal with [16], [6]. In
Esterel, the solution is rather drastic: a variable cannot be read by one branch
of a parallel statement and written by the other [5]. Thus, the previous
program P2 would be rejected by the compiler. However, Esterel does not
control concurrent accesses made at lower level by procedures and functions.
Consider the following statement where two functions are called in parallel:

P3 = f1 () || f2 ()
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The Esterel compiler is unable to verify that no concurrent access occurs
through the calls of f1 and f2. Actually, one may think that the Esterel so-
lution to avoid concurrent accesses to the memory is over-restrictive, specially
in the context of multi-core programming in which access to the memory are
the basic communication and synchronization means.

In this text, we propose a new model in which data races and time-
dependent errors are eliminated by construction in the context of multi-cores
architectures.

Structure of the text

The model is introduced in Section 2. A language based on the model is
informally presented in Section 3. The domains in which the semantics is
build are presented in Section 4. The semantics of scripts is given in Section
5. Sites and systems semantics are presented in the Section 6. A type system
to verify safety of the language is given in Section 7. A refined semantics of
the language is presented the section 8. Finally, related work and conclusion
are given in Section 10 and 11.

2 Proposal

We propose a synchronous-based model which uses a deterministic parallel
operator, and is able to deal with the memory in a safe way, without pos-
sibilities of time-dependent errors or data-races. We give our formalism a
small-step semantics and introduce means to take benefit from multi-core
architectures. Our model is called DSLM stand for Dynamic Synchronous
Language with Memory.

Our model simplifies the programming of parallelism, compared to stan-
dard approaches. Simplification basically results from a simple and clean
semantics due to the use of a synchronous and deterministic parallel oper-
ator. As in standard synchronous models, a notion of instant is present.
Instants define a logical time, different from the physical time; an instant is
terminated when all the parallel components have reached a synchronization
barrier. Our proposal contains a solution to the issue of non-terminating in-
stants which would prevent the system to reach the synchronization barrier
(this problem is closely related to the freezing problem of the cooperative
model).
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In the synchronous model, events are a mean for communication. At each
instant, an event is either absent, or present if it is produced. However, in
Esterel, causality cycle can appear when no coherent solution can be found
for the absence/presence status of an event. For example, consider:

P4 = present e else emit e end

There is a causality cycle in P4, as the status of e cannot be determined:
if e is absent, then it is emitted, which is contradictory. However, if e is
present, then it is not emitted, which is also a contradiction. Thus, P4 has
no coherent solution in determining the status of e.

In addition to the possibilities of non-terminating instants, and of causal-
ity cycles, the standard synchronous model has difficulties in facing real par-
allelism and use of multi-core machines. Indeed, the use of multi-cores in
the synchronous context implies the necessity to statically reject all kinds
of time-dependent errors, and the possibility of dynamic creation (of events
and parallel components) which is a extremely difficult task for standard
synchronous languages.

Our model is based on the reactive variant [2] of the synchronous ap-
proach, which allows for dynamic creation and avoids causality cycles by
construction (by prohibiting instantaneous reaction to absence of events).
Moreover, there exists solutions in the reactive variant to insure by con-
struction the termination of instants, even at the lower level of function and
procedure calls (in the FunLoft [10] language).

Our proposal contains four main notions : scripts, events, agents and
sites:

• Scripts : scripts are the basic parallel components. The syntax of
scripts and their semantics is given in Section 3.

• Events: instantaneous broadcast of events is possible in our model.
Values can be associated to events and event and their associated val-
ues are seen by all receivers in the same way. Events can be created
dynamically during the execution.

• Agents: an agent encapsulates a script which can be a parallel script
composed of several components (the components belonging to the
agent) sharing the same agent memory. The only parallel components
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Figure 1: DSLM model

that can access the memory of an agent are the one belonging to the
agent.

• Sites: a site is a location where execution of agents takes place. Each
site runs one or more agents and manages a set of events shared by the
site agents. There is no dynamic creation of sites. The model requires
the uniqueness of site names. All the agents belonging to the same site
are sharing the same instants and events. Agent can migrate from a site
to another; the syntax is migrate to site for migrating the executing
agent to site site. A system is composed of a set of sites which are run
asynchronously and agent migration is the only communication means
between sites.

DSLM does not provide any means to define functions. However, scripts
may call functions defined in a “host” language (the language in which we
define our model is called the host language). Function are required to tem-
inate instantaneously (i.e. in the same instant it is started).And Modules
execution can last several instants or even never terminate.

Execution of an agent consists in the execution of the agent’s script in the
context of the agent’s memory. Execution of a site consists in the synchronous
execution of all the agents belonging to the site, up to a state where they are
all suspended or terminated. Then, end of the current instant is decided and
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all the events which have not been generated during the instant are considered
as absent. During site executions, the agents of the site can communicate
and synchronize using the events they dynamically create.

Note that our model can be considered as a member of the GALS fam-
ily (Globally asynchronous, Locally Synchronous) [23], as sites are executed
asynchronously and agents in the same site are executed in a synchronous
way.

In our model, scripts, agents, sites and systems receive a small-step se-
mantics describe in Sections 5, 6.

3 Informal Language Description

This section contains the informal description of the language. First, we
describe scripts and expressions. Then, a description of the model execution
semantics is given.

3.1 Scripts and Expressions

Scripts are considered in a synchronous context and execution of a script at
one instant has two possible outcomes:

• the script is terminated (nothing remains to be executed);

• the script is suspended: either it is waiting for an event to be generated,
or it is waiting for the end of instant. In the first case execution will be
continued during the current instant upto, either the generation of the
event (which thus become present), or, the end of the current instant
(and then the awaited event is considered as absent).

The informal description of scripts is as follows:

• nothing does nothing and terminates. In the semantics nothing is the
only statement which is terminated and there is no rewriting rule that
applies to it.

• s1; s2 runs scripts s1 and s2 in sequence; execution of s2 immediately
starts when s1 is terminated;

• x :=e puts the values of e in the memory location of x, and terminates;
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• s1 - s2 runs the script s1 and s2 in parallel. The execution is terminated
when both parallel branches are terminated. During each instant, both
parallel branches are executed in a deterministic way: execution always
starts with s1 and switches to s2 when s1 is suspended. If necessary,
execution returns to s1 when s2 becomes suspended, and this process
continues until s1 and s2 are both terminated or suspended.

• let x = e in s end defines a new variable x whose scope is s. A new
location is associated to x, and the values of e is stored in this location.
Then, the script behaves like s;

• cooperate suspend the execution for the current instant, waiting for
the next instant. At the next instant the cooperate instruction is re-
placed by nothing;

• generate ev with e generates event ev with the value of the expression
e and terminates;

• await ev has no effect and terminates if event ev is present. Otherwise,
it suspends execution waiting for the event ev;

• get all ev in l stores all the values associated to the generations of
event ev during the current instant into the location l; execution is
suspended upto the end of instant;

• do s watching ev executes the script s while event ev is not present.
Execution of s is aborted as soon as ev is generated; In case of abor-
tion, execution of the watching statement is suspended upto the end of
instant;

• repeat e do s end runs the script s, n times in sequence, where n is the
result of the evaluation of e;

• loop s end cyclically runs the script s: execution of s is restarted as
soon as it terminates. However, if s terminates instantaneously (i.e.
in the same instant it is started), the loop waits for the next instant
to restart s. There is thus no possibility to get an instantaneous loop
which would cycle for ever during the current instant, freezing the whole
system;
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• launch m(e) launches the module m with the parameter e. Execution
cannot terminate instantaneously. Execution may never terminates;

• if e then s1 else s2 end runs the script corresponding to the result of
evaluation of the expression e (s1 corresponds to true, and s2 to false);

• migrate to site makes a request for moving the executing agent from
the current site to the site site. Execution of the instruction is sus-
pended for the current instant and resumes after the migration is effec-
tive on site. Due to parallelism, there can be several migration requests
during the same instant (we call this schizophrenia). In this case, only
the first request is considered and the other ones are ignored;

• createAgent s in site creates a new agent which encapsulate s with an
empty memory. The agent is added to the list of agents requesting to
be incorporated to site and its execution starts when it is effectively
incorporated.

Expressions are the following:

• a basic value v;

• a vector of expressions ~e;

• a variable x whose value is the location associated to x;

• !x whose value is the content of the location associated to x;

• ref e which returns a new location where the value of e is stored;

• f(e) which calls the function f with the value of e (it can be a vector)
as parameter. Execution of the call starts immediately and is required
to be instantaneous, i.e. terminates instantly.

3.2 Agents, Sites and Systems

Execution of an agent consists in the execution of the agent’s script in the
context of the agent’s memory. Execution of an agent terminates when the
agent’s script is terminated.
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Execution of a site consists in the synchronous execution of all the agents
belonging to the site, up to a state where they are all suspended or termi-
nated. During each instant, the agents of the site can communicate and
synchronize using events.

The end of the current instant is decided at the site level when all the
agents belonging to the site are suspended or terminated. Then, the follow-
ings actions are performed:

• the requests of migration to other sites are processed;

• the agents requesting to be incorporated in the site are actually added
to the site;

• the events which have not been generated during the instant are con-
sidered as absent and the suspended scripts are reconstructed for the
next instant (i.e. cooperate is change in nothing);

• finally, the site event set is reset to the empty set.

when these actions are performed, the execution of the site for the next
instant can start.

A system is a statically defined set of sites, each of them with a distinct
name. Execution of sites is completely asynchronous: sites are chosen and
executed in a totally arbitrary way (even in real parallelism). Nothing is
shared between different sites and the only means of communication is agent
migration.

The semantics of the language (given in the next section) is separated
in several levels which describes systems, sites, agents, and scripts. The
semantics at a given level uses lower levels; for example, the semantics of an
agent is based on script semantics.

Here are the main characteristics of the semantics:
(1) The semantics of agents and scripts is completely deterministic, even

at the level of memory manipulations. We choose a fully deterministic paral-
lel operator (merge) and a small-step semantics for that purpose. Moreover,
to deal with the possiblity for a script to get suspended, we chose the small-
est possible grain of parallelism; for example, a full step is devoted to the
evaluation of the boolean expression of a test, while the execution of the
chosen branch is left for a future step. In this way, the execution of the test
can progress even if the chosen branch is suspended.
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(2) The semantics of sites is confluent, at the event level. This results
from two items: first, the synchronous execution of agents, and second, the
memory encapsulation in agents. With these two elements, it becomes pos-
sible to get a confluent semantics for the sites: during one instant of a site,
not two different event sets can be produced.

(3) The semantics of systems is completely non-deterministic which makes
possible to model distribution as well as multi-core aspects.

4 Domains

In this section the domains used in this paper are given.
The following disjoint countable sets are defined: LocName (locations),

VarName (variable names), FunName (function names), ModuleName
(module names), SiteName (site names) and EventName (event names).
Each set has an associated function which returns an unused element of the
set (for example, each call of the function new loc returns a new unused
location in LocName).

We use the following notation to define domains:

• A×B denotes the cartesian product of the domain A and B;

• A⊕B denotes the disjoint union of the domain A and B;

• NZ denotes the multi-set containing the elements of Z;

• ] is the union of multi-sets;

• None is the domain that contains the unique distinguished element
None. In the sequal, we does not distinguish between None and None;

•
−→
A denotes the domain of heterogeneous vectors of domain A.

• A→ B is the domain of (partial) functions from A to B.

The set Basic is the set of basic values which, for simplicity, is defined
as follows:

b ∈ Basic = Bool⊕ Integer ⊕ Double ⊕ String
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The set Value which contains basic values, locations, and vectors of val-
ues is defined as:

v ∈ Value = Basic⊕ LocName⊕
−−−−→
Value

4.1 Memory

A memory M belonging to Mem is a partial function that associates a value
with its location or variable.

M ∈Mem : VarName⊕ LocName→ Value

One notes M [l← v] the memory M ′ defined by: M ′(l) = v and for x 6= l,
M ′(x) = M(x). If M(x) is a location, M [x ← v] is an abbreviation for
M [M(x)← v].

4.2 Events

Elements of EventEnv are multi-sets of pairs composed of an event name
and an associated basic value:

E ∈ EventEnv : N(EventName×Basic)

To simplify notation one notes ev ∈ E, if there exist v such that (ev, v) ∈ E.
The function get values is used to collect all the basic values associated

with an event ev in a set of events E:

get values : EventName× EventEnv→
−−−→
Basic

4.3 Expressions

The set Expr denotes the expressions and is defined by the following gram-
mar:

e ∈ Expr ::= v |x | !x
|~e | ref e | f(~e)
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4.4 Scripts

The set Script denotes the scripts and is defined by:
s ∈ Script ::= nothing

| s; s
|x := e
| s - s
| let x= e in s end
| cooperate
| generate ev with e
| await ev
| get all ev in l
| do s watching ev
| repeat e do s end
| loop s end
| launch m(e)
| if e then s else s end
| migrate to site
| createAgent s in site

4.5 Agents

The set Agent denotes the agents which are triples of the form (s,M, η),
where s ∈ Script, M ∈Mem, and η is a migration request:

Ag ∈ Agent = Script×Mem×Migr

η ∈Migr = None⊕ SiteName

Drop orders code agent migration requests. A drop order can be either
the None value to indicate the absence of migration request, or a demand
for migration of the current agent, or a demand for migration of a newly
created agent. The set D of drop orders is defined as:

d ∈ D = None⊕ SiteName⊕ (Agent× SiteName)

A drop order site ∈ SiteName is a demand for the migration of the
current agent to site. A drop order (Ag , site) ∈ Agent × SiteName is a
demand for the migration to site of the newly created agent Ag .
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We define the combination of two migration requests:

I: Migr× SiteName→ SiteName

I (η, site) =

{
site if η = None

siteη if η = siteη

4.6 Sites

The set Site denotes the sites which are quadruples of the form:

S ∈ Site = SiteName× NAgent × NAgent × EventEnv

The site (site,A, I, E) is interpreted as follows:

• site is the name of the site;

• A is the multi-set of the agents running in the site;

• I is the multi-set of agents which will be incorporated in the site at
the next instant.

• E is the multi-set of the events generated in the site.

Let S = (site,A, I, E) be a site; one notes sn(S) ⊆ SiteName the set
of site names occurring in A.

4.7 Systems

The set Σ ∈ Sys denotes the systems which are sets of sites:

Σ = {S1, ..., Sn}

One says that a system Σ = {S1, ..., Sn} where Si = (sitei,Ai, Ii, Ei) is
well-formed if the following two requirements are fulfilled:
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1. No two sites have the same name:

∀i, j ∈ {1, . . . , n} : i 6= j ⇒ sitei 6= sitej;

2. The target of a migration is always defined:

∀i ∈ {1, . . . , n} : site ∈ sn(Si) ⇒ ∃j . site = sitej.

4.8 Reconstruction Function

A reconstruction function Ω (Section 6.3) is used to prepare an agent for the
next instant. Its domain is:

Ω : Agent× EventEnv→ Agent

5 Semantics of Scripts

This section presents the semantics of scripts. First, in the Section 5.1 the se-
mantics of expressions is defined. Then, the suspensions predicate for scripts
is presented in Section 5.2. Finally, the transition relation which defines the
small-step semantics of scripts is defined in Section 5.3.

5.1 Expressions

The evaluation of an expression is noted:

e,M  v,M ′ (1)

where:

• e is the initial expression;

• M is the memory in which the expression e is evaluated;

• v is the result of the evaluation of e;

• M ′ is the new memory after the evaluation of e;
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Evaluation of expressions is defined by the following rules:

• A value evaluates in itself:

v,M  v,M (2)

• To access a variable, the variable must denote a location; the evaluation
returns the value stored in it:

!x,M  M(x),M (3)

• The elements of a vector of expressions are evaluated in increasing
order:

ei,Mi  vi,Mi+1

(e1, ..., en),M1  (v1, ..., vn),Mn+1

(4)

• Evaluation of ref e returns a new location in which the value of e is
stored:

e,M  v,M ′ l = new loc()

ref e,M  l,M ′[l← v]
(5)

• Evaluation of a function call should be instantaneous. The only changes
in the memory are the ones resulting from the evaluation of the argu-
ments:

−→e ,M  −→v ,M ′ f(−→v ) = v′

f(−→e ),M  v′,M ′
(6)

16



5.2 Suspension Predicate

Reactive programs suspend execution either waiting for signals which are not
already produced, or waiting for the end of current instant. The suspension
predicate of scripts is noted ‡ and one writes 〈s, E〉‡ to indicate that script s
is suspended in the environment E. ‡ is defined inductively by the following
rules:

• A cooperate instruction is suspended in all environments:

〈cooperate, E〉‡ (7)

• A get all instruction is suspended in all environments:

〈get all ev in l, E〉‡ (8)

• An await instruction is suspended when the awaited event is not present:

ev /∈ E
〈await ev, E〉‡

(9)

• A watching statement is suspended if its body is suspended:

〈s, E〉‡

〈do s watching ev, E〉‡
(10)

• A sequence is suspended if its first branch is suspended (the second
branch is not considered):

〈s1, E〉‡

〈s1; s2, E〉‡
(11)
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• A parallel statement is suspended if the first branch is suspended and
the second one is either suspended or terminated:

〈s1, E〉 ‡ 〈s2, E〉 ‡ or s2 = nothing

〈s1 - s2, E〉‡

The suspension predicate of scripts is naturally extended to agents:

〈s, E〉‡

〈(s,M, η), E〉‡
(12)

A site S = (site,A, I, E) is suspended if all its agents are suspended or
terminated (an agent is terminated if its script is):

∀Ag ∈ A 〈Ag , E〉 ‡ ∨ Ag = (nothing,M, η)

(site,A, I, E) ‡

The predicate \ indicates the absence of migration request in a site:

∀(s,M, η) ∈ A η = None

(site,A, I, E)\

Rule 35 describes the detection of the end of current instant of a site,
which is only possible when the two previous predicates are valid.

5.3 Transition Relation

The small-step semantics of scripts is presented as a set of rewriting rules.
Rules represent transitions (execution) of scripts. The general format of a
script transition is:

〈s, E, M〉 d−→ 〈s′, E ′, M ′〉

where:

• s is the script which is rewritten;
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• E is a multi-set of pairs (ev, v) where ev is a generated event and v is
an associated value.

• s′ is the residual script (what remains to be done at the next step);

• E ′ is the multi-set of events generated during the rewriting of script s,
coupled with their values;

• M is the memory in which s is rewritten;

• M ′ is the new memory obtained after the rewriting of s;

• d is a drop order indicating if a migration request has been issued from
the rewriting of s, and if it is the case, the nature of the request.

The semantics of instructions is given by the following rules:

• The semantics of a sequence considers the case where the first branch
is terminated, and the case where it is not. There is no ambiguity in
the choice of the rule to apply because no rewriting rule is applicable
to nothing. The first rule considers the case where the first branch is
different from nothing: it is executed and the instruction rewrites in a
new sequence:

〈s1, E, M〉
d−→ 〈s′1, E ′, M ′〉

〈s1; s2, E, M〉
d−→ 〈s′1; s2, E ′, M ′〉

(13)

The control passes to the second branch when the first is terminated;
this corresponds to the following rule:

〈nothing; s2, E, M〉
None−−−→ 〈s2, E, M〉 (14)

• Execution of a parallel instruction always starts by execution of the left
branch:
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〈s1, E, M〉
d−→ 〈s′1, E ′, M ′〉

〈s1 - s2, E, M〉
d−→ 〈s′1 - s2, E ′, M ′〉

(15)

A parallel instruction rewrites its right branch when the left branch is
suspended:

〈s1, E〉 ‡ 〈s2, E, M〉
d−→ 〈s′2, E ′, M ′〉

〈s1 - s2, E, M〉
d−→ 〈s1 - s′2, E ′, M ′〉

(16)

Execution of a parallel switches to the right branch when the left branch
is terminated:

〈nothing - s, E, M〉 None−−−→ 〈s, E, M〉 (17)

• A let instruction declares a variable x in the scope of a script s; the
initial value of x is obtained by evaluating an expression e:

e,M  v,M ′

〈let x= e in s end, E, M〉 None−−−→ 〈s, E, M ′[x← v]〉
(18)

• An assignment puts a new value in the memory location associated to
a variable. The type system of Section 7 insures that the value of the
variable is always a location.

e,M  v,M ′

〈x := e, E, M〉 None−−−→ 〈nothing, E, M ′[x← v]〉
(19)
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• A loop statement executes its body cyclically. The body is restarted as
soon as it terminates. A loop instruction never terminates. A cooper-
ate statement is systematically added in parallel to the body to avoid
instantaneous loops:

〈s - cooperate, E, M〉 d−→ 〈s′, E ′, M ′〉
〈loop s end, E, M〉 d−→ 〈s′; loop s end, E ′, M ′〉

(20)

• A generate instruction produces an event in the environment and as-
sociates a value obtained from the evaluation of an expression to this
production:

e,M  v,M ′ E ′ = E ] {(ev, v)}
〈generate ev with e, E, M〉 None−−−→ 〈nothing, E ′, M ′〉

(21)

The pair made of the event and its value is added in the event envi-
ronment which is a multi-set. Thus, several productions of the same
event with the same value are possible during a same instant.

• An await instruction terminates if the awaited event is present in the
environment:

ev ∈ E
〈await ev, E, M〉 None−−−→ 〈nothing, E, M〉

(22)

There is no rule corresponding to an event which is not present. In
this case the instruction is suspended: 〈await ev, E〉‡.

• A watching statement executes its body, if not terminated, and rewrites
in a new watching statement:

〈s, E, M〉 d−→ 〈s′, E ′, M ′〉
〈do s watching ev, E, M〉

d−→〈do s′ watching ev, E ′, M ′〉

(23)
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If the body is terminated (i.e. it is nothing), then the watching state-
ment rewrites in a cooperate instruction (thus, it suspends until the
end of the current instant):

〈do nothing watching ev, E, M〉
None−−−→〈cooperate, E, M〉

(24)

• A module call launches a new separate thread run by the operating
system to execute a specific module. Execution of a module up to
termination must take several instants (at least one). The thread exe-
cuting a module is supposed to generate a termination event when the
module terminates:

−→e ,M  −→v ,M ′ ev = new event() m(−→v , ev) ⇑
〈launch m (−→e ), E, M〉 None−−−→ 〈await ev, E, M ′〉

(25)

The notation m(−→v , ev) ⇑ means that the module m is launched in a
separate thread. Event ev is generated to signal the end of the thread.
The difference between module call and function call is that execution
of a module can take several instants or even never terminate, while
a function call should always be instantaneous. A second difference is
that a function call returns a value, while a module call does not.

• A repeat statement executes its body s in sequence n times, where n
is the integer obtained by evaluating e:

e,M  n,M ′

〈repeat e do s end, E, M〉 None−−−→ 〈
n times︷ ︸︸ ︷
s; . . . ; s, E, M ′〉

(26)

• A conditional evaluates its boolean test and rewrites in the appropriate
branch:
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e,M  tt ,M ′

〈if e then s1 else s2 end, E, M〉
None−−−→ 〈s1, E, M ′〉

(27)

e,M  ff ,M ′

〈if e then s1 else s2 end, E, M〉
None−−−→ 〈s2, E, M ′〉

(28)

The fact that the rewriting of the chosen branch is delayed to a future
execution step is an essential feature of the small-step semantics of
scripts, as previously discussed in Section 3.2.

• An agent creation produces a drop order Ag ↓ site to demand the mi-
gration in site of a new agent Ag containing a script s and a new empty
memory ∅:

〈createAgent s in site, E, M〉
(s,∅,None)↓site−−−−−−−−−→〈nothing. E, M〉

(29)

The absorbtion of the newly created agent by the system is described
in Rule (32).

• A migration instruction produces a drop order site to demand the
migration in site of the executing agent, and suspends up to the end
of the current instant:

〈migrate to site, E, M〉 site−−→ 〈cooperate, E, M〉 (30)

The processing of the migration request is described in Rule (34) .

Theorem: For any script s, event environment E and memory M, there is
only one possible execution.
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Proof: To proof the determinism of execution of all the scripts we should
verify all the possible script execution. Between all the scripts only the
parallel (-), watching and conditional have several possible execution.

For parallel (-), there are three possible execution. But none of them
can be executed in the same time and create a non-deterministic execution.
between Rule (15) and Rule (16) the non-determinism is not possible since if
script s1 is suspended it cannot be executed. Neither, between (15) and Rule
(17) since there is no execution rule for nothing instruction. Finally, between
Rule (16) and Rule (17), there is no possible non-deterministic execution:
nothing is not a suspended instruction.

For the watching statement the execution is deterministic since there is no
possible execution for nothing, so there cannot be any interaction between
Rule (23) and Rule (24).

At last, for conditional, an expression cannot be in the same time true
and false, since there is only one possible execution for expressions.

6 Semantics of Sites and Systems

The small-step semantics of sites and systems is given in this section. The
micro-step execution of a site during one instant is described by the first
three rules (31)-(33). The next two rules deals with end of instants. Migra-
tion requests are processed in Rule (34). The passing to the next instant is
described by Rule (35). Finally, the transformation of the suspended terms
for the next instant is described in Section 6.3

The format for system rewritting is:

Σ→ Σ′

where Σ and Σ′ are systems.

6.1 Sites

There are three rules for defining system rewriting. These rules describe the
choice of a site S, the choice of an agent Ag in S, and the execution of Ag
in the event environment of S.

• The first rule considers the case where no drop order is issued from the
agent execution:
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S = (site,A ] (s,M, η), I, E)

〈s, E, M〉 None−−−−→ 〈s′, E′, M ′〉

Σ[S] → Σ[(site,A ] (s′,M ′, η), I, E′)]
(31)

After execution, the agent is reintegrated in the site and the site event
environment is replaced by the produced event set.

• The second rule corresponds to the production of the drop order of a
new agent Ag in the target site. Agent Ag is put in the set of agents
requesting to be incorporated into site0:

S = (site,A ∪ (s,M, η), I, E)

〈s, E, M〉 Ag↓site0−−−−−−→ 〈s′, E′, M ′〉
S′ = (site0,A0, I0 ∪Ag,E0)

S′′ = (site,A ∪ (s′,M ′, η), I, E′)

Σ[(site0,A0, I0, E0)][S]
→ Σ[S′][S′′]

(32)

• The third rule corresponds to the production of a migration request
site0 for the current agent. There are two cases: either a migration re-
quest is already present in the agent, and then site0 is simply ignored
(a way to prevent schizophrenia); or, there is no previous migration
request in the agent, and then site0 becomes the agent migration re-
quest:

S = (site,A ∪ (s,M, η), I, E)

〈s, E, M〉 site0−−−→ 〈s′, E′, M ′〉

Σ[S] → Σ[(site,A ∪ (s′,M ′, η I site0), I, E′)]
(33)

6.2 End of Instants

The end of the current instant of a site is decided when the site is suspended,
that is when all its agents are suspended. In this case, the site decides the
end of the current instant, and can start the next instant.
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Two rules are needed to process suspended sites. The first one considers
migration requests and the second prepares the site for the next instant. In
both cases, suspended agents are transformed to take in acount absent events
and the passing to the next instant. These two transformations are defined
using the function Ω described in Section 6.3.

• The first rule considers the case where an agent Ag1 of site site1 re-
quests to migrate to site site2. First, suspended instructions of Ag1

are processed in order to take in account the end of current instant
(function Ω); then, the transformed agent is added to the set of agents
requesting to be incorporated in site2:

S1‡
S1 = (site1,A1 ] (s,M, site2), I1, E1)

S2 = (site2,A2, I2, E2)
S′1 = (site1,A1, I1, E1)

S′2 = (site2,A2 ] Ω (s,M), I2, E2)

Σ[S1][S2] → Σ[S′1][S′2]
(34)

• The second rule considers the case where there is no migration request.
In this case, suspended instructions are processed in order to take in
account the end of current instant, and the agents requesting to be
incorporated in the site are added to the agent set. Moreover, the site
event environment is reset (E = ∅):

S ‡ , S\ S = (site,A, I, E)

Σ[S] ↪→ Σ[(site,Ω (A, E) ∪ I, ∅, ∅)]
(35)

In the rule, Ω (A, E) means:

Ω (A, E) = {∀Ag ∈ A | Ω (Ag , E)}
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6.3 Reconstruction for Next Instant

The resconstruction function Ω is used at each end of instant in order to
reconstruct suspended agents, with regard to an event environment E, and
to prepare them for execution at the next instant. To reconstruct an agent
means to transform its script and this reconstruction can possibly modify the
agent’s memory. The Ω function is inductively defined in Figure 2. There
are 4 basic cases for script reconstruction:

Ω ((cooperate,M, η), E) = (nothing,M, η)

Ω ((get all ev in l,M, η), E) =
(nothing,M [l← get values(ev,E)], η)

ev ∈ E

Ω ((do s watching ev,M,E), E) = (nothing,M, η)

ev /∈ E Ω ((s,M, η), E) = (s′,M ′, η)

Ω ((do s watching ev,M, η), E) = (do s′ watching ev,M ′, η)

Ω ((await ev,M, η), E) = (await ev,M, η)

Ω ((s1,M, η), E) = (s′1,M1, η)

Ω ((s1; s2,M, η), E) = (s′1; s′2,M2, η)

Ω ((s1,M, η), E) = (s′1,M1, η) Ω ((s2,M1, η), E) = (s′2,M2, η)

Ω ((s1 - s2,M, η), E) = (s′1 - s′2,M2, η)

Figure 2: Ω function

• cooperate is reconstructed in nothing;

• do s watching ev is reconstructed in nothing if ev is present in E; oth-
erwise, (ev 6∈ E), the instruction is reconstructed in do s′ watching ev
where s′ is the reconstruction of s in E.

• await ev is reconstructed in itself;

• get all ev in l is reconstructed in nothing; moreover, the values as-
sociated with ev in E are collected in a list which is assigned to l.
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Note that this is the only reconstruction step that possibly modifies
the agent memory.

7 Typing system

The purpose of the proposed type system is twofold: first, to insure that val-
ues are correctly used; this is traditional type checking, to verify for instance
that in if e then s1 else s2 end, e is a boolean expression. Second, that no
data-race occurs. For example, consider the following fragment:

let x = ref e1 in

createAgent

!x

in remote;

x := e2;

end

There is a data-race as x is read by an agent belonging to site remote,
while it is written in the current site. To prevent this kind of errors, the type
system checks that a reference not belonging to an agent memory cannot be
accessed by the agent.

A type is either the name of a basic type (int, bool, etc), or a references
on a type:

Basic ::= bool | unit | int | String

τ ::=Basic | ref τ | −→τ

A typing environment Γ is a possibly empty set1 of elements of the form
x : τ , where x is a variable and τ is a type:

Γ ::= x1 : τ1, · · · , xn : τn

The general form of typing rules is:

1In the sequel, the brackets of the standard set notation are omitted.
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Γ ` s : τ (36)

where :

• Γ is the typing environment;

• s is the script to be typed;

• τ is the type of s.

7.1 Typing Rules

To type a variable x, its type should be specified in the environment:

Γ ∪ {x : τ} ` x : τ (37)

A value has a unique type τ :

Γ ` v : τ (38)

To type a let statement defining a variable x as e in s, we should first
type the expression e by τ1; then, the script s should be typed in the new
environment in which x has type τ1:

Γ ` e : τ1 Γ ∪ x : τ1 ` s : τ2

Γ ` let x= e in s end : τ2
(39)

We suppose that the type of any function is known by the type system.
The type of a function contains the type of the function’s arguments and the
type of the result. To type a function call, the arguments are type checked
and the call receives the type of the function result:

Γ ` ~e : ~τ f : ~τ → τ ′

Γ ` f(~e) : τ ′
(40)
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The type of an accessed variable must be a reference type present in the
typing environment:

Γ ` x : ref τ

Γ `!x : τ
(41)

To type a sequence, both branch must be typed:

Γ ` s1 : τ1 Γ ` s2 : τ2

Γ ` s1 ; s2 : unit
(42)

To type a conditional, the condition should be typed to a boolean, then
the two branches s1 and s2 should be typed:

Γ ` e : bool Γ ` s1 : τ Γ ` s2 : τ

Γ ` if e then s1 else s2 end : τ
(43)

To type a repeat e do s end statement, the expression e should be typed
as an integer, before typing s:

Γ ` e : int Γ ` s : τ

Γ ` repeat e do s : unit
(44)

To type a loop, one types its body:

Γ ` s : τ

Γ ` loop s : unit
(45)

To type a parallel statement, one types both branches in the same envi-
ronment:

Γ ` s1 : τ1 Γ ` s2 : τ2

Γ ` s1 - s2 : unit
(46)
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We suppose that the type of any module is known by the type system.
The type of a module contains the type of the module’s arguments and the
type of the result is always unit. To type a module call, the arguments are
type checked and the call is typed as unit:

Γ ` ~e : ~τ ~e = (e1, ..., en) m : ~τ → unit

Γ ` launch m (−→e ) : unit
(47)

The cooperate statement is simply typed in unit:

Γ ` cooperate : unit (48)

To type a generate statement, the associated value should be of a basic
type, and the type of the statement is unit:

Γ ` e : Basic

Γ ` generate ev with e : unit
(49)

An await statement is simply typed in unit:

Γ ` await ev : unit (50)

To type a watching statement means to type its body:

Γ ` s : τ

Γ ` do s watching ev : unit
(51)

A get all statement is simply typed in unit:

Γ ` get all ev in l : unit (52)
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To type an agent creation one should type its body in an empty typing
environment:

∅ ` s : τ

Γ ` createAgent s in site : unit
(53)

This is the central rule to prevents the possibility of data-races in the lan-
guage.

The migration of the current agent to a site is typed in unit:

Γ ` migrate to site : unit (54)

The following theorem can be proved from the previous definition of the
type system:

Theorem: If a program P is well-typed, then no data-race can occur during
its execution.

Proof: To have a data-race in a program we need to access to another
agent memory during the execution. To access to another agent memory, it
should be able to access to one of its memory location. If an agent has access
to another location than its memory and want to access to this location, it
should use !x. A well-typed program cannot have ! x alone in its core, since
each time we are creating an agent we are reseting the typing enivronement.
This program cannot be typed.

8 Refined Semantics

In this section, we consider the context of multi-processor/multi-core archi-
tectures. Our main goal is to give the system the possibility to maximize the
usage of computing resources (processors or cores).

We propose to define in the model a new level of parallelism in which the
agents are mapped to parallel components called schedulers. The sites are
composed of several schedulers sharing the same instants and the same event
and are called synchronized schedulers.
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At implementation level, the guess is that each scheduler is executed by a
distinct thread (for example, in a Linux-SMP architecture), or by a distinct
processor (for example, in a cluster). Schedulers among a site are supposed
to be run in real parallelism and to synchronize at the end of each instant
(via a synchronization barrier).

The number of synchronized schedulers belonging to a given site dynam-
ically changes during the site execution, according to the load of agents that
are present on the site and according to the availability of the computing
resources. Moreover, agents can be transparently moved from one scheduler
to another scheduler of the same site, to adapt the charge load over the site.
The transparency basically results from the fact that agents do not share
memory. The only way to share information in a site is to use events. The
model is shown in Fig. 3.

According to this approach, the structuration of a program at the sched-
uler level is not statically fixed in order to allow the system to use resources
in an efficient way. For example, in a multi-core context, the system is free
to optimize the mapping of the schedulers (and consequently, the mapping
of agents) in a way that maximises the use of the real cores.

The number of sites present in a program is statically fixed, as the model
does not allow the dynamic creation of sites. The number of computing re-
sources available for execution is fixed and depends on the executing machine,
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and thus can be considered as a constant. We fix the number of schedulers
to be the maximum of the number of sites and of the number of computing
resources.

Initially, one scheduler, arbitrarilly chosen, is associated to each site. The
remaining schedulers, if any, are the unused schedulers. At run time, two
actions are possible for the sites: first, the taking of an unused scheduler
(which thus becomes used); second; the releasing of a scheduler (which be-
comes unused). The first action is called site expansion and the second site
contraction. The conditions and the moments expansions and contractions
are performed is not specified and left to the implementation, in order to
maximize the possibilities of optimisations.

The new way sites are structured in sets of synchronized schedulers is
formalized through a new semantics for sites and systems described in the
next section. New rules are introduced for site expansion, site contraction,
and transparent agent migration in the same site, and previous rules for sites
and systems are adapted to the new context.

The rest of the section is structured as follows: first, the semantics do-
mains are defined in Section 8.1; then, the suspension predicate for sites and
schedulers is defined in Section 8.2; finally, the semantics of sites and systems
is given in Section 8.3.

8.1 Domains

The new definition of Site is:

site ∈ Site = SiteName× SyncSched× NAgent × EventEnv

A scheduler is a multi-set of agents and a synchronized scheduler is a
multi-set of schedulers:

sched ∈ Sched = NAgent

scheds ∈ SyncSched = NSched
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8.2 Suspension Predicate

The suspension predicate defined in Section 5.2 is extended to schedulers and
redefined for sites.

A scheduler is suspended if all the agents belonging to it are suspended
or terminated:

〈Ag i, E〉 ‡ ∨ Ag i = (nothing,Mi, ηi)

〈{Ag1, . . . ,Agm}, E〉‡
(55)

A set of synchronized schedulers is suspended if all the schedulers belong-
ing to it are suspended:

〈schedi, E〉‡

〈{sched1, ..., schedn}, E〉‡
(56)

A site is suspended if the synchronized schedulers in it are suspended:

〈scheds, E〉‡

(site, scheds, I, E) ‡
(57)

8.3 Sites and Systems

8.3.1 Sites

The three rules 31-33 are changed in the same way: they now describe the
execution of the script of an agent chosen in a synchronized scheduler of a
site.

The first rule corresponds to the absence of migration oder (similar to
rule 31):

sched = sched0 ] (s,M, η) 〈s, E, M〉 None−−−−→ 〈s′, E′, M ′〉

Σ[(site, scheds[sched], I, E)]
→ Σ[(site, scheds[sched0 ] (s′,M ′, η)], I, E′)]

(58)
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The creation of a new agent is described by (similar to rule 32):

sched = sched0 ] (s,M, η)

〈s, E, M〉 Ag↓site2−−−−−−→ 〈s′, E′, M ′〉
sched′ = sched0 ∪ (s′,M ′, η)

S′ = (site2, scheds2, I2 ∪Ag , E2)

Σ[(site1, scheds1[sched], I1, E1)][(site2, scheds2, I2, E2)]
Σ[(site1, scheds

′
1[sched′], I1, E

′
1)][S′]

(59)

Finally, the migration to another site is described by (similar to rule 33):

sched = sched0 ] (s,M, η) 〈s, E, M〉 site′−−−→ 〈s′, E′, M ′〉
sched′ = sched0 ] (s′,M ′,I (η, site′))

Σ[(site, scheds[sched], I, E)]→ Σ[(site, scheds[sched′], I, E′)]
(60)

8.3.2 End of Instant

When there exists migration orders, they are executed when the site is sus-
pended (similar to rule 34):

sched = sched0 ] (s,M, site2) S ‡
S1 = (site!, scheds[sched0], I1, E1)

S2 = (site2, scheds2, I2 ∪ Ω(s,M), E2)

Σ[(site1, scheds1[sched], I1, E1)][(site2, scheds2, I2, E2)]
→ Σ[S1][S2]

(61)

The end of current instant is reached when the site is suspended and there
is no migration order to be processed (similar to rule 35):

S = (site, Sched, I, E) S ‡ S\
S′ = (site,Ω′(scheds) ] I, E)

Σ[S]→ Σ[S′]
(62)

In this rule, Ω′ extends the reconstruction function Ω of Section 6.3 and
is defined by:

36



Ω′(sched1 ] ... ] schedn) = Ω′(sched1) ] ... ] Ω′(schedn)

and:

Ω′(Ag1 ] ... ] Agm) = Ω(Ag1) ] ... ] Ω(Agm)

8.3.3 Expansion and Contraction

The two site expansion and site contraction actions depend on the number
of unused schedulers, which is an integer global to the system. This inte-
ger is name unused schedulers. The free scheduler() function returns
a arbitrary scheduler chosen among the unused schedulers, turns its state
to used, and decrements the counter unused schedulers. Conversely, the
kill sched function takes a used scheduler in parameter, turns its state to
unused, and increments the counter unused schedulers.

The two rules for site expansion and site contraction used freely the
counter unused schedulers and the previous functions.

Expansion of a site adds a new synchronized scheduler to a site:

S = (site, scheds, I, E)
unused schedulers > 0
sched = free scheduler()

Σ[S]→ Σ[(site, scheds ] sched, I, E)]
(63)

The removal of a scheduler sched in a site cannot occur unless the number
of agents of the scheduler, noted #sched, is equal to zero. In this case,
contraction means that the scheduler is removed from the site:

scheds = scheds0 ] schedi
#schedi = 0

kill scheduler(schedi)

Σ[(site, scheds, I, E)]→ Σ[(site, scheds0, I, E)]
(64)
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8.3.4 Transparent Migration

During execution of a site, the implementation can choose to arbitrarilly
transfer agents between the schedulers, in particular for optimization pur-
poses. These transfers are called transparent migrations as they do not in-
troduce any change in the execution of agents.

Transparent migration simply means to transfer an agent from a scheduler
of a site to another scheduler of the same site:

Σ[(site, scheds[sched1 ] Ag ][sched2], I, E)]→
Σ[(site, scheds[sched1][sched2 ] Ag ], I, E)]

(65)

9 Example

This section describes the coding of a 2D simulation of colliding particles.
The simulation is divided in two containers in which particles are moving
and are bouncing against the borders. Collisions are elastic ones. There is a
“Migration point” in each container: when a particle falls into a migration
point, it migrates into the other container (in the same state). The simulation
is shown on Fig 4.

Ball SiteMigration point

Site1 Site2

Figure 4: Example: Particle collision
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The simulation is made of two sites site1 and site2, one for each container.
Initially, each site contains N particles. Each particle is implemented as one
agent. As they belong to the same site, all the particles present in a container
share the same instants, and communicate their position by generating the
shared event position. At each instant, a particle with coordinates (x, y)
generates event position with the couple (x, y) as value. Then, the particle
gets all the values of position and calculates if there is a potential collision
with another particle (using the function collision, not described here).
Finally, the particle computes its next position (function next position)
according to its state.

The script of a particle is a a loop whose body is a parallel instruction with
3 branches2. The first branch implements the signaling of position and the
passing to the next position previously described. The second branch draw
the particle on screen (function draw). Finally, the third branch decides if a
migration must occur (function should migrate).

The code for the first site is:

createAgent =

Repeat N do

createAgent =

let l = ref () in

let d = ref random_direction() in

let (x,y) = ref random_position() in

loop

(generate "position" with (!x,!y);

get_all "position" in l;

d := collision(!l,!x,!y,!d);

(x,y) := next_position(!x,!y,!d))

||

draw(!x,!y)

||

(if (should_migrate_site2(!x,!y)) then

migrate to site_2

else

if (should_migrate_site1(!x,!y)) then

migrate to site_1

else

nothing)

end

in site_1

2The script definition of Section 5.3 is slightly extended to allow parallel instructions
with more than 2 branches.
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end

in site_1

The code for the second site is similar except that site 1 and site 2 are
exchanged.

Note that the functions used by the system are defined in the host lan-
guage (Section 2).

The example illustrates several aspects of the model and of the language:

1. Parallel components of agents are naturally expressed using the syn-
chonous parallel operator. Each particle is considered as an autonomous
object which moves accordingly to its defining script and interacts with
the other particles through broadcast events.

2. Agents can be executed in real parallelism: two agents belonging to dis-
tinct schedulers can be run in real parallelism, by different computing
resources. However, if two agents belong to the same site, the efficiency
of the real parallelism of execution is moderated by the necessity for
the schedulers to synchronize at each end of instant. But, two agents
belonging to different sites can be executed in real parallelism without
restriction, which can lead to efficient executions.

3. Each particle has its own memory containing its state (its coordinates)
which is shared by all the components of its execution script. The
language requires the absence of data-race in memory accesses, which
is verified by the type system of Section 7. Thus, there is no risk of a
data-race between any two agents, being or not on the same site.

4. There is no possibility of an instantaneous loop which would prevent
execution form passing to the next instant, due to the semantics of the
loop operator (rule 20).

10 Related Work

Ptolemy [15] is a whole complex framework which aim to model, design, and
simulate concurrent, real-time embedded systems. Safety is not a central ob-
jective of Ptolemy. DSLM is just a language and is much smaller and oriented
to safety and maximal usage of computing resources.
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SugarCubes [11] is a framework for concurrent reactive programming in
Java. DSLM is strongly inspired by SugarCubes. Both formalisms use the same
totally deterministic parallel operator, called merge in SugarCubes. However,
SugarCubes does not possess the notion of a synchronized schedulers and is
not optimized for the multi computing resources systems. SugarCubes can
be used over the network by using Java (RMI), which is not yet possible in
our language.

FunLoft [10] (“Functional Language over Fair Threads”) is a language for
safe reactive programming, with type inference. The FunLoft compiler checks
that functions called by a program always terminate and only use a bounded
amount of resources (memory and CPU). The basis of FunLoft is a theoretical
Work described in [13]. DSLM is strongly linked to FunLoft in two aspects:
first, the notion of synchronized schedulers of DSLM is coming from FunLoft.
Second, there exists an experimental implementation of DSLM in FunLoft ([1])
in which functions are proved to terminate instantaneously. Compared to
FunLoft which has a static approach, DSLM improves the usage of computing
resources, by introducing the possibility of dynamical load balancing of agents
among synchronized schedulers inside a same site.

ReactiveML [21] is a programming language for reactive programming in
ML. As ML, ReactiveML is secure in the sense that there is no possibility
of a crash during execution. However, there is no check in ReactiveML to
insure that instants are always terminating. Moreover, ReactiveML, like ML,
is not presently adapted for multi-core architectures. ReactiveML have the
possibility to compile programs on the fly, which is not currently possible in
DSLM.

ULM [8] is a programing model to address the unreliable character of
accessing resources in a global computing context, focusing on giving a precise
semantics for a small, yet expressive core language. Like DSLM, ULM has
safety as a goal in accessing memory without using locks. However, in ULM,
a script that wants to access a memory location is suspended if the location
cannot be accessed, because it does not belong to the current site. ULM is
not currently adapted for multi-core architectures.

CPC [20] is a programming language for concurrent systems in which
native and cooperative threads are presented to the programmer as a single
abstraction. CPC proposes a way to benefit from multi-core architecture, by
spawning threads. The implementation technics of CPC is close to the one
we use, as both are defining two levels of concurrency: a cooperative level
(implementing the synchronous parallel in DSLM) and a preemptive level for
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sites.
Work sharing/stealing [7] is a thread-based model in which threads are

sharing their work with the other threads, and steal the work of the others
when theirs are terminated. This approach is well adapted to multi-core ar-
chitectures, but does not consider safety issues. However, one could envision
to implement DSLM in the work sharing/stealing style.

11 Conclusion

We have presented a dynamic approach to parallel programming, based on
the synchronous - reactive model. Synchronous programming is simpler than
the traditional asynchronous approaches, based on the exclusive use of pre-
emptive threads. However, three major issues are raised by synchronous pro-
gramming: (1) how to be sure that the program is indeed reactive? (2) how to
be sure that there is no harmful interferences between parallel computations
(e.g. data-races)? (3) how to execute it efficiently on a multi-core/ multi-
processor architecture? Our proposal gives answers to these questions. We
assure the reactivity of a program by construction, and we require functions
to be instantaneous. In the actual implementation which basically translates
DSLM in FunLoft, this property is checked by the FunLoft compiler. DSLM

defines agents which encapsulate their memory in a way which forbids harm-
ful interferences due to memory sharing. The absence of memory sharing is
checked by a type system. Finally, to benefit from multi-core/multi-processor
architectures we define synchronized schedulers and transparent migration of
agents to load balance the charge of agents over a site.

We envision the following tracks for Future Work:

• We plan to add security aspects to DSLM. The considered security as-
pects are control and tracking of information flows at all levels: mem-
ory, events, and agent migrations. This can be acheived by using secu-
rity levels, an approach inspired by [12].

• In DSLM, functions and modules are defined in the host language, thus
there is no insurance that the required properties (instantaneous termi-
nation of functions, and non-instantaneous execution of modules) are
satisfied. We plan to allow function and module definitions directly in
DSLM to be able to statically check their required properties.
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• The possibility to give a big-step semantics at the level of agents and
sites (and not at the script level) is currently under investigation. This
semantics would give a view of systems and sites more abstract and
more adapted to the distribution context than the small-step semantics
presented in this paper.

• An implementation of DSLM is under development, based on a transla-
tion in FunLoft.

In this perspective, DSLM would be a safe and secure parallel programming
language, adapted to multi-core/multi-processor architecture, which is, to
our knowledge, something new and never proposed before.
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