
DSLM : Dynamic Synchronous Language
with Memory?

Pejman Attar

INRIA Sophia Antipolis - Méditerranée
Pejman.Attar@inria.fr

Abstract. We propose a new language called DSLM based on the syn-
chronous/reactive model. In DSLM, systems are composed of several sites
executed asynchronously, while each site is running a number of agents in
a synchronous way. An agent consists of a script and a memory. Scripts
may call functions or modules which are handled in a host language.
Two properties are assured by DSLM: reactivity of agents and absence of
data-races between agents. In DSLM, we introduce a way to benefit from
multi-core/multi-processor architectures by mapping each site to several
cores, using a notion of synchronized scheduler.

1 Introduction

Concurrency and parallelism are among the main issues of systems and program-
ming languages. Nowadays, multi-core machines are everywhere: in servers, PCs
and even mobile phones. These machines are widely used by the public. Hence,
concurrency and parallelism are no more specialist problems. They now also
concern software programmers.

There exist several approaches to concurrent programming. In this paper,
we are concerned with the shared memory concurrency model [12], the first
and most used variant of which is called preemptive multi-threading. In this
model, concurrent programs are threads that are scheduled and preempted by
the system in an arbitrary way. The major problem of this model is the freedom of
schedulers to arbitrarly choose the executed thread, which may lead to so-called
time-dependent errors, which are generally considered as extremely difficult to
tame [10].

Another popular variant is cooperative multi-threading [7] [19]. In this model,
the system loses the possibility to arbitrarily preempt threads. To be given to a
new thread, the control must be explicitly released by the currently executing
thread. This rules out time-dependent errors. However, the cooperative approach
suffers from a major drawback, as a single thread can freeze the whole system if
it never releases the control.

An alternative way of dealing with concurrency and parallelism is that of the
synchronous approach, which is based on event broadcast [14], [5]. We briefly

? with support from ANR-08-EMER-010, project PARTOUT

http://www-sop.inria.fr/indes/PARTOUT

describe it by means of an example written in the Esterel language [4]. Con-
sider a program made of two parallel statements, one waiting for an event ev1,
then producing event ev2, and the other producing event ev1. Such a program
is written in Esterel as: P1 = await immediate ev1; emit ev2 || emit ev1. This
program emits both ev1 and ev2, and this is its only possible outcome. One of
the standpoints of Esterel is that program execution should be deterministic.

However, synchronous parallelism has difficulties to cope with memory. In-
deed, uncontrolled concurrent accesses to memory, as in: P2 = x:=1 || x:=2,
may give rise to non-deterministic results: the outcome can be either x = 1 (if the
second branch is executed first) or x = 2 otherwise. Moreover, non-determinism
can result also from non-atomic access to the memory. Thus, parallel program-
ming demands for restrictions on the use of the memory by the parallel com-
ponents and for means to get atomicity in memory access. In the context of
preemptive multi-threading, atomicity is usually provided by locks. Relying on
locks for atomicity is problematic, however, because locks can produce deadlock
situations or time-dependent errors, if incorrectly used [18].

In Esterel, the solution to these problems is rather drastic: a variable cannot
be accessed by one branch of a parallel statement and written by the other. Thus,
the previous program P2 would be rejected by the compiler. However, Esterel
does not control concurrent accesses made at a lower level by procedures and
functions. Consider the following statement, where two functions are called in
parallel: P3 = f1 () || f2 (). The Esterel compiler is unable to verify that
no concurrent accesses occur through the calls of f1 and f2. Moreover, one may
view the Esterel solution as over-restrictive, specially in the context of multi-
core programming where access to the memory is the basic communication and
synchronization means.

In this paper, we propose a new model inspired by both the cooperative and
the synchronous approaches, in which data races and time-dependent errors are
eliminated by construction. Our model is distributed and exhibits three kinds of
parallelism: 1) asynchronous parallelism among sites, 2) synchronous parallelism
among agents in a site and 3) synchronous cooperative parallelism among scripts
within an agent. Moreover, this model appears to be well-suited to take benefit
from multi-core/multi-processor architectures.

The paper is organized as follows. The model is introduced in Section 2.
Section 3 presents the syntax. The semantics of scripts is given in Section 4. The
semantics of sites and systems is presented in Section 5. A type system to verify
safety of the language is given in Section 6. The intuition of how we can use this
language to benefit from multi-core/multi-processor architectures is presented
in Section 7. Finally Sections 8 and 9 discuss related work and give a conclusion.
All results are given without proofs, which can be found in [3].

2 The Model

We propose a synchronous model which uses a deterministic asymmetric parallel
operator (noted here by |>), and is able to deal with the memory in a safe way,

2

without possibilities of time-dependent errors or data-races. Our model is called
DSLM to stand for Dynamic Synchronous Language with Memory.

As in standard synchronous models, a notion of instant is present. Instants
define a logical time, different from the physical time; an instant is terminated
when all the parallel components have reached a synchronization barrier. Our
model makes sure that this synchronous barrier is actually reached, that is, it
ensures the termination of instants.

In the synchronous model, events are used for synchronization. At each in-
stant, an event is either absent, or present if it is produced during the instant.
However, in standard synchronous languages like Esterel, causality cycles can
appear when no coherent solution can be found for the absence/presence status
of an event.

In addition to the issues of non-terminating instants and of causality cy-
cles, the standard synchronous model has difficulties in facing real parallelism
and making use of multi-core machines. Indeed, multi-core programming heav-
ily relies on shared memory communication, which is excluded in these models.
Moreover, standard synchronous languages do not allow dynamic creation of
events and parallel components.

Our model is based on the reactive variant [2] of the synchronous approach,
which allows for dynamic creation of events and agents, and avoids causality cy-
cles by construction (by prohibiting instantaneous reaction to absence of events).
Moreover, in this variant there exist solutions to insure the termination of in-
stants by construction, even at the lower level of function and procedure calls
(in the FunLoft [8] language).

The main ingredients of our model are scripts, events, agents and sites,
shortly described below:

– Scripts : scripts are the basic parallel components.

– Events: events are instantaneously broadcast in our model. They may have
associated values. Events and their associated values are seen by all compo-
nents in the same way. Events can be created dynamically during execution.

– Agents: an agent encapsulates a script which can be made of several parallel
components. These components share the agent’s memory and they are the
only ones that may access it.

– Sites: a site is a location where execution of agents takes place. Each site
runs one or more agents and manages a set of events shared by these agents.
There is no dynamic creation of sites. All agents belonging to the same site
share the same instants and events. Agents can migrate from one site to
another. A system is composed of a set of sites which run asynchronously.
Agent migration is the only communication means between sites.

DSLM does not provide means to define functions. However, scripts may call
functions or modules defined in a “host” language. Functions are required to
terminate instantaneously (i.e. in the same instant they are started). By contrast,
module execution can last several instants or even never terminate.

3

Note that our model can be considered as a member of the GALS family
(Globally Asynchronous, Locally Synchronous) [17], as sites are executed asyn-
chronously and agents in the same site are executed synchronously.

3 Syntax and Domains

In this section we introduce the syntax of DSLM.
The following disjoint countable sets are assumed: LocName (locations),

VarName (variable names), FunName (function names), ModuleName (mod-
ule names), SiteName (site names) and EventName (event names). Each set
has an associated function which returns an unused element of the set (for ex-
ample, each call of the function new loc returns a new location in LocName).

We use the following notations to define domains: A×B denotes the cartesian
product of the domains A and B; A⊕B denotes the disjoint union of the domains
A and B; NA denotes the set of multi-sets over A;] is the union of multi-sets;

None is the domain that contains the unique distinguished element None;
−→
A

denotes the domain of vectors over domain A; and A → B is the domain of
(partial) functions from A to B.

Basic denotes the set of basic values, and Value the set that contains basic
values as well as locations and vectors of values.

A memory M belonging to Mem is a partial function that associates a value
with a location or variable. One notes M [l ← v] the memory M ′ defined by:
M ′(l) = v and for x 6= l, M ′(x) = M(x). If M(x) is a location, M [x← v] is an
abbreviation for M [M(x)← v].

Elements E of EventEnv are multi-sets of pairs composed of an event name
and an associated basic value. For simplicity, we write ev ∈ E if there exists v
such that (ev, v) ∈ E. The function get values(ev,E) is used to collect all the
basic values associated with an event ev in a set of events E.

b ∈ Basic = Bool⊕ Integer ⊕Double ⊕ String

v ∈ Value = Basic⊕ LocName⊕
−−−−→
Value

M ∈Mem : (VarName⊕ LocName)→ Value

E ∈ EventEnv = N(EventName×Basic)

get values : EventName×EventEnv→ NBasic

The syntax of expressions and scripts is defined as follow:

e ∈ Expr ::= v |x | !x | −→e | ref e | f(e)
s ∈ Script ::= nothing | s; s |x := e

| s|>s | let x= e in s end | cooperate
| generate (ev, e) | await ev | get all ev in l
| do s watching ev | repeat e do s end | loop s end
| launch m(e) | if e then s else s end | migrate to site
| createAgent s in site

The set Agent consists of agents, which are triples of the form (s,M, η),
where s ∈ Script, M ∈Mem, and η is a migration request which may be of two

4

forms: None, indicating the absence of migration request, and site, expressing
a demand for migrating the current agent to site site.

Ag ∈ Agent = Script×Mem×Migr
η ∈Migr = None⊕ SiteName

S ∈ Site = SiteName× NAgent × NAgent ×EventEnv

Finally, Site is the set of sites. The site (site,A, I, E) is interpreted as follows:

– site is the name of the site;
– A is the multi-set of the agents running in the site;
– I is the multi-set of incoming agents, which will be incorporated in the site

at the next instant.
– E is the multi-set of events associated with their values generated in the site

in the current instant.

Let S = (site,A, I, E) be a site; one notes sn(S) ⊆ SiteName the set of site
names occurring in A.

The set Sys consists of systems, which are sets of sites Σ = {S1, ..., Sn}.
A system Σ = {S1, ..., Sn} where Si = (sitei,Ai, Ii, Ei) is well-formed if the
following two requirements are fulfilled:

– Sites have distinct names: ∀i, j ∈ {1, . . . , n} : i 6= j ⇒ sitei 6= sitej .
– Migration targets exist: ∀i ∈ {1, . . . , n} : site ∈ sn(Si) ⇒ ∃j . site = sitej .

A reconstruction function Ω : Agent × EventEnv → Agent, defined in
Section 5.3, is used to prepare an agent for the next instant.

4 Semantics of Scripts

This section presents the semantics of scripts. We start by defining the semantics
of expressions. Then, we introduce the suspension predicate for scripts. Finally,
we give the small-step semantics of scripts.

4.1 Expressions

The evaluation of an expression is noted e,M v,M ′, where e is the initial
expression, M is the memory in which e is evaluated, v is the result of the
evaluation of e, and M ′ is the new memory after the evaluation.

v,M v,M (val) !x,M M(x),M (access)

ei,Mi vi,Mi+1

(e1, ..., en),M1 (v1, ..., vn),Mn+1

(vec)
e,M v,M ′ l = new loc()

ref e,M l,M ′[l← v]
(ref)

−→e ,M −→v ,M ′ f(−→v) = v′

f(−→e),M v′,M ′
(fun)

5

Evaluation of an expression is defined above. Rules val and access are stan-
dard. The elements of a vector of expressions are evaluated in increasing order
(Rule vec). Evaluation of ref e returns a new location in which the value of
e is stored (Rule ref). The evaluation of a function call is assumed to be in-
stantaneous. The only changes in the memory are the ones resulting from the
evaluation of function arguments (Rule fun).

4.2 Suspension Predicate

Reactive programs suspend execution either waiting for signals to be produced,
or waiting for the end of the current instant. One writes 〈s, E 〉 ‡ to indicate
that the script s is suspended in the environment E. The suspension predicate ‡
is defined inductively by the rules given below.

The cooperate and get all instructions are suspended in all environments
(Rules coop, get all). An await instruction is suspended when the awaited event
is not present (Rule await0). A watching statement is suspended if its body
is suspended (Rule watch0). A sequence is suspended if its first components is
suspended (Rule seq0). A parallel statement is suspended if the first components
is suspended and the second one is either suspended or terminated (Rule para0).

〈cooperate, E 〉 ‡ (coop) 〈get all ev in l, E 〉 ‡ (get all)

ev /∈ E

〈await ev,E 〉 ‡
(await0)

〈s, E 〉 ‡

〈do s watching ev,E 〉 ‡
(watch0)

〈s1, E 〉 ‡

〈s1; s2, E 〉 ‡
(seq0)

〈s1, E 〉 ‡ 〈s2, E 〉 ‡ or s2 = nothing

〈s1|>s2, E 〉 ‡
(para0)

4.3 Transition Relation

The small-step semantics of scripts is relative to an event environment and a
memory. It is given in terms of labeled transitions whose label is a drop order.
Drop orders record the migration requests issued by migrate instructions. A drop
order d ∈ D may be of three forms: 1) site ∈ SiteName is a demand for the
migration of the current agent to site, 2) (Ag , site) ∈ Agent× SiteName is a
demand for the migration to site of the newly created agent Ag , 3) None is the
absence of migration request.

The general format of a script transition is 〈s, E, M〉 d−→ 〈s′, E′, M ′〉 where:

– s is the script which is rewritten;
– E is a multi-set of pairs (ev, v);
– s′ is the residual script (what remains to be done);
– E′ = E ∪{(ev, v)} if event ev is generated with value v during the step, and
E′ = E otherwise;

– M is the memory before the rewriting of s;
– M ′ is the new memory obtained after the rewriting of s;
– d is a drop order reflecting the migration request issued from the rewriting.

6

〈s1, E, M〉
d−→ 〈s′1, E′, M ′〉

〈s1; s2, E, M〉
d−→ 〈s′1; s2, E

′, M ′〉
(seq1) 〈nothing; s2, E, M〉

None−−−→ 〈s2, E, M〉 (seq2)

〈s1, E, M〉
d−→ 〈s′1, E′, M ′〉

〈s1|>s2, E, M〉
d−→ 〈s′1|>s2, E′, M ′〉

(para1) 〈nothing|>s2, E, M〉
None−−−→ 〈s2, E, M〉 (para2)

〈s1, E 〉 ‡ 〈s2, E, M〉
d−→ 〈s′2, E′, M ′〉

〈s1|>s2, E, M〉
d−→ 〈s1|>s′2, E′, M ′〉

(para3)

e,M v,M ′

〈let x= e in s end, E, M〉 None−−−→ 〈s, E, M ′[x← v]〉
(let)

e,M v,M ′

〈x := e, E, M〉 None−−−→ 〈nothing, E, M ′[x← v]〉
(assign)

〈s|>cooperate, E, M〉 d−→ 〈s′, E′, M ′〉

〈loop s end, E, M〉 d−→ 〈s′; loop s end, E′, M ′〉
(loop)

e,M v,M ′ E′ = E] {(ev, v)}

〈generate (ev, e), E, M〉 None−−−→ 〈nothing, E′, M ′〉
(gen)

ev ∈ E

〈await ev, E, M〉 None−−−→ 〈nothing, E, M〉
(await)

〈s, E, M〉 d−→ 〈s′, E′, M ′〉

〈do s watching ev, E, M〉 d−→〈do s′ watching ev, E′, M ′〉
(watch1)

〈do nothing watching ev, E, M〉 None−−−→ 〈cooperate, E, M〉 (watch2)
−→e ,M −→v ,M ′ ev = new event() m(−→v , ev) ⇑

〈launch m (−→e), E, M〉 None−−−→ 〈await ev, E, M ′〉
(launch)

e,M n,M ′

〈repeat e do s end, E, M〉 None−−−→ 〈
n times︷ ︸︸ ︷
s; . . . ; s, E, M ′〉

(repeat)

e,M tt ,M ′

〈if e then s1 else s2 end, E, M〉
None−−−→ 〈s1, E, M ′〉

(if)

〈migrate to site, E, M〉 site−−→ 〈cooperate, E, M〉 (selfmigr)

〈createAgent s in site, E, M〉 (s,∅,None)↓site−−−−−−−−−−→ 〈nothing, E, M〉 (creatAg)

Fig. 1. Script Semantics

7

The semantics of scripts is given in Fig.1. Let us briefly explain the rules.
The semantics of sequence, conditional, let and assignment are standard.

Execution of a parallel instruction always starts by rewriting the left branch
(Rule para1). Once the left branch is over (nothing), the script reduces to its
right branch (Rule para2). If the left branch is suspended, the execution of the
right branch starts (Rule para3). We note that we are using an immediate co-
operation, which means that the right branch execution stops as soon as the
left branch is no more suspended. A loop statement executes its body cycli-
cally. A cooperate statement is systematically added in parallel to the body
to avoid instantaneous loops (Rule loop). A generate instruction produces an
event and associated with the value obtained from the evaluation of an expres-
sion (Rule generate). The pair made of the event and its value is added in
the event environment. Several productions of the same event with the same
value are possible during the same instant. An await instruction terminates if
the awaited event is present in the environment (Rule await); there is no rule
corresponding to an event which is not present. In this case the instruction is
suspended: 〈await ev,E 〉 ‡ . A watching statement executes its body, if not
terminated, and rewrites to a new watching statement (Rule watch1). If the
body is terminated (i.e. it is nothing), then the watching statement rewrites
to a cooperate instruction (Rule watch2). A module call launches a new sepa-
rate thread run by the operating system to execute a specific module. Execution
of a module can take several instants or never terminates. The thread execut-
ing a module is supposed to generate a termination event when the module
terminates (Rule launch). A repeat statement executes its body in sequence n
times, where n is the integer obtained by evaluating an expression (Rule repeat).
An agent creation produces a drop order Ag ↓ site to demand the migration
in site of a new agent Ag containing a script s and a new empty memory ∅
(Rule creatAg).The absorption of the newly created agent by the system will be
described in Rule eoi2. A migration instruction site produces a drop order site
to demand the migration in site of the executing agent, and suspends up to the
end of the current instant (Rule selfmigr). The processing of a drop order will
be described in Rule site3.

The transition relation thus defined satisfies the following properties:

Proposition 1. (Determinism) ∀s ∈ Script : if 〈s, E, M〉 d1−→ 〈s1, E1, M1〉
and 〈s, E, M〉 d2−→ 〈s2, E2, M2〉 then d1 = d2 and 〈s1, E1,M1〉 = 〈s2, E2,M2〉.

Proposition 2. (Reactivity)
The execution of every script is bounded in any memory and event environment:

∀s ∈ Script,∀E ∈ EventEnv,∀M ∈ Mem, ∃n. 〈s, E,M〉 d1−→ ...
dn−→

〈sn, En,Mn〉 ∧ (sn = nothing ∨ 〈sn, En 〉 ‡)

5 Semantics of Sites and Systems

We give now the small-step semantics of sites and systems. The execution of
a site during one instant is described by the first three Rules sys1- sys3. The

8

next two rules deal with the end of instants. Migration requests are processed in
Rule eoi1. The transition to the next instant is described by Rule eoi2. Finally,
we define the transformation of the suspended terms for the next instant.

5.1 Sites

The format for system rewriting is Σ → Σ′. It is specified by three rules, which
describe the choice of a site S within Σ, the choice of an agent Ag in S, and
the execution of Ag in the event environment of S. We use a function to deal
with migration requests noted I. This function handles a sequence of migration
requests for a given agent by selecting the first one and ignoring the others.

I: Migr× SiteName→ SiteName η I site =

{
site if η = None

η otherwise

The Rule sys1 considers the case where no drop order is issued from the
agent execution. After execution, the agent is reintegrated in the site and the
site event environment is updated. The second Rule sys2 corresponds to the
production of the drop order for a new agent Ag in site0. Agent Ag is put in the
set of incoming agents for site0. The Rule sys3 corresponds to the production
of a migration request site0 for the current agent. There are two cases: either
a migration request is already present in the agent, and then site0 is simply
ignored (a way to prevent schizophrenia...); or, there is no previous migration
request in the agent, and then site0 becomes the migration request of the agent.

S = (site,A] (s,M, η), I, E) 〈s, E, M〉 None−−−→ 〈s′, E′, M ′〉

Σ ∪ S → Σ ∪ (site,A] (s′,M ′, η), I, E′)
(sys1)

S = (site,A] (s,M, η), I, E) 〈s, E, M〉 Ag↓site0−−−−−−→ 〈s′, E′, M ′〉
S′0 = (site0,A0, I0]Ag,E0) S′ = (site,A] (s′,M ′, η), I, E′)

Σ ∪ (site0,A0, I0, E0) ∪ S → Σ ∪ S′0 ∪ S′
(sys2)

S = (site,A] (s,M, η), I, E) 〈s, E, M〉 site0−−−→ 〈s′, E′, M ′〉

Σ ∪ S → Σ ∪ (site,A] (s′,M ′, η I site0), I, E′)
(sys3)

5.2 End of Instants

The suspension predicate of scripts is extended to agents: an agent is suspended
if its script is suspended (Rule agent). A site S = (site,A, I, E) is suspended if
all its agents are suspended or terminated (Rule site). The predicate \ indicates
the absence of migration requests in a site (Rule nomigr). The end of instant
is detected when no migration request is left on the site and all the agents are
suspended; then the site moves to the next instant, as described by Rule eoi1.

〈s, E 〉 ‡

〈(s,M, η), E 〉 ‡
(agent)

∀(s,M, η) ∈ A η = None

(site,A, I, E)\
(nomigr)

9

∀Ag ∈ A 〈Ag , E 〉 ‡ ∨ Ag = (nothing,M, η)

(site,A, I, E) ‡
(site)

When a site is suspended, that is when all its agents are suspended, the
current instant terminates, and a new instant can start.

Two rules are needed to process suspended sites. The first one considers
migration requests of existing agents to a different site, while the second incor-
porates new (incoming) agents into the requested site. In both cases, suspended
agents are transformed to take into account the absence of events. These two
transformations are defined using the function Ω described in Section 5.3.

– The first rule treats the case where an agent Ag1 of a suspended site site1
requests to migrate to site site2. First, suspended scripts of Ag1 are processed
by Ω; then the resulting agent is added to the set of agents of site2:

S1‡
S1 = (site1,A1] (s,M, site2), I1, E1) S2 = (site2,A2, I2, E2)

S′1 = (site1,A1, I1, E1) S′2 = (site2,A2]Ω ((s,M, η), E1), I2, E2)

Σ ∪ S1 ∪ S2 → Σ ∪ S′1 ∪ S′2
(eoi1)

– The second rule considers the case where there is no migration request (↪→
denotes the passing of the site to the next instant). In this case, suspended
instructions are processed by function Ω, and the agents requesting to be
incorporated in the site (the incoming agents) are added to the agent set.
Moreover, the site event environment is reset to ∅:

S ‡ , S\ S = (site,A, I, E)

Σ ∪ S ↪→ Σ ∪ (site,Ω (A, E)] I, ∅, ∅) (eoi2)

In the above rule, Ω (A, E) means {Ω (Ag , E) | Ag ∈ A}.

5.3 Reconstruction for Next Instant

The reconstruction function Ω is used at each end of instant in order to recon-
struct suspended agents, with regard to an event environment E, and to prepare
them for execution at the next instant. To reconstruct an agent means to clean-
off its script and this reconstruction can possibly modify the agent’s memory.
The Ω function is first defined inductively on scripts by:

Ω (cooperate, E,M) = (nothing,M)

Ω (get all ev in l, E,M) = (nothing,M [l← get values(ev,E)])

ev ∈ E

Ω (do s watching ev,E,M) = (nothing,M)

ev /∈ E Ω (s, E,M) = (s′,M ′)

Ω (do s watching ev,E,M) = (do s′ watching ev,M ′)

Ω (await ev,E,M) = (await ev,M)

10

Ω (s1, E,M) = (s′1,M1)

Ω (s1; s2, E,M) = (s′1; s2,M1)

Ω (s1, E,M) = (s′1,M1) Ω (s2, E,M1) = (s′2,M2)

Ω (s1|>s2, E,M) = (s′1|>s′2,M2)

There are four basic cases for script reconstruction:

– cooperate is reconstructed in nothing;

– do s watching ev is reconstructed in nothing if ev ∈ E; otherwise, it is
reconstructed in do s′ watching ev where s′ is the reconstruction of s in E.

– await ev is reconstructed in itself;

– get all ev in l is reconstructed in nothing; moreover, the values associated
with ev in E are collected in a list which is assigned to l. Note that this is
the only reconstruction step that possibly modifies the memory.

The Ω function is extended to agents as follows: Ω ((s,M, η), E) = (s′,M ′, η)
if Ω (s, E,M) = (s′,M ′).

6 Type system

The purpose of the proposed type system for scripts is twofold: first, to insure
that values are correctly used, as in traditional type checking, to verify for in-
stance that in if e then s1 else s2 end, e is a Boolean expression; second, to
ensure that no data-race occurs. For example, consider the following script:

let x = ref e1 in createAgent !x in remote; x := e2 end

There is a data-race as x is read by an agent belonging to site remote, while
it is written in the current site. To prevent this kind of errors, the type system
checks that a reference not belonging to an agent memory (that is, not created
in the agent) cannot be accessed by the agent.

A type is either the name of a basic type (int, bool, etc), the empty type
(unit) or a reference on a type:

Basic ::= unit | bool | int | string τ ::= Basic | ref τ | −→τ

A typing environment Γ is a possibly empty set1 of elements of the form x : τ ,
where x is a variable and τ is a type: Γ ::= x1 : τ1, · · · , xn : τn. The general
form of typing judgments is: Γ ` s : τ where Γ is the typing environment, s is
the script to be typed, and τ is the type of s in Γ .

1 In the sequel, the brackets of the standard set notation are omitted.

11

6.1 Typing Rules

To be typed, a variable must be present in the typing environment (Rule vart).
To type a sequence or a parallel, both branches must be typed (Rule seqt, parat).
A conditional is typed if its expression is a Boolean and its two branches are
typed (Rule ift). A repeat, loop or watching statements is typed by checking
that the body is typed. In the repeat, the expression should be an integer
(Rule repeatt, loopt, watcht). An agent creation statement is typed by checking
its body in an empty environment (Rule creatAgt). This is the central rule to
prevent the possibility of data-races. The type system rules are:

Γ ∪ {x : τ} ` x : τ (vart) Γ ` v : τ (valt)
Γ ` x : ref τ

Γ `!x : τ
(accesst)

Γ ` −→e : −→τ f : −→τ → τ ′

Γ ` f(−→e) : τ ′
(funt)

Γ ` −→e : −→τ m : −→τ → unit

Γ ` launch m (−→e) : unit
(vect)

Γ ` s1 : unit Γ ` s2 : unit

Γ ` s1 ; s2 : unit
(seqt)

Γ ` e : τ1 Γ ∪ x : τ1 ` s : unit

Γ ` let x= e in s end : unit
(lett)

Γ ` e : bool Γ ` s1 : unit Γ ` s2 : unit

Γ ` if e then s1 else s2 end : unit
(ift)

Γ ` e : int Γ ` s : unit

Γ ` repeat e do s : unit
(repeatt)

Γ ` s : unit

Γ ` loop s : unit
(loopt)

Γ ` s1 : unit Γ ` s2 : unit

Γ ` s1|>s2 : unit
(parat)

Γ ` cooperate : unit (coopt)

Γ ` await ev : unit (awaitt)
Γ ` e : τ Γ ` x : ref τ

Γ ` x := e : unit
(sett)

Γ ` e : Basic

Γ ` generate (ev, e) : unit
(gent)

Γ ` s : unit

Γ ` do s watching ev : unit
(watcht)

Γ ` get all ev in l : unit (get allt)
∅ ` s : unit

Γ ` createAgent s in site : unit
(creatAgt)

Γ ` migrate to site : unit (self migrt)

The following proposition holds:

Proposition 3. (Safety) If a program P is well-typed, then no data-race can
occur during its execution.

7 Proposal for Multi-core Architectures

We turn now to the context of multi-processor/multi-core architectures. Our
main goal is to give the system the possibility to maximize the usage of comput-
ing resources (processors or cores).

12

We introduce in the model a new level of parallelism in which the agents are
mapped to parallel components called synchronized schedulers (or for simplic-
ity, schedulers). Sites are composed of several schedulers which share the same
instants and the same events.

At implementation level, the intention is that each scheduler is executed by
a distinct thread (for example, in a Linux-SMP architecture), or by a distinct
processor (for example, in a cluster). Schedulers within a site are supposed to
run in real parallelism and to synchronize at the end of each instant (via a
synchronization barrier). The number of synchronized schedulers belonging to
a given site dynamically changes during the site execution, according to the
load of agents that are present on the site and to the availability of computing
resources. Moreover, agents can be transparently redistributed among schedulers
of the same site, to balance the charge of agents over the sites. Transparency
basically results from the fact that agents do not share memory. Actually, the
only way to share information in a site is to use events.

According to this approach, the assignment of agents to schedulers is not
statically fixed, in order to allow the system to use resources in an efficient way.
For example, in a multi-core context, the system is free to optimize the mapping
of schedulers to cores (and consequently the mapping of agents) in a way that
maximizes the use of the real cores. Initially, one scheduler, arbitrarily chosen, is
associated with each site. The remaining schedulers, if any, are the unused sched-
ulers. At run time, two actions are possible for a site: first, the activation of an
unused scheduler (which thus becomes used); second, the releasing of a scheduler
(which becomes unused). The first action is called site expansion and the sec-
ond site contraction. The conditions for performing expansions and contractions
are not specified and are left to the implementation, in order to maximize the
possibilities of optimizations.

The way sites are structured in sets of synchronized schedulers is formalized
through a semantics described in [3]. This reference also includes an example
(colliding particles).

8 Related Work

We discuss now some related work and compare it with our approach.

Ptolemy [13] is a complex framework which aims to model, design, and simu-
late concurrent, real-time embedded systems. Safety is not a central objective of
Ptolemy. By contrast, DSLM is just a language, which focuses on safety, reactivity,
distribution and maximal usage of computing resources.

SugarCubes [9] is a framework for reactive programming in Java. DSLM is
strongly inspired by SugarCubes. Both formalisms use a similar totally deter-
ministic parallel operator, called merge in SugarCubes. However, SugarCubes
does not possess the notion of a synchronized scheduler and is not optimized for
systems with multiple computing resources. SugarCubes can be used over the
network by Java (RMI), which is not yet possible in our language.

13

FunLoft [8] (“Functional Language over Fair Threads”) is a language for safe
reactive programming, with type inference. The FunLoft compiler checks that
functions called by a program always terminate and only use a bounded amount
of resources (memory and CPU). The theoretical basis of FunLoft is described
in [11]. DSLM is strongly linked to FunLoft in two aspects: first, the notion of
synchronized scheduler of DSLM comes from FunLoft. Second, there exists an
experimental implementation of DSLM in FunLoft ([1]) in which functions are
proved to terminate instantaneously. DSLM improves on FunLoft by introducing
the possibility of dynamic load balancing of agents among synchronized sched-
ulers inside a same site.

ReactiveML [15] is a language for reactive programming in ML. As ML,
ReactiveML is safe in the sense that there is no possibility of a crash during
execution. However, in ReactiveML there is no instant termination check. On
the other hand, ReactiveML, like ML, is not presently adapted for multi-core
architectures. ReactiveML offers the possibility to compile programs on the fly,
which is not currently possible in DSLM.

ULM [6] is a model addressing the unreliable character of resource access in
a global computing context. Like DSLM, ULM tries to achieve safety in memory
access without using locks. However, in ULM, a script that wants to access a
memory location is suspended if the location does not belong to the current site.
ULM is not currently adapted for multi-core architectures.

9 Conclusion

We have presented an approach to dynamic parallel programming, based on the
synchronous/reactive model. Our proposal aims at answering the following ques-
tions: (1) how to be sure that the program is indeed reactive? (2) how to avoid
harmful interferences between parallel computations (e.g. data-races)? (3) how
to execute programs efficiently on a multi-core/multi-processor architecture? We
insure the reactivity of a program by construction, and we require functions to be
instantaneous. In the current implementation, which basically translates DSLM in
FunLoft, this property is checked by the FunLoft compiler. DSLM defines agents
which encapsulate their memory in a way which forbids harmful interferences.

We envision the following tracks for future work:

1. Extend DSLM with security features such as access control and secure infor-
mation flow, building on previous work for a core reactive language [16].

2. Integrate functions and modules in DSLM. Presently, functions and modules
are defined in the host language, thus there is no insurance that the required
properties (instantaneous termination of functions and non-instantaneous
execution of modules) are satisfied. Having them directly defined in DSLM

would allow us to statically check these properties.
3. Investigate the possibility to give a big-step semantics to agents and sites

(but not at the script level). This semantics would give a more abstract
view of systems and sites. It is made possible by the confluent character of
parallelism within sites.

14

4. Complete the implementation of DSLM, which is currently under development,
based on a translation to FunLoft.

In this perspective, DSLM would constitute a complete proposal for a safe and
secure parallel programming language, adapted to multi-core/multi-processor
architectures. This would be, to our knowledge, something new.

References

1. Partout Project Site: https://gforge.inria.fr/projects/partout/.
2. Reactive Programming Site. http://www-sop.inria.fr/indes/rp/.
3. Pejman Attar. DSLM : Dynamic Synchronous Language with Memory. Technical

report, November 2012.
4. G. Berry. The Constructive Semantics of Pure Esterel, 1999.
5. G. Berry and L. Cosserat. The ESTEREL Synchronous Programming Language

and Its Mathematical Semantics. In Seminar on Concurrency, volume 197 of
Lecture Notes in Computer Science, pages 389–448.

6. G. Boudol. ULM: A Core Programming Model for Global Computing. In
D. Schmidt, editor, Programming Languages and Systems, volume 2986 of Lecture
Notes in Computer Science, pages 234–248. 2004.

7. G. Boudol. Fair Cooperative Multithreading. In CONCUR 2007 Concurrency
Theory, volume 4703, pages 272–286. 2007.

8. F. Boussinot. Safe Reactive Programming: The FunLoft Proposal. Lambert Aca-
demic Publishing, 2010.

9. F. Boussinot and J-F. Susini. The SugarCubes Tool Box: A Reactive Java Frame-
work. Software: Practice and Experience, 28(14):1531–1550, 1998.

10. P. Brinch Hansen. Concurrent Programming Concepts. ACM Comput. Surv.,
5(4):223–245, December 1973.

11. F. Dabrowski. Programmation Réactive Synchrone: langages et contrôle des
ressources. 2007. PhD thesis.

12. M. Dubois and C. Scheurich. Software Engineering, IEEE Transactions on Memory
Access Dependencies in Shared-memory Multiprocessors, 16(6):660 –673, jun 1990.

13. J. Eker, J.W. Janneck, E.A. Lee, L. Jie, L. Xiaojun, J. Ludvig, S. Neuendorffer,
S. Sachs, and Yuhong X. Taming Heterogeneity - the Ptolemy Approach. Proceed-
ings of the IEEE, 91:127 – 144, 2003.

14. N. Halbwachs. Synchronous Programming of Reactive Systems. Kluwer Academic
Pub., 1993.

15. L. Mandel and M. Pouzet. ReactiveML: A Reactive Extension to ML. In Proceed-
ings of the 7th ACM SIGPLAN international conference on Principles and practice
of declarative programming, PPDP ’05, pages 82–93. ACM, 2005.

16. A. Almeida Matos, G. Boudol, and I. Castellani. Typing noninterference for Re-
active Programs. J. Log. Algebr. Program., 72(2):124–156, 2007.

17. J. Muttersbach, T. Villiger, and W. Fichtner. Practical Design of Globally-
Asynchronous Locally-synchronous Systems. In Advanced Research in Asyn-
chronous Circuits and Systems, pages 52 –59, 2000.

18. A. W. Roscoe, C. A. R. Hoare, and R. Bird. The Theory and Practice of Concur-
rency. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1997.

19. P. Schaumont, Bo-Cheng C. L., Wei Q., and I. Verbauwhede. Cooperative Mul-
tithreading on Embedded Multiprocessor Architectures Enables Energy-scalable
Design. In Design Automation Conference, 2005. Proceedings. 42nd, pages 27 –
30, 2005.

15

https://gforge.inria.fr/projects/partout/
http://www-sop.inria.fr/indes/rp/

	 DSLM : Dynamic Synchronous Language with Memory

