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Digital in-line holography is revisited to propose a mathematical model that describes the recording-reconstruction process as a linear

shift-invariant system with a pseudo-point spread function even when the images are out of the optimal plane in the sense of signal

processing. A particular case is treated to show that the optimal plane is the best focus plane in the sense of optics. Next, an exact

solution of the holographic reconstruction by correlation is given. By means of the previous results, we study the behavior of the result

of the correlation function between the diffraction pattern function produced by an opaque disk and a chirplet function and between the

diffraction pattern produced by a phase disk and the same chirplet function. [DOI: 10.2971/jeos.2010.10027]

Keywords: digital in-holography, correlation

1 INTRODUCTION

In nature, the class of chirp functions is one of the most im-

portant classes. A wide ranged domain of applications such

as seismic signals, sonar, speech signals and images, ECG and

radar signals are concerned with such functions [1]. The phys-

ical domain considered in this publication is physical optics

and more precisely diffraction and interference phenomena

where the linear frequency modulation (FM) chirp is prepon-

derant [2, 3]. To describe such physical processes, the mathe-

matical tool used is an integral operator with a scaling chirp

kernel. The scaling chirp kernel takes the following form [4]:

hγ(b, c) = κ(a) exp

[

i
(ξ − b)2 + (η − c)2

a2

]

, (1)

where the multi-index parameter γ = (a, b, c) is an element

of the set Γ = R
⋆+ × R

2. κ(a) is an amplitude modifier. The

variables a and (b, c) are the scale and shift parameters. From a

signal processing point of view, the integral operator appears

as an inner product such as:

〈 f , g〉 =
∫∫

f (ξ, η)g(ξ, η) dξ dη. (2)

The upper bar denotes the conjugate complex. The observa-

tion of the diffraction kernels allow the authors of [4] to review

diffraction and in-line holography within chirplet transforma-

tion. The technique is widely used because it is non-intrusive

and it is an in situ method. With the advancement of com-

puters and CCD devices, digital in-line holography has de-

veloped rapidly in the many areas such as surface contouring

[3], shape deformation analysis [5], etc. The basic idea in dig-

ital in-line holography (DIH) is firstly to record the intensity

distribution, with a CCD sensor, of the diffraction pattern of

an object illuminated by a continuous or pulsed wave [6, 7, 8].

The second step is to reconstruct the image of this object by

means of an operator. In this publication, two object types will

be considered: an opaque disk and a phase disk for the trans-

parent object. The choice of these objects is linked to the ro-

tational invariance. It is then possible to compare theoretical

developments and numerical, experimental results. It is clear

that work presented here often applies to fluid flow seeded

with small spherical particles. Generally, in the far field ap-

proximation, spherical particles and opaque disks give the

same diffraction patterns [9]. Figure 1 represents the numer-

ical and experimental set-up where all parameters are identi-

fied.

The field φ(x, y) in the plane of the CCD sensor located at the

distance ze from the object is given by the Huygens-Fresnel

FIG. 1 Experimental set-up for digital in-line hologram recording and reconstruction by

correlation. ze distance of recording, zr distance of the reconstruction.
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approximation as [7]:

φ(r) =
exp

(

i 2π
λ ze

)

iλze

∫∫

R

[1 − p(ξ, η)]

× exp

(

i
π

λze

[

(ξ − x)2 + (η − y)2
]

)

dξ dη, (3)

where r = (x, y) and r =
√

x2 + y2. As in-line holography

is considered, the phase term exp (i2πze/λ) can be omitted.

The distribution [1 − p(ξ, η)] corresponds to the transmission

function of the object and λ is the wavelength. For an opaque

disk, the distribution p(ξ, η) in Eq. (3) is defined by:

Π(ξ, η) = 1S . (4)

Its value is equal to unity over the surface S defined by S =

{(ξ, η)| ξ2 + η2 ≤ d2/4} and d is the diameter of the disk. In

the case of a phase disk, the function p(ξ, η) is:

[1 − exp(iϕ)] Π(ξ, η). (5)

The intensity distribution I(r) of the field φ(r) recorded by the

CCD sensor is then:

I(r) = φ(r)φ(r). (6)

For an opaque disk, the intensity distribution is defined by:

Io(r) = I = 1− πd2

λz
sin

(

πr2

λz

) J1

(

πd
λz r
)

(

πd
λz r
)

+
1

(λz)2

(

πd2

2

)2 J2
1

(

πd
λz r
)

(

πd
λz r
)2

. (7)

But in the case of a phase disk, from [10] and [11], Ip takes the

following definition:

Ip(r) = I = 1 +
πd2

λz

[

sin

(

πr2

λz
+ ϕ

)

− sin

(

πr2

λz

)] J1

(

πd
λz r
)

(

πd
λz r
)

+
2 − 2 cos ϕ

(λz)2

(

πd2

2

)2 J2
1

(

πd
λz r
)

(

πd
λz r
)2

. (8)

In the far field approximation, i.e. πd2/(2λz) < 1, the third

term can be neglected. Figure 2 illustrates us a numerical ex-

ample of diffraction patterns of an opaque disk (Figure 2(a))

and a phase disk (Figure 2(b)) recorded by a CCD sensor.

Let us recall that the intensity distribution may be repre-

sented as a bidimensional convolution between Π(r), and the

chirplet from Eq. (1), such as for the opaque disk, one has:

Io(r) = 1 +
i

λze
Π(r) ∗

[

hze (r) − hze (r)
]

, (9)

with

hz(r) = exp

[

i
πr2

λz

]

. (10)

About the phase disk, the intensity distribution can be defined

by:

Ip(r) = Io(r) − i

λze
Π(r) ∗

[

hϕ(r) − hϕ(r)
]

, (11)

with

hϕ(r) = exp

[

i
πr2

λz
+ iϕ

]

. (12)

The symbol ∗ denotes the spatial 2D-convolution.
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FIG. 2 Intensity distribution of the diffraction pattern of (a) an opaque disk, (b) a

phase objet with ϕ = 0.354π. d = 100 µm, λ = 635 nm, ze = 100 mm, 1024 × 1024,
pixel size 7.87 µm × 7.87 µm.

1.1 Reconstruction process

In [4], the authors demonstrate that the reconstruction of the

image of the object is possible in the framework of the scaling

chirp transformation. Nevertheless, the optical signal is sam-

pled by a matrix sensor. Moiré effects may appear on the digi-

tized diffraction pattern that can disturb the numerical recon-

struction, in particular when a field of particles is considered

[10]. Indeed, when we reconstruct the image of the particle,

at the same time, the images of the moiré patterns are also re-

constructed. The image of particles linked to moiré patterns

appears in white gray level.

To minimize the moiré effect and to perform the numerical
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reconstruction, the authors of [12] used a real and spatial lo-

calized function. In the literature, these type of functions are

also called Gaussian chirplet [1]. The digital reconstruction of

the image of the object can be realized in many ways. Gener-

ally, the Fresnel integral is used first and other operators are

also considered such as fractional Fourier transformation [13]

or real Gaussian chirplet [14]. These transformations are con-

volution operators. Nevertheless, correlation techniques can

be used in the DIH to reconstruct the image of the particle.

Let us note Ca the correlation between the intensity distribu-

tion I(x, y) and a real Gaussian chirplet, denoted ψa(x, y) and

such that:

Ca(I, ψa) = I(r) ⋆ ψa(r). (13)

Note that the correlation and convolution are similar in our

case because all the functions are real and even. The recon-

struction technique used here is based on a real Gaussian

chirplet, kernel denoted ψa(r), of zero mean value and given

by:

ψa(r) =
1

a2

[

sin

(

r2

a2

)

− Mψ

]

exp

[

− r2

(aσ)2

]

. (14)

The σ parameter is fixed to limit the moiré effects and assures

the spatial localization of the chirplet. Generally, it is taken

greater than 5. The scale parameter, denoted a, allows the sim-

ilarity between ψa(r) and I(r) to be increased. Its expression

is defined as [15]:

a2 =
λzr

π
, (15)

and the zero mean value of ψa is assured by:

Mψ =
σ2

1 + σ4
. (16)

To simplify the further calculus, Eq. (14) can be expressed ver-

sus Eq. (12) as:

ψa(r) =

[

− i

2a2

(

hzr − hzr

)

− Mψ

a2

]

exp

[

− r2

(aσ)2

]

. (17)

The parameter zr is the reconstruction distance as one can

see in Figure 1. Consequently, the equality zr = ze should be

the best choice to apply metrologies on the intensity distribu-

tion obtained [14]. The reconstruction process is usually time-

consuming. However, various analysis techniques have been

developed [16, 17]. But here, the aim is to propose a mathe-

matical model that describes the recording-reconstruction in-

line holography process and to understand the influence of

the parameters of the function ψa(x, y). To numerically com-

pute correlation Eq. (13), the fast Fourier transform (FFT) is

usually used and the calculation process is:

Ca(I, ψa) = F−1 [F I ×Fψa] , (18)

where F and F−1 are Fourier and inverse Fourier transforma-

tion operators. Figure 3 shows the reconstruction of an image

of the objects from Figure 2.

The reconstruction of the image of the phase disk is differ-

ent to the reconstruction of the image of the opaque disk. In-

deed, the phase disk is a transparent phase plate. The recon-

struction process allows us to obtain a different linear chirp

from the opaque disk and the value at the origin is the small-

est. These images have been obtained by using Eq. (18). Let
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FIG. 3 Profile of the reconstructions of the image of the objects for zr = ze = 100 mm

from the intensity distribution of the diffraction pattern of a 100 µm disk localized at

100 mm of the CCD sensor, λ = 632.8 nm and σ = 6.

us recall the important fact that the inner product of real

Gaussian chirplets is not equal to the Kronecker delta func-

tion. It is precisely the difference between Fresnel or fractional

Fourier transformation and real Gaussian chirplets transfor-

mation. The first transformations have orthogonal kernels.

Consequently, it is important here to understand the influence

of the parameters a and σ. For this reason, an analytical devel-

opment is necessary.

1.2 Prel iminary developments

1.2.1 Case of opaque disk

As the convolution is associative and distributive, the correla-

tion between the intensity distribution Io and the wavelet ψa

can be written:

Ca(Io, ψa) =
1

2λzea2
Π(r) ∗ [T1 − T2 − T3 + T4]

− iMψ

λzea2
× Π(r) ∗ T5, (19)

with the five functions T1,...,5, defined by Eqs. (20):

T1 = hze ∗ [g · hzr ], (20a)

T2 = hze ∗ [g · hzr ], (20b)

T3 = hze ∗ [g · hzr ], (20c)

T4 = hze ∗ [g · hzr ], (20d)

and

T5 =
[

hze − hze

]

∗ g. (20e)

The function denoted g corresponds to the Gaussian func-

tion of the Gaussian chirplet in Eq. (14) and defined by

exp
(

−r2/(aσ)2
)

. The mathematical development of the ex-

pressions of the functions T1,...,5 is given in Appendix A.

10027- 3



Journal of the European Optical Society - Rapid Publications 5, 10027 (2010) S. Coëtmellec et al.

l Kl αl βl Ml ϕl

1 −1
a2 M1

1
σ2 M2

1 a2
1

M2
1 a2

(

1 + ze
zr

(

1 + σ−4
)

) ∣

∣

∣

(

1 + ze
zr

)

+ i 1
σ2

ze
zr

∣

∣

∣
arctan

(

1
σ2

ze/zr
1+ze/zr

)

2 −1
a2 M2

1
σ2 M2

2 a2
1

M2
2 a2

(

1 − ze
zr

(

1 + σ−4
)

) ∣

∣

∣

(

1 − ze
zr

)

+ i 1
σ2

ze
zr

∣

∣

∣
=







arctan
(

1
σ2

ze/zr
1−ze/zr

)

, 1 − ze/zr > 0,

arctan
(

1
σ2

ze/zr
1−ze/zr

)

+ π, 1 − ze/zr < 0.

3
2Mψ

a2 M3

1
σ2 M2

3 a2
1

σ4 M2
3 a2

ze
zr

∣

∣

∣
1 + i 1

σ2
ze
zr

∣

∣

∣
arctan

(

1
σ2

ze
zr

)

TABLE 1 Coefficients of the pseudo-point spread function Ko .

1.2.2 Case of phase disk

The correlation between the intensity distribution Ip and the

wavelet ψa is the addition of the term defined by Eq. (19):

Ca(Ip, ψa) = Ca(Io, ψa) +
1

2λzea2
Π(r) ∗ [Ω2Ω3 − Ω1 − Ω4]

+
iMψ

λzea2
Π(r) ∗ Ω5, (21)

with the five functions Ω1,...,5, defined by Eqs. (22):

Ω1 = T1 · exp[ iϕ ], (22a)

Ω2 = T2 · exp[ iϕ ], (22b)

Ω3 = T3 · exp[−iϕ], (22c)

Ω4 = T4 · exp[−iϕ], (22d)

and

Ω5 =
[

hϕ − hϕ

]

∗ exp

(

− r2

(aσ)2

)

. (22e)

2 OUT OF OPTIMAL PLANE
PSEUDO-POINT SPREAD FUNCTION

2.1 Main result

In order to predict the reconstruction process on holographic

images by DIH, it is important to describe the intensity dis-

tribution of out of optimal plane images (i.e. zr 6= ze, see Fig-

ure 1). First, the aim of this section consists of finding the ana-

lytical evolution of the pseudo-point spread function, denoted

Ko for an opaque disk and Kp for a phase disk, when the re-

construction reaches the best plane at distance zr.

2.1.1 Case of opaque disk

To determine the pseudo-point spread function, the functions

T1 and T4 must be added on the one hand and T2 added to T3

on the other hand to obtain sinusoidal functions. Let us define

F1 = T1 + T4, F2 = T2 + T3 and F3 = T5. The definition of the

correlation function becomes then:

Ca(Io, ψa) = Π ∗ (F1 + F2 + F3) = Π ∗ Ko. (23)

The pseudo-point spread function Ko = F1 + F2 + F3 is given

by:

Ko = K1 exp
[

−α1r2
]

sin
[

β1r2 − ϕ1

]

+ K2 exp
[

−α2r2
]

sin
[

β2r2 + ϕ2

]

+ K3 exp
[

−α3r2
]

cos
[

β3r2 − ϕ3

]

. (24)

The coefficients Kl , αl , βl and ϕl are given in Table 1. It should

be noted that the coefficients Kl are the product of the coeffi-

cients 1/(λze) of Eq. (19) by the coefficients λze of the func-

tions T1,...,5. The other coefficients allow us to obtain the sinu-

soidal functions of the pseudo-point spread function Ko.

2.1.2 Case of phase disk

The reconstruction of a phase disk is based on the reconstruc-

tion of an opaque disk with an additional term such as:

Ca(Ip, ψa) = Ca(Io, ψa) + Π ∗ Kp, (25)

with

Kp = − K1 exp
[

−α1r2
]

sin
[

β1r2 − (ϕ1 − ϕ)
]

− K2 exp
[

−α2r2
]

sin
[

β2r2 + (ϕ2 − ϕ)
]

+ K3 exp
[

−α3r2
]

sin
[

β3r2 − (ϕ3 − ϕ)
]

. (26)

2.2 Part icular case of the reconstruction of
an image of the object

In the reconstruction process, an image of the object is numeri-

cally reconstructed when zr tends to ze. To compare the results

in this paper with [14] and by taking into account the relation

arctan
(

1/(2σ2)
)

= π/2 − arctan
(

2σ2
)

, we have:

lim
ze
zr
→1

Ko =
σ2

a2

1√
1 + 4σ4

exp

[

− σ2

1 + 4σ4

r2

a2

]

× cos

[

1 + 2σ4

1 + 4σ4

r2

a2
+ arctan

(

2σ2
)

]

− σ2

a2
exp

[

−σ2 r2

a2

]

cos

[

r2

a2

]

+
σ2

a2

2Mψ√
1 + σ4

exp

[

− σ2

1 + σ4

r2

a2

]

× cos

[

1

1 + σ4

r2

a2
− arctan

(

1

σ2

)]

. (27)

Eq. (27) demonstrates that none of the functions obtained cor-

respond to Dirac’s impulse distribution δ(r). Consequently,

the image of the object defined by the transmittance func-

tion Π(r) is not obtained. This demonstration shows that this

recording-reconstruction process by means of the real Gaus-

sian chirplet defined by Eq. (14) is not a numerical refocusing

of the object. It is the same case for the phase disk where we

obtain:

lim
ze
zr
→1

Kp = lim
ze
zr
→1

Ko −Lp, (28)

10027- 4
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with

Lp =
σ2/a2

√
1 + 4σ4

exp

[

− σ2/a2

1 + 4σ4
r2

]

× cos

[

1 + 2σ4

1 + 4σ4

r2

a2
+ arctan

(

2σ2
)

+ ϕ

]

− σ2

a2
exp

[

−σ2 r2

a2

]

cos

[

r2

a2
− ϕ

]

+
σ2

a2

2Mψ√
1 + σ4

exp

[

− σ2

1 + σ4

r2

a2

]

× cos

[

1

1 + σ4

r2

a2
−
(

arctan
(

σ2
)

− ϕ
)

]

. (29)

Consequently, a detailed study on the correlation product

must be realized.

3 THEORETICAL DEVELOPMENT OF THE
CORRELATION PRODUCT OF I BY ψa

3.1 Main results in general case (zr 6= ze

and σ f inite) for the opaque disk

Let us consider the integral form of the convolution product

of the Eq. (23) defined by :

Ca(Io, ψa) = Π ∗ Ko =
∫∫

R2
Π(ξ, η) · Ko(x − ξ, y − η)dξdη.

(30)

As Ko = F1 + F2 + F3,

Ca(Io, ψa) = Π ∗ (F1 + F2 + F3) = C1 + C2 + C3, (31)

with C1 = Π ∗ F1, C2 = Π ∗ F2 and C3 = Π ∗ F3 (Π corresponds

to Eq. (4)). The functions Fl have similar mathematical struc-

ture. The estimation of C2 and C3 will thus be analogous to

the estimation of C1. The mathematical development of C1 is

given in Appendix B and is equal to:

C1 = K1
πd2

2
exp

[

−α1

(

r2 + d2/8
)]

· |W00(r, f1)| ·

sin
[

β1

(

r2 + d2/8
)

− ϕ1 + arg (W00(r, f1))
]

. (32)

The functions C2 and C3 are deduced from the structure of C1,

then:

C2 = K2
πd2

2
exp

[

−α2

(

r2 + d2/8
)]

· |W00(r, f2)| ·

sin
[

β2

(

r2 + d2/8
)

+ ϕ2 + arg (W00(r, f2))
]

, (33)

and

C3 = K3
πd2

2
exp

[

−α3

(

r2 + d2/8
)]

· |W00(r, f3)| ·

cos
[

β3

(

r2 + d2/8
)

− ϕ3 + arg (W00(r, f3))
]

. (34)

The parameters fl for l = 1, 2, 3 are defined by:

fl =
d2

4
(βl + iαl) . (35)

The function W00(r, fl) can be expressed in Bessel-Bessel series

such that [18]:

W00(r, fl) =
∞

∑
k=0

Ak( fl)
J2k+1(4 fl

r
d )

(4 fl
r
d )

, (36)

with

Ak( fl) = (2k + 1)(−i)k jk( fl/2). (37)

The function jk in Eq. (37) is the spherical Bessel function of

the first kind and given by [19]:

jk(z) =

√

π

2z
Jk+ 1

2
(z). (38)

3.2 Main results in general case (zr 6= ze

and σ f inite) for the phase disk

In this case, the result of the correlation can be expressed ver-

sus the correlation between the Gaussian chirplet and the in-

tensity distribution for an opaque object, but here with an ad-

ditional term, as one can see it in the previous section. Thus,

one has:

Ca(Ip, ψa) = Ca(Io, ψa) −
3

∑
l=1

Dl , (39)

with

D1 = K1
πd2

2
exp

[

−α1

(

r2 + d2/8
)]

· |W00(r, f1)| ·

sin
[

β1

(

r2 + d2/8
)

− (ϕ1 − ϕ) + arg (W00(r, f1))
]

.

(40)

Here again, the functions D2 and D3 are deduced from the

structure of D1, then:

D2 = K2
πd2

2
exp

[

−α2

(

r2 + d2/8
)]

· |W00(r, f2)| ·

sin
[

β2

(

r2 + d2/8
)

+ (ϕ2 − ϕ) + arg (W00(r, f2))
]

,

(41)

and

D3 = − K3
πd2

2
exp

[

−α3

(

r2 + d2/8
)]

· |W00(r, f3)| ·

sin
[

β3

(

r2 + d2/8
)

− (ϕ3 − ϕ) + arg (W00(r, f3))
]

.

(42)

The theoretical estimation of the correlation product Ca is

then possible. A comparison between the numerical corre-

lation by using the algorithm of FFT and theoretical corre-

lation is given in Figure 4. The integral over spatial exten-

sion x of the absolute difference of their intensities |Ca|2 and

|F−1 [F I ×Fψa] |2 gives us an error of 4.013 × 10−5 for the

opaque disk and 3.324 × 10−5 for the phase disk. Then, we

have shown Eqs. (31), (39) and (18) produce the same results.

Numerical simulation is in good agreement with analytical re-

sults. This permits us to conclude that the theoretical develop-

ments of Ca are right.

3.3 Asymptotic behavior of the function
W00

The important fact is that simulations of Eqs. (31) and (39) as

shown in Figure 4 with C1, C2 and C3 are not always possible

due to divergent behavior of the function W00. Black corners

on the reconstruction pattern shown in Figure 5(a) illustrate

this point.
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FIG. 4 Reconstruction in the best plane for an opaque and phase disk with d = 100 µm,

λ = 635 nm, ze = 100 mm, zr = 110 mm, σ = 6.

The black corners are due to the overflows during the calcu-

lation. In the series for W00, the term with k = 0 is enough

to explain the divergence of W00 as |4 flr/d| gets large. This

is so, since the factor jk( fl/2), from 10.1.2 on p. 437 of [19],

decays very rapidly in k and are all quite small except for

k = 0. Moreover, in the relevant range of k, all the factors

1/(4 flr/d) · J2k+1(4 flr/d) behave qualitatively the same. Thus

the behavior of |W00(x, fl)| for large 4 flr/d is very well given

by:

W00 ≈ j0( fl/2)
J1

(

4 fl
d r
)

4 fl
d r

≈
J1

(

4 fl
d r
)

4 fl
d r

. (43)

Next by using Hankel’s asymptotic expansions (9.2.5, p. 364

of [19]), for the Bessel functions:

Jν(ζ) ≈
√

2

ζπ

[(

1 + O
(

ζ−2
))

cos (χ)

−4ν2 − 1

8ζ

(

1 + O
(

ζ−2
))

sin(χ)

]

, (44)

with χ = ζ − (ν/2 + 1/4) π and ζ = 4 flr/d. In this example,

the values of |ζ|2 grows from 7936 to 31745. Thus we may ig-

nore the O
(

ζ−2
)

in Eq. (44). By noting that the ℑ{χ} = ℑ{ζ}
and that ℑ{ζ} grows from 89.06 to 178, exp(iχ) can neglected
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FIG. 5 d = 100 µm, λ = 635 nm, ze = 100 mm, zr = 100.01 mm, σ = 6, f2 ≃ -0.108+
4.468i. (a) reconstruction pattern of an opaque disk, (b) semilog representation of

|W00(x, f2)|.

in comparison to exp(−iχ) when ℑ{ζ} grows large. Then it

follows that:

Jν(ζ) ≈ 1

2

√

2

ζπ

[

1 +
4ν2 − 1

8iζ

]

exp(−iχ). (45)

One can conclude that the behavior of |W00| for large |4 flr/d|
is approximatively equal to:

|W00| ≈
∣

∣

∣

∣

J1(ζ)

ζ

∣

∣

∣

∣

=
exp [αldr]

|4 fl
r
d |3/2

√
2π

. (46)

Figure 5(b) allows us to compare the approximation Eq. (46)

with Eq. (36) in cross markers. This representation is given in

semi-logarithmic scale. As W00 is versus exponential function

in Eq. (46) then a linear function is obtained. Note however

that this divergence does not act upon the correlation result

because Gaussian function in Eqs. (32)–(34) associated with

Eq. (46) gives us a convergent function to r-infinity. The calcu-

lation of Ca with Eq. (18) does not produce an overflow. Nev-

ertheless, the digital simulations of Cl with l = 1, 2, 3 must
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FIG. 6 Influence of σ on |W00(x, f2)| for d = 100 µm, ze = 100 mm, zr = 110 mm.

be realized without any difficulty, provided that all functions

Cl are asymptotical convergent. Therefore, this behavior de-

pends on the choice of the chirplet function ψa, i.e. αl . The cor-

relation product between the intensity distribution I(r) and

the Gaussian chirplet function ψa(r) implies that one of the

functions that describes the correlation function is divergent.

This is due to the presence of exponential functions versus αl ,

for l = 1, 2, 3 and defined by:

αl =
1

σ2 M2
l a2

. (47)

To obtain convergent functions that describe the solution of

the correlation product, it is necessary that the parameter αl

is equal to zero. In this case, Eq. (46) proves that the function

|W00(x, fl)| tends to zero when r tends to infinity. The condi-

tion αl = 0 is realized when σ tends to infinity. The influence

of the σ on the divergence of |W00| is illustrated in Figure 6. As

one can see, a greater σ corresponds to a larger |W00(x, f2)|.

Consequently, the chirplet function should have the following

form

ψa(r) =
1

a2
sin

(

r2

a2

)

, (48)

to assure the convergence of all functions that describe the cor-

relation result Ca. Note that this function is closed to the frac-

tional Fourier transformation when σ −→ ∞ and a = s2 tan α

[13] or closed to the imaginary part of Fresnel’s integral ker-

nel. Under this condition, all functions are convergent and sta-

ble on R
2. Figures 7(a) and (b) represents the profile of the

correlation product for an opaque and phase disk. The pro-

file shown with a dashed line is obtained when σ is finite, and

the solid profile when σ tends to infinity. As one can see, the

proposition σ infinite allows a profile close to the object to be

obtained. The edges are more abrupt. The transition band are

smallest without modifying the general dynamic of the signal.

Nevertheless, in the case even where the mathematical defi-

nition of the chirplet Gaussian function Eq. (17) must be pre-

served, it is possible to consider the following approximate

relation:

aσ ≫ π2

Ml
[d · max(r)]1/2 , (49)
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FIG. 7 Profile of the correlation products with the modified chirplet function (solid line,

σ −→ ∞) and with the original chirplet function (dashed line, σ = 6). d = 100 µm,

λ = 635 nm, ze = zr = 100 mm, (a) opaque disk, (b) phase disk.

to assure that the value of αl ≪ 1.

3.4 Part icular case of the reconstruction of
image of the object

From the results in Section 2.2 and by considering the Dirac

delta function δ(r) as the limit of parametric continuous func-

tion:

δ(r) = lim
c→0

1

|c| exp

[

−π
r2

|c|

]

, (50)

the particular case where σ tends to infinity gives us the fol-

lowing functions:

lim
ze
zr
→1

σ→∞

Ko = −δ(r) − 1

2a2
sin

[

r2

2a2

]

, (51)

and

lim
ze
zr
→1

σ→∞

Lp = −δ(r) cos(ϕ) − 1

2a2
sin

[

r2

2a2
+ ϕ

]

. (52)
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Finally, the relation Ca(Io, ψa) becomes:

lim
ze
zr
→1

σ→∞

Ca(Io, ψa) = −Π(r) − Π(r) ∗ 1

2a2
sin

[

r2

2a2

]

, (53)

and Ca(Ip, ψa)

lim
ze
zr
→1

σ→∞

Ca(Ip, ψa) = − (1 − cos(ϕ)) Π(r)

− Π(r) ∗ 1

2a2

[

sin

(

r2

2a2

)

− sin

(

r2

2a2
+ ϕ

)]

. (54)

Eqs. (53) and (54) exhibit the transmittance Π(r) which makes

up the object. The first term of Eqs. (53) and (54) is the unit

circular function with an aperture equal to the diameter of the

object. The minus sign before Π allows the same transmittance

that the object to be obtained in a gray level representation.

The second term generally corresponds to the virtual image in

classical holography. Choosing σ infinite allows the numerical

recording-reconstruction process Ca to refocus on the object.

The best focus plane is then obtained with σ → ∞ and zr → ze.

4 CONCLUSION

In this paper, an analytical solution of digital in-line holog-

raphy from correlation with a chirplet function is proposed.

The analytical correlation demonstrates that the recording-

reconstruction process does not allow an optical refocusing

on the image of the object but allows us to obtain a maxi-

mum likelihood between the chirplet function and the inten-

sity distribution of the diffraction pattern. A proposition of

the chirplet function is given to resolve the optical refocusing

question. With this proposition, the transmittance of the objet

appears clearly in the mathematical relations.

APPENDIX

A DEFINITION OF THE FUNCTIONS T1 TO
T5

Let us recall an important integral which is frequently used in

this paper [20]:

∫

exp
[

−p2x2 ± i2πux
]

dx =

√
π

p
exp

(

−π2

p2
u2

)

. (A.1)

Note that the choice of the definition of the Fourier transfor-

mation is the following:

F [ f ](u, v) =
∫ ∫

f (x, y) exp (−i2π(ux + vy)) dx dy, (A.2)

where u, v define the spatial frequencies.

A.1 Definit ion of the function T1

The function T1 is the result of a convolution product and it

is well known that the convolution of two functions means

multiplication of their transforms. Thus:

F [T1] (u, v) = F [hze ] (u, v) ×F [ghzr ] (u, v). (A.3)

The Fourier transform of hze by using Eq. (A.1) gives us:

F [hze ] (u, v) = iλze exp
(

−iπλze(u2 + v2)
)

, (A.4)

and

F [ghzr ] (u, v) =
π

γ2
1

exp

(

−π2

γ2
1

(u2 + v2)

)

, (A.5)

with γ2
1 = (1/σ2 − i)/a2. Finally, the Fourier transform of T1

is:

F [T1] (u, v) = iλze
π

γ2
1

exp
(

−η2
1(u2 + v2)

)

, (A.6)

with η2
1 = π2/γ2

1 + iπλze. The inverse Fourier transformation

of Eq. (A.6) gives us the definition of T1, i.e.:

T1(x, y) = iλze
1

M1
exp

[

− 1

σ2 M2
1

r2

a2

]

× exp

[

i
1

M2
1

(

1 +
ze

zr
(1 + 1/σ4)

)

r2

a2
− iϕ1

]

,

(A.7)

with

M1 =

∣

∣

∣

∣

(

1 +
ze

zr

)

+ i
1

σ2

ze

zr

∣

∣

∣

∣

, (A.8)

and

ϕ1 = arctan

(

1

σ2

ze/zr

1 + ze/zr

)

. (A.9)

A.2 Definit ion of the function T2

In the same way as the elaboration of T1, we obtain:

T2(x, y) = iλze
1

M2
exp

[

− 1

σ2 M2
2

r2

a2

]

exp

[

−i
1

M2
2

(

1 − ze

zr
(1 + 1/σ4)

)

r2

a2
− iϕ2

]

,

(A.10)

with

M2 =

∣

∣

∣

∣

(

1 − ze

zr

)

+ i
1

σ2

ze

zr

∣

∣

∣

∣

, (A.11)

and

ϕ2 = arctan

(

1

σ2

ze/zr

1 − ze/zr

)

. (A.12)

If (1− ze/zr) < 0 then, to assure the continuity of the function,

the phase π is added to ϕ2 such as:

ϕ2 = arctan

(

1

σ2

ze/zr

1 − ze/zr

)

+ π. (A.13)

The additional phase π corresponds to the Gouy phase

shift that arises when Gaussians propagate from −∞ to +∞

through the focus point.
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A.3 Definit ion of T3

The Fourier transform of T3 is:

F [T3] (u, v) = F
[

hze

]

(u, v) ×F [ghzr ] (u, v). (A.14)

By means of the property:

F
[

hze

]

(u, v) = F [hze ](u, v) = −iλze exp
(

iπλze(u2 + v2)
)

,

(A.15)

the definition of T3 is obtained as:

T3(x, y) = − iλze
1

M2
exp

[

− 1

σ2 M2
2

r2

a2

]

× exp

[

i
1

M2
2

(

1 − ze

zr
(1 + 1/σ4)

)

r2

a2
+ iϕ2

]

.

(A.16)

A.4 Definit ion of T4

The Fourier transform of T4 is given by:

F [T4] (u, v) = F
[

hze

]

(u, v) ×F
[

ghzr

]

(u, v). (A.17)

The second expression of Eq. (A.17), next few simple calculus,

holds:

F
[

ghzr

]

(u, v) =
π

γ2
4

exp

(

−π2

γ2
4

(u2 + v2)

)

, (A.18)

with γ2
4 = (1/σ2 + i)a2. By considering all previous results of

Tl , l = 1, 2, 3, finally T4 takes the following definition:

T4(x, y) = − iλze
1

M1
exp

[

− 1

σ2 M2
1

r2

a2

]

× exp

[

−i
1

M2
1

(

1 +
ze

zr
(1 + 1/σ4)

)

r2

a2
+ iϕ1

]

.

(A.19)

A.5 Definit ion of T5

Again, by using the Fourier operator and its property on the

convolution product, we have:

(hze − hze ) ∗ g(r) = i2λze
1

M3
exp

[

− 1

σ2 M2
3

r2

a2

]

cos

[

1

σ4 M2
3

ze

zr

r2

a2
− arctan

(

1

σ2

ze

zr

)

]

.

(A.20)

B DEFINITION OF C1

Owing to the radial symmetry of the functions, it is convenient

to restate Ca in cylindrical coordinates as follows: x = r cos θ,

y = r sin θ and x′ = ρ cos φ, y′ = ρ sin φ, so that:

Ca =
∫ 2π

0

∫ +∞

0
Π(ρ cos φ, ρ sin φ)

×Ko(r cos θ − ρ cos φ, r sin θ − ρ sin φ)ρdρdφ.

(B.1)

The function Π is the circular function of aperture d, then

Π(ρ cos φ, ρ sin φ) = Π(ρ). All the other functions, i.e. Ko and

Fl are versus r2 then the coordinates in Eq. (B.1) become:

(x − x′)2 + (y − y′)2 = r2 + ρ2 − 2rρ cos(φ − θ). (B.2)

By taking into account the expression of the functions Fk and

by expanding their expressions to complex exponential func-

tions, yields,

F1(r, θ, ρ, φ) =
K1

2i
[s1+ + s1−] , (B.3)

F2(r, θ, ρ, φ) =
K2

2i
[s2+ + s2−] , (B.4)

and

F3(r, θ, ρ, φ) =
K3

2
[s3+ + s3−] . (B.5)

with

s1± = ± exp
[

−(α1 ∓ iβ1)
(

r2+ρ2−2rρ cos(φ−θ)
)]

exp [∓iϕ1] ,

(B.6)

s2±= ± exp
[

−(α2 ∓ iβ2)
(

r2+ρ2−2rρ cos(φ−θ)
)]

exp [±iϕ2] ,

(B.7)

and

s3± = exp
[

−(α3 ∓ iβ3)
(

r2+ρ2−2rρ cos(φ−θ)
)]

exp [∓iϕ3] .

(B.8)

It is sufficient to expand the correlation product, denoted c1±,

of s1± by Π to deduce the other relations, then:

c1± =
∫ 2π

0

∫ +∞

0
Π(ρ)·

× s1±(r cos θ − ρ cos φ, r sin θ − ρ sin φ) ρ dρ dφ (B.9)

with

C1 = c1+ + c1−. (B.10)

We have:

c1± =
∫ 2π

0

∫ d/2

0
±K1

2i

× exp
[

−(α1 ∓ iβ1)
(

r2+ρ2−2rρ cos(φ−θ)
)

∓ iϕ1

]

ρ dρ dφ.

(B.11)

By using the relation [19]:

1

2π

∫ 2π

0
exp(inθ) exp[ix cos θ]dθ = in Jn(x), (B.12)

we obtain:

c1± = ± 2π
K1

2i
exp

[

−(α1 ∓ iβ1)r2 ∓ iϕ1

]

×
∫ d/2

0
exp

[

−(α1 ∓ iβ1)ρ2
]

J0 [2(∓β1 − iα1)rρ] ρ dρ.

(B.13)

By writing f1± = d2 (±β1 + iα1) /4 and by normalizing ρ by

d/2, the structure of c1 becomes:

c1± = ± 2π
K1

2i
exp

[

i4 f1±
r2

d2
∓ iϕ1

]

d2

4

×
∫ 1

0
ρ exp

[

i f1±ρ2
]

J0

[(

4 f1±
r

d

)

ρ
]

dρ. (B.14)
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In Eq. (B.14), we considered that Bessel function of zero order

is an even function: J0(−z) = J0(z). By knowing that:

Vnm(r, f ) =
∫ 1

0
exp

(

i f ρ2
)

Rm
n (ρ)Jm (2πrρ) ρdρ, (B.15)

where Rm
n is the circle polynomials of Zernike [2] with R0

0 = 1,

Eq. (B.15) can be expressed in the Bessel-Bessel series expres-

sion such as [18]:

Vnm(r, f ) = exp

(

1

2
i f

) ∞

∑
k=0

(2k + 1)(i)k jk( f /2)

·
k+p

∑
l=max(0,k−q,p−k)

(−1)lωkl
Jm+2l+1(2πr)

(2πr)
. (B.16)

By comparing Eqs. (B.15) and (B.16), then n = m = 0 so that

p = q = 0 and l = k. The coefficient ωkl = 1, the equation of

c1± can be then expressed as:

c1± = ±K1

2i
exp

[

i4 f1±
r2

d2
∓ iϕ1

]

πd2

2
V00(r, f1±). (B.17)

with

V00(r, f ) = exp

(

1

2
i f

) ∞

∑
k=0

Ak( f )
J2k+1(4 f r

d )

(4 f r
d )

, (B.18)

and

Ak( f ) = (2k + 1)(−i)k jk( f /2). (B.19)

The function jk is the spherical Bessel function of the first kind

and is given by [19]:

jk(z) =

√

π

2z
Jk+ 1

2
(z). (B.20)

By means of the relations 10.1.34 on p. 439 and 9.1.40 on p. 361

of [19]:

jn(z exp[imπ]) = exp[mniπ]jn(z) , Jn(z) = Jn(z), (B.21)

the correlation function C1, in Eq. (B.10), can be obtained.

Acknowledgments

The authors thank their colleagues Dr. P. Janssen from Philips

Reseach Leuven for his help and thank reviewers for their

comments.

References

[1] S. Mann, and S. Haykin, “The chirplet transform: physical con-
siderations” IEEE T. Signal Proces. 43, 2745–2761 (1995).

[2] M. Born, and E. Wolf, Principles of Optics (7th edition, Cambridge
University Press, Cambridge, 1999).

[3] J. W. Goodman, and R. W. Lawrence, “Digital image formation

from electronically detected holograms” Appl. Phys. Lett. 11, 77
(1967).

[4] L. Onural, and M. Kocatepe, “Family of scaling chirp functions,
diffraction, and holography” IEEE T. Signal Proces. 43, 1568–1578
(1995).

[5] L. Cheng, “Simultaneous measurement of displacement and its
spatial derivatives with a digital holographic method” Opt. Eng.
42, 3443–3446 (2003).

[6] D. Gabor, “A new microscopic principle” Nature 61, 777–778
(1948).

[7] J. W. Goodman, Introduction to Fourier Optics (3rd edition,
Roberts and Company Publishers, Colorado, 2005).

[8] U. Schnars and W. Jüptner, “Direct recording of holograms by a
CCD target and numerical reconstruction” Appl. Opt. 33, 179–181
(1994).

[9] F. Slimani, G. Grehan, G. Gouesbet, and D. Allano, “Near-field
Lorenz-Mie theory and its application to microholography” Appl.
Opt. 23, 4140–4148 (1984).

[10] F. Nicolas, S. Coëtmellec, M. Brunel, and D. Lebrun, “Suppression
of the Moiré effect in sub-picosecond digital in-line holography”
Opt. Express 15, 887–895 (2007).

[11] M. Brunel, S. Coëtmellec, D. Lebrun, and K. A. Ameur, “Digital
phase contrast with the fractional Fourier transform” Appl. Opt.
48, 579–583 (2009).

[12] C. Buraga-Lefebvre, S. Coëtmellec, D. Lebrun, and C. Özkul,
“Application of wavelet transform to hologram analysis: three-
dimensional location of particles” Opt. Lasers Eng. 33, 409–421
(2000).

[13] S. Coëtmellec, D. Lebrun, and C. Özkul, “Application of the two-
dimensional fractional-order Fourier transformation to particle
field digital holography” J. Opt. Soc. Am. A. 19, 1537–1546 (2002).

[14] M. Malek, S. Coëtmellec, D. Lebrun, and D. Allano, “Formulation
of in-line holography process by a linear shift invariant system:
Application to the measurement of fiber diameter” Opt. Com-
mun. 223, 263–271 (2003).

[15] L. Onural, and P. D. Scott, “Digital decoding of in-line holograms”
Opt. Eng. 26, 1124–1132 (1987).

[16] F. Dubois, C. Schockaert, N. Callens, and C. Yourassowsky, “Fo-
cus plane detection criteria in digital holography microscopy by
amplitude analysis” Opt. Express 14, 5895–5908 (2006).

[17] W. Li, N. C. Loomis, Q. Hu, and C. S. Davis, “Focus detection from
digital in-line holograms based on spectral l1 norms” J. Opt. Soc.
Am. A. 24, 3054–3062 (2007).

[18] A. J. E. M. Janssen, J. J. M. Braat, and P. Dirksen, “On the com-
putation of the Nijboer-Zernike aberration integrals at arbitrary
defocus” J. Mod. Opt. 51, 687–703 (2004).

[19] M. Abramowitz, and I. A. Stegun, Handbook of Mathematical
Functions (Dover Publications Inc., New York, 1970).

[20] H. M. Ozaktas, Z. Zalevsky, and M. A. Kutay, The Fractional
Fourier Transform with Applications in Optics and Signal Pro-

cessing (1st edition, Wiley, England, 2001).

10027- 10


	INTRODUCTION
	Reconstruction process
	Preliminary developments
	Case of opaque disk
	Case of phase disk


	OUT OF OPTIMAL PLANE PSEUDO-POINT SPREAD FUNCTION
	Main result
	Case of opaque disk
	Case of phase disk

	Particular case of the reconstruction of an image of the object

	THEORETICAL DEVELOPMENT OF THE CORRELATION PRODUCT OF I BY a
	Main results in general case (zr=ze and  finite) for the opaque disk
	Main results in general case (zr=ze and  finite) for the phase disk
	Asymptotic behavior of the function W00
	Particular case of the reconstruction of image of the object

	CONCLUSION
	DEFINITION OF THE FUNCTIONS T1 TO T5
	Definition of the function T1
	Definition of the function T2
	Definition of T3
	Definition of T4
	Definition of T5

	DEFINITION OF C1

