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Abstract: Digital in-line holography is used to visualize particle motion 
within a cylindrical micropipe. Analytical expression of the intensity 
distribution recorded in the CCD sensor plane is derived using the 
generalized Huygens-Fresnel integral associated with the ABCD matrices 
formalism. Holograms obtained in a 100µm in diameter micropipe are then 
reconstructed using fractional Fourier transformation. Astigmatism brought 
by the cylindrical micropipe is finally used to select a three dimensional 
region of interest in the microflow and thus to improve axial localization of 
objects located within a micropipe. Experimental results are presented and a 
short movie showing particle motion within a micropipe is given. 
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1. Introduction 

Digital holography is a recognized technique for flow characterization. As a matter of fact, 
domains such as fluid mechanics or biological imaging benefit from the three dimensional 
information contained by one hologram [1–3]. Microscale extension of digital holography 
makes it possible to visualize and track particle as small as a few micrometers [4–6]. Digital 
holography is therefore a good candidate for microfluidics studies. Microfluidics aims to 
manipulate small amounts of liquid within microchannels with dimensions of few hundreds 
micrometers, and find many applications in electronic component cooling [7] or document 
printing [8]. Imaging through these channels is a challenging problem [9]. In fact, due to their 
cylindrical geometry, microchannels introduce aberrations such as astigmatism in the imaging 
system [10]. These unwanted effects make it difficult to retrieve information about seeding 
particles located in the channel. In order to overcome these limitations, Satake et al. used 
microfabricated channels, coated with water, and with a refractive index almost equal to that 
of water. Thus doing, the authors succeeded in obtaining three-dimensional velocity fields in 
various types of microfluidics devices without astigmatism [11–15]. 

Recently, an analytical solution of the scalar diffraction, produced by an elliptical object, 
located in a thick transparent pipe has been proposed [16]. Using the generalized Huygens-
Fresnel transformation associated with the ABCD transfer matrix formalism [17], the authors 
managed to simulate holograms of elliptical objects in thick pipe with a good accordance 
between experimental and numerical data. Hologram reconstruction is hereby performed 
using fractional Fourier transformation (FRFT). As a matter of fact, it has been shown that 
this method is well suited when flows are studied under astigmatic illumination [18,19]. FRFT 
reconstruction makes it possible for the authors of Ref [16]. to visualize seeding particles in a 
pipe flow without astigmatism. 

Here, we aim to apply digital in-line holography to visualize 5µm in diameter latex beads 
through a 100µm in internal diameter and 4 mm in external diameter cylindrical 
microchannel. In the first part of the paper, calculations leading to the intensity distribution of 
the diffracted field produced by an opaque object are recalled. In the second part, the 
mathematical expression of the FRFT is recalled and optimal fractional order values are 
derived according to the experimental set-up. Both numerical and experimental results are 
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proposed. Then, by modifying the experimental set-up, we show that, using the experimental 
method proposed in Ref [20], a three-dimensional region of interest (ROI) can be selected and 
studied in a micropipe flow. Finally, by modifying the CCD sensor to pipe distance, we prove 
the ability of our method to enhance particle axial localization. 

2. In-line holography through a cylindrical microchannel 

2.1. Simulation of the recorded intensity distribution 

In digital holographic imaging, interferences between the reference beam (part of the beam 
that passes through the studied volume without being disturbed by the seeding particles) and 
the part of the beam which is diffracted by the objects are recorded on a CCD sensor without 
objective lens [21]. The experimental set-up used to visualize particles through a 
microchannel is given in Fig. 1. The beam coming from a fiber coupled laser diode propagates 

over a distance pz  to a microscope objective with a numerical aperture (“ON” on Fig. 1) of 

0.45. The microscope objective is located at a distance 
1l

z  from the microchannel and is used 

to focalize the beam into the studied volume. The diffracting object is located at a distance   

from the microchannel inlet. The CCD sensor used to record the holograms is positioned at a 
distance z from the micropipe. 

 

Fig. 1. Experimental and recording set-up of digital in-line holograms 

Propagation of a Gaussian point-source, denoted G , through the set-up presented Fig. 1, is 

considered. The amplitude distribution of the point-source is given by: 

  
2 2

2
, exp ,G

 
 



 
  

 
  (1) 

where,   is the waist radius and  ,   the coordinates in the fiber coupled laser diode plane. 

Propagation of G  from the pinhole to the CCD sensor plane can be divided into two steps. 

First of all, propagation of  ,G    from the pinhole to the particle plane is considered. Then, 

interferences between the reference and the diffracted beam are calculated in the CCD sensor 
plane. The recorded intensity distribution is given by: 

     2 2

2

2 2

1
, 2 ,

x y
I x y

B B
      (2) 

where,  corresponds to the reference beam, and  is associated with the beam diffracted 

by the object located in the microchannel. Mathematical expressions of the reference and the 
diffracted beams are derived, under paraxial conditions, using the generalized Huygens-
Fresnel integral [22,23]. The reference beam is therefore given by: 
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Here,  1 ,G    is the beam amplitude distribution in the particle plane. Coefficients ,

2

x yA , 

,

2

x yB , and ,

2

x yD  are the elements of the ABCD matrix used to characterize propagation 

between the particle and the CCD plane. Further explanations about determination of these 
coefficients can be found in Ref [16]. After analytical developments, the amplitude 
distribution of the reference beam is (see Appendix for further details): 
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  (4) 

Here, parameters ,x yM  and ,x yN  both contain information about the beam width and the 

wavefront curvature in the CCD sensor plane. 
Amplitude distribution of the diffracted beam can be determined using the following 

generalized Huygens-Fresnel integral: 
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where,  ,T    is the transmission function of an ellipsoidal particle. By assuming that latex 

beads can be considered as opaque particles, its mathematical expression is [24–26]: 
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where b  is the particle width and 
ellR stands for the ellipticity ratio of the considered particle. 

To simulate our opaque objects, N  is fixed to 10. Values of 
kA  and 

kB  are determined by 

numerical resolution of Kirchhoff equation [24]. Let 
ellR  be the particle ellipticity ratio. 

Considering 1ellR   leads to the simulation of a circular particle and 1ellR   is used to 

simulate elliptical objects. The limit case where, 0ellR  , is associated with an opaque fiber 

perpendicular to the optical axis of the system. By introducing Eq. (6) in Eq. (5), theoretical 
expression of the amplitude distribution of the diffracted beam becomes: 
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where , eqx yM  and , eqx yN  are respectively used to determine the width and the wavefront 

curvature of the diffracted beam. 
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2.2. Qualitative validation of the simulations 

In section 2.1, analytical developments have been proposed under paraxial conditions. In 
order to evaluate the abilities of the presented approach to deal with micropipe flow 
holograms, comparison between experimental and simulation data has to be performed. The 
experimental set-up proposed in Fig. 1 is considered. Here, the laser source consists in a 
10mW  fiber coupled laser diode of wavelength 635nm  . Holograms are recorded on a 

1280 1024  CMOS sensor with a pixel pitch of 6.7 m . A close-up view of the micropipe 

used is shown in Fig. 2. 

 

Fig. 2. Close-up (not to scale) of the micropipe used 

The considered micropipe is 4mm  in external diameter and 100 m  in internal diameter. 

It is made of glass (refractive index 
1 1.5n  ) and filled in with water (refractive index 

2 1.33n  ). In order to record holograms, 5 m  in diameter latex beads are injected into the 

microchannel. 

 

Fig. 3. Holograms obtained with 13z mmp   and 
1

1z mml  . (a) Experimental hologram. (b) 

Simulated hologram. 

The distance between the laser source and the x20 microscope objective is fixed to 

13pz mm . The latter is located at a distance 
1

1lz mm  from the micropipe. An example of 

hologram, recorded within the proposed configuration, is illustrated Fig. 3(a). It should be 
noticed that the diffraction patterns exhibit an hyperbolic shape. This is due to the fact that, in 

the micropipe, wavefront curvature radii R  and R


 in both x  and y  directions have 

opposite signs [18]. As a matter of fact, a cylindrical micropipe can be viewed as an 
astigmatic optical system. In order to validate our theoretical approach, an hologram is 
simulated with the same configuration than that of experimental hologram (Fig. 3(a)). The 
hologram simulated using Eq. (2) is given in Fig. 3(b). As in the experimental hologram, the 
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diffraction pattern reveals an hyperbolic shape. Moreover, the simulated interference pattern is 
very similar to the experimental one, the main difference between both holograms is that there 
is only one object in the simulated one. In order to quantitatively validate our approach, 
normalized intensity profile of both holograms are calculated. To limit the contribution of 
noise in the experimental image, intensity profiles are averaged over 50 pixels. Obtained 

results are presented on Fig. 4. The normalized intensity profiles *I  of both holograms are 
plotted in the x-direction. Figure 4 shows a good agreement between experimental and 
simulated data. High-frequency fringes observable in the experimental profile are due to the 
fact that several particles are present in the object field, whereas only one is present in the 
simulated profile. 

 

Fig. 4. Comparison of the simulated and the experimental normalized intensity profiles 

We have presented a numerical approach that allow to simulate micropipe flows 
holograms. This approach has been qualitatively and quantitatively validated, showing the 
ability of our ABCD-matrices approach to deal with microchannel flows. We now intend to 
study a real micropipe flow. In Section 3, the mathematical definition of fractional Fourier 
transformation (FRFT) is recalled and applied to reconstruct images of particles moving in a 
micropipe flow. 

3. Micropipe flow visualization 

3.1. Two-dimensional fractional Fourier transformation 

FRFT is a generalization of the classical Fourier transformation, which is widely used in 

signal processing [27]. The FRFT of order  2 /x xa    and  2 /y ya   , with 

,0 / 2x y   , of the two-dimensional function  ,I x y  is given by [28–30]: 

          
2, , , , , , ,

x y x ya a a aI x y x y N x x N y y I x y dxdy        (8) 

with the FRFT kernel 
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 
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    
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  (9) 

Here ,p x y . The energy conservation, in a given fractional domain, is ensured by 

 pC  . The parameter ps  is linked to the recording device by 
2 2px

p p ps N  , where 
px

pN  stand 

for the number of pixels in both directions and p  their pitch (spatial sampling rate). The 

equivalence between FRFT and classical Fresnel formulation has been proved by Pellat Finet 
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[31]. Moreover, FRFT is well suited for reconstruction of astigmatic holograms [18]. 
Therefore, FRFT will be chosen for our numerical treatments. 

3.2. Numerical focusing: optimal fractional orders 

Using FRFT to refocus over each particle image consists in compensating quadratic phases 
contained by the hologram (Eq. (2)) with the ones of the FRFT kernel (Eq. (9)). The quadratic 
phases of the hologram are given by [16]: 

 
22 22

2 2

,

yx
yx

x y

M DM D
x y

B B






   
           

  (10) 

whereas, the FRFT kernel quadratic phases are derived from Eq. (9): 
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cotcot
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Quadratic phase compensation is performed when 

 0.a     (12) 

Optimal FRFT orders are found when condition (12) is fulfilled. Thus, their mathematical 
expressions are: 

 
   

2 2

2 2

2 2

2 2
arctan , arctan .

x y

x yx y

x x y y

B B
a a

s M D s M D

 

 

   
    

       

  (13) 

It should be noted that optimal fractional orders contain information about the whole 

experimental set-up: information about the recording device is contained in ,x ys , the ,x yM  

terms are associated with the beam used to record holograms, and geometry of the pipe is 

taken into account by ,

2

x yB  and ,

2

x yD  (effective propagation distances are also taken into 

account by ,

2

x yB  and ,

2

x yD ). Thus, 
xa  and ya  can be viewed as parameters that synthesize the 

recording-reconstruction process. Their evolutions against the  position within the pipe 

permits to determine the interference pattern shape in the CCD sensor plane: fractional orders 
with the same signs are associated to elliptical interference fringes, whereas fractional orders 
exhibiting opposite signs are linked to hyperbolic shaped interference patterns. Moreover, 
applying to our holograms a FRFT of optimal fractional orders makes it possible to bring 
particles, located in the pipe, back to focus. 

3.3. Application to micropipe flow visualization 

The experimental set-up proposed Fig. 1 is used to record micropipe flow holograms. Here, 

pz  is fixed to 11pz mm , and 
1

3lz mm . The CCD sensor shutter is set to 20 s . It is, 

therefore possible to record hologram sequences. Here, the flow to be studied is seeded with 

5µm in diameter latex beads, and illuminated with a 635nm  fiber coupled laser diode. 
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Fig. 5. (a) Hologram obtained with 11z mmp   and 
1

3z mml  . (b) Evolution of the fractional 

orders against observation position within the pipe. 

An example of recorded hologram is proposed Fig. 5(a). It can be noticed that, under this 
configuration, the recorded interference pattern has an elliptic shape. This aspect is confirmed 

by Fig. 5(b). Here, the fractional Fourier transformation orders xa  and ya  are plotted versus 

the observation position in the microchannel (fractional orders 
xa  and ya  are estimated using 

Eq. (13)). Both orders have the same sign. 
We now intend to use FRFT to reconstruct the hologram sequence. Using Eq. (13) allows 

to select a reconstruction plane within the micropipe. Then, applying FRFT to each hologram 
of the sequence allows to visualize particle motion comparatively to the chosen reconstruction 
plane. 

 

Fig. 6. (Media 1) FRFT reconstruction of the sequence of holograms proposed Fig. 5 with 

0.967, 0.972
x y

a a   

The movie of the reconstruction is proposed Fig. 6 (Media 1). Particle motion is almost 
linear. It should be noticed that some particles that are out of focus are superimposed with 
hyperbolic fringes, whereas some others are superimposed will elliptical ones. This result is 
similar to that of Ref [20]. where elliptical and hyperbolic interference fringes were recorded 
simultaneously. Thus, it might be possible to insulate a three-dimensional region of interest, in 
a micropipe flow, according to the interference pattern shapes. 

In the next part, the possibility to distinguish a three-dimensional region of interest in this 
micropipe flow is discussed. 
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4. Three-dimensional region of interest extraction from a micropipe flow hologram 

4.1. Experimental set-up 

In order to perform the region of interest (ROI) selection, the experimental set-up proposed 
Fig. 7 is considered. This configuration is almost the same that of Fig. 1. However, a second 
microscope objective and a relay lens have been added, after the micropipe, in order to 
improve the visualization of interference patterns in the CCD plane. Moreover, the 

microscope objective is positioned very close to the micropipe (
2

0lz  ) allowing to perform 

a spatial filtering of the beam. 

 

Fig. 7. 3D-ROI experimental set-up. 

The relay lens is positioned at a distance 
3

11lz mm from the microscope objective. The 

propagation distance between laser source and the first microscope objective is fixed to 

20pz mm . The latter is positioned 
1

1.5lz mm  from the micropipe. Holograms are 

recorded on a 1624 1234  CCD sensor with a pixel pitch of 4.4 m  located at the distance 

30z mm  from the second objective lens. In order to estimate the fractional orders, it is 

necessary to calculate the new ABCD matrices used to characterize the configuration 
proposed Fig. 7. Then, using Eqs. (4) and (7), propagation of the reference and diffracted 
beams are calculated. Finally, using the Eq. (13) to evaluate the evolution of the fractional 
orders, it is possible to determine whether a ROI is distinguishable or not. 

 

Fig. 8. Evolution of the fractional reconstruction orders in the microchannel. 

A ROI is distinguishable when two different types of interference fringes are observable 
on the same hologram. As discussed in section 3.2, for fractional orders exhibiting the same 
signs, observed fringes will be elliptic, whereas fractional orders with opposite signs will be 
associated to hyperbolic interference patterns. 

The evolution of the fractional orders in the pipe are plotted, versus the object position  , 

on Fig. 8. The discontinuity of the ya  value reveals the presence of a waist in the 

#123897 - $15.00 USD Received 5 Feb 2010; revised 19 Mar 2010; accepted 22 Mar 2010; published 30 Mar 2010

(C) 2010 OSA 12 April 2010 / Vol. 18,  No. 8 / OPTICS EXPRESS  7815



y  direction. According to Fig. 8, two areas can be isolated: for   ranging from 0 m   to 

70 m  , fractional orders 
xa  and ya  are of the same sign. Particles located in this region 

are supposed to generate elliptical interference fringes, whereas particles located elsewhere 
(i.e. for   ranging from 70 m   to 100 m  ) will generate hyperbolic fringes. In other 

words, particles located from 70 m   to 100 m   will be considered to be in the ROI. 

4.2. Experimental results 

The possibility to select a 3D-ROI has been theoretically discussed. To confirm the presence 
of a ROI, an experiment has been performed using set-up parameters proposed section 4.1. 
Particle hologram recorded according to this configuration is presented Fig. 9(a). Here, 5 m  

in diameter latex beads have been used to seed the studied flow. It can be noticed that both 
elliptic and hyperbolic interference patterns are observed. However, only images of particles 
producing hyperbolic interference fringes have to be reconstructed. 

 

Fig. 9. (a) Hologram with a 3D-ROI. (b) FRFT reconstruction of one particle located in the 
ROI. 

As a matter of fact, they are associated with particles located in the selected ROI. To 
illustrate this point, FRFT reconstruction of one particle (marked by the white selection) in the 
ROI is performed. As it can be noticed from Fig. 9(b), it is possible to bring back into focus a 

5 m  in diameter latex bead located in the ROI. Particles located elsewhere are not brought 

back to focus. The possibility to isolate a three-dimensional ROI has been discussed. Working 
within a limited zone is either a great opportunity to reduce the amount of data to be treated or 
by tuning the ROI position, makes it possible to refine hologram treatment in a selected zone 
(for instance, near the micropipe walls). Moreover, it might be regarded as a new method to 
enhance axial localization of objects that are contained in a micropipe flow. 

4.3. Influence of the relay lens to CCD sensor distance: object axial localization improvement 

The presence of a 3D-ROI has been both theoretically and experimentally proved. Here, 
particles to be reconstructed are selected according to their interference pattern shape. Either 
elliptical or hyperbolic shaped fringes can be treated independently. Several experimental 
parameters such as microscope objective position may influence the ROI localization. We will 
here investigate the influence of the relay lens to CCD sensor distance. 
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Fig. 10. Evolution of the fractional reconstruction orders in the microchannel for 80z mm . 

The influence of the distance z  is illustrated by Fig. 10. Here, the evolution of the 
fractional orders is plotted versus the location of the object within the micropipe. Three areas 
can be distinguished from Fig. 10: 

1. For  ranging from 0 m  to 45 m , the interference fringes recorded will be 

hyperbolic. 

2. For  ranging from 70 m  to 100 m , interference patterns will also be hyperbolic 

3. Between the above mentioned, elliptical interference patterns will be observable. 
The distance z  has an influence on zone 3: the higher z , the smaller the zone 3. So far, 

particles considered in the ROI generate hyperbolic fringes. However, as can be noticed from 
Fig. 10, in the zone 3, there is a rapid decrease of the fractional order values. In other words, 
axial particle position determination will be more sensitive to a slight variation of the 
fractional order values. Thus, working under this configuration is a great opportunity to 
enhance axial particle location accuracy. To illustrate this point, the sensitivity of the 
reconstruction distance to a bias in the fractional order calculation is estimated. 

 

Fig. 11. Estimation of the reconstruction distance error over the microchannel for different bias 
in fractional order values. 

Obtained results are proposed on Fig. 11. The evolution of the error in the reconstruction 
distance is plotted, versus the position of the object within the pipe, for bias in fractional order 
value ranging from 0.01 to 0.001. It should be noted that other contribution to the error in 
axial position estimation (such as particle diameter, signal to noise ratio of the reconstructed 
image …) are not taken into account. As expected by the analysis of Fig. 10, the axial position 
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error, that is due to a bias in the optimal order estimation, is minimal for particles located in 
zone 3 (i.e. for  ranging from 45 m  to 70 m ). 

5. Conclusion 

We have applied digital in-line holography to micropipe flow visualization. A theoretical 
approach, based on the ABCD matrices formalism, has been proposed and qualitatively 
compared with experimental holograms. Using the fractional Fourier transformation makes it 
possible to reconstruct holograms and to follow the particle motion. The possibility to insulate 
a three-dimensional region of interest in a micropipe flow has been discussed. As a matter of 
fact, due to the astigmatism of the reference beam, two types of interference fringes are 
observable: elliptic and hyperbolic fringes. Theoretical characterization of the ROI has been 
performed. Experimental holograms have been successfully reconstructed using fractional 
Fourier transformation. Finally, it has been shown that this configuration makes it possible to 
enhance particle axial location accuracy. The main interest of this method is that no heavy 
calculation processes are needed: axial localization enhancement is made possible by the 
experimental configuration used to record micropipe flow holograms. 

6. Appendix: propagation of the beam from the particle plane to the CCD sensor plane 

Propagation to the CCD sensor plane is calculated using the generalized Huygens-Fresnel 
integral (see Eqs. (3) and (5)). 

6.1. Amplitude distribution  ,x y  

The amplitude distribution of the reference beam  ,x y  is given by analytical 

developments of Eq. (3). Its mathematical expression is: 

   2 2 2 2

2 2 2 2
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Coefficients ,x yM and ,x yN  contain information about both waist width 
,1x y

 and wavefront 

curvature radii 
,1x y

R . 

6.2. Amplitude distribution  ,x y  

Amplitude distribution of the diffracted beam  ,x y , can be estimated using Eq. (5). By 

replacing Eq. (6) in Eq. (5), and defining: 
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with  and   standing for real and imaginary part respectively, the analytical expression of 

the diffracted beam is found to be: 
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