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ABSTRACT

Aims. We study the possibility of deconvolving hypertelescope images and propose a procedure that can be used provided that the
densification factor is small enough to make the process reversible.
Methods. We present the simulation of hypertelescope images for an array of cophased densified apertures. We distinguish between
two types of aperture densification, one called FAD (full aperture densification) corresponding to Labeyrie’s original technique, and
the other FSD (full spectrum densification) corresponding to a densification factor twice as low. Images are compared to the Fizeau
mode. A single image of the observed object is obtained in the hypertelescope modes, while in the Fizeau mode the response produces
an ensemble of replicas of the object. Simulations are performed for noiseless images and in a photodetection regime. Assuming first
that the point spread function (PSF) does not change much over the object extent, we use two classical techniques to deconvolve the
images, namely the Richardson-Lucy and image space reconstruction algorithms.
Results. Both algorithms fail to achieve satisfying results. We interpret this as meaning that it is inappropriate to deconvolve a relation
that is not a convolution, even if the variation in the PSF is very small across the object extent. We propose instead the application
of a redilution to the densified image prior to its deconvolution, i.e. to recover an image similar to the Fizeau observation. This
inverse operation is possible only when the rate of densification is no more than in the FSD case. This being done, the deconvolution
algorithms become efficient. The deconvolution brings together the replicas into a single high-quality image of the object. This is
heuristically explained as an inpainting of the Fourier plane. This procedure makes it possible to obtain improved images while
retaining the benefits of hypertelescopes for image acquisition consisting of detectors with a small number of pixels.

Key words. instrumentation: high angular resolution – instrumentation: interferometers – techniques: high angular resolution –
techniques: interferometric

1. Introduction

Since the pioneering observations of Michelson (1920), optical
interferometers have been used to obtain high angular informa-
tion about stellar structures. This advancement has taken a long
time from the early measurement of Betelgeuse’s diameter by
Michelson & Pease (1921), to the use of two coherent telescopes
(Labeyrie 1975; Mourard et al. 1994) and the development of
stellar interferometers such as CHARA (ten Brummelaar et al.
2005; Mourard et al. 2009) and VLTI (Ohnaka et al. 2011).

The achievements of optical interferometers cannot yet be
compared with the imaging capabilities of radiotelescopes, al-
though this may be possible in the foreseeable future. For
ground-based instruments, the observations suffer from the im-
perfect correction of the effect for atmospheric turbulence, but
progress in adaptive optics, combined with the use of phase clo-
sure techniques, can solve most of this problem.

The array configuration, as well as the number and sizes
of the telescopes, is a key issue in interferometric imaging
(Kopilovich & Sodin 2001). The point spread function (PSF)
is not a compact spot such as the Airy disk, and can have a
structure that is apparently chaotic. The resulting image is the
so-called dirty image, and a post-processing is mandatory to re-
cover a usable image.

Labeyrie (1996) proposed to overcome this problem using
a densification of the aperture, so that the final aperture seen at
the array final focus resembled as much as possible a monolithic

aperture. The result is a snapshot image that can be directly used
for astrophysical studies. He defined hypertelescope to be the as-
sociation of diluted apertures and densification. We use this term
in the present paper without specifying either the configuration
of the apertures or the degree of densification.

In the present paper, we will study the possibility of an im-
provement of these snapshot images by means of deconvolution.
Since the concept of an hypertelescope involves direct imag-
ing, we do not consider in the present study the super-synthesis
possibility, and the simulations that we present here are lim-
ited to the specific case in which a single configuration of many
diluted apertures can make an image scientifically exploitable.
Moreover, we restrict our analysis to the perfect case of a co-
herent array of telescopes in space (i.e. no atmospheric turbu-
lence) for which a point spread function (PSF) is available. We
have therefore the conditions for which classic deconvolution al-
gorithms such as the Richardson-Lucy algorithm (RLA) or the
iterative space reconstruction algorithm (ISRA) can be used di-
rectly, without having to consider more specific algorithms such
as those used in Thiebaut & Giovannelli (2010).

The paper is organized as follows. The principle of the simu-
lation of hypertelescope images is described in Sect. 2, where
it is illustrated for a diluted array of 25 non-redundant aper-
tures observing an extended object. Noisy observations are simu-
lated assuming Poisson noise. Assuming a convolution relation-
ship to the hypertelescope image, two deconvolution techniques,
namely RLA and ISRA, are applied to the simulated images in
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Fig. 1. Top: from left to right: a monolithic giant aperture (the so-called meta-telescope), a diluted array of four telescopes in Fizeau mode and
in the two hypertelescope modes FSD and FAD. Bottom: phase of the image transform for the test object, which clearly illustrates it visible the
aliasing effect in the FAD mode. This aliasing makes it impossible to recover the Fizeau spectrum in the FAD mode, while the inverse operation
remains possible in the FSD mode.

Sect. 3. The results are disappointing, but the deconvolution pro-
cedure is then applied more successfully to images obtained af-
ter rediluting the MTF, when the rate of densification is not too
strong and allows this inverse operation. A discussion is given in
the last section.

2. Simulation of hypertelescope images

2.1. Principle of the hypertelescopes

In the particular case where the array takes the form of a two-
dimensional highly diluted grid, the raw focal plane image in
the basic Fizeau configuration shows a large number of replicas
of the object, and the use of an hypertelescope makes it possible
to bring together every replica in a single image. This has the
advantage of requiring detectors with smaller numbers of pixels.
Moreover, the photons are not randomly dispersed over the mul-
tiple replicas of the astrophysical image of interest, as in the case
of the Fizeau mode.

The hypertelescope concept proposed by Labeyrie (1996)
consists in an operation of densification of the telescope array
that brings the apertures closer to each other, using for example
the periscopic principle of Michelson. In this operation, the pat-
tern of sub-pupil centers must remain identical in the entrance
and exit pupils, to an homothetic transformation. An equivalent
result can be obtained by applying a magnification of the ele-
mentary apertures by means of inverted Galilean telescopes. In
the following, we consider the periscope assembly because it is
more suitable for a numerical simulation. A change of scale in
the system allows us to switch from the periscopic mode to the
Galilean one, although this requires an interpolation of the data.

Apertures may differ from one another, but for simplicity we
consider here K identical elementary circular apertures of di-
ameter D and transmissions P0(r), centered at positions rk =
(xk, yk). For an incoming wave Ψ0(r), the telescope, assumed to
be perfect, transmits a wave Ψ(r) that is restricted to the K aper-
tures and can be written as

Ψ(r) =
K∑

k=1

P0(r − rk)Ψ0(r), (1)

where the mathematical condition on the rk is the non-
overlapping of apertures. For hypertelescopes, we can follow
the approach of Tallon & Tallon-Bosc (1992) and consider that
the wave is modified so that the wavefront that arrives on the
elementary aperture located at the position rk is translated as
a whole to a new position r′k, with the same condition of non-
overlapping apertures. The wave corresponding to the densified
aperture seen from the final focus appears as the function Ψ′(r)
of the form

Ψ′(r) =
K∑

k=1

P0(r − r′k)Ψ0(r + rk − r′k), (2)

where r′k = (x′k, y
′
k) are the new positions of the centers of

the apertures and the set of positions r′k form an homothetic
smaller image of the rk. It is important to emphasize that the
waves in the apertures P0(r− r′k) are those collected by the direct
aperture P0(r − rk).

The densification factor defined by Labeyrie (1996) is the
ratio γ = d/d′ between the distances of the centers before and
after this operation. Different factors can be used. If all apertures
are identical circular apertures of diameter D, and if the mini-
mal distance between their centers is d, then γM = d/D is the
maximal value of γ, which corresponds to d′ = D. This thus
means that the densification ensures that some of the apertures
are next to each other. We refer to this mode as full aperture
densification (FAD).

As discussed by Aime (2008) and recalled in the present pa-
per, the FAD mode produces an overlapping of different spatial
frequencies in the final densified image spectrum and the effect is
similar to aliasing. This led us to consider another mode of densi-
fication that maximizes the factor of densification while prevent-
ing any overlapping of the spatial frequencies in the densified
image spectrum. We denote this as full spectrum densification
(FSD), which corresponds to γ = γM/2. These densifications,
which are described in greater detail in the next paragraph, are
illustrated in Fig. 1 for a non-redundant array of four apertures.

The formulation of the image formation process with a hy-
pertelescope in the Michelson mode has been studied in several
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publications after being initially proposed by Labeyrie (1996).
As a result of the transformation, the PSF depends on the po-
sition of the point source on the sky, as described by Labeyrie
(2007), Lardière et al. (2007), Patru et al. (2008), and Patru et al.
(2009). From a numerical point of view, this makes it difficult to
simulate the final image because the relation of the convolution
relationship between the object and the image must be replaced
by a Fredholm equation of the first kind in which the kernel is
no longer space-invariant.

The numerical implementation of the two-dimensional
Fredholm equation is somewhat heavy. Thankfully, there is a
more effective way of simulating hypertelescope images. The
procedure was described by Aime (2008), and it makes use of the
approach of Tallon & Tallon-Bosc (1992). These latter authors
developed a complete analysis of densification in their study of
the object-image relationship in Michelson stellar interferom-
etry. Their main result is that in the Michelson configuration
the part of the Fourier plane transmitted by a pair of telescopes
around the frequency ukl = (rk − rl)/λ is shifted as a whole to a
lower frequency u′kl = (r′k−r′l )/λ, without any modification of the
frequency transmission in neither modulus or phase. Since with
a hypertelescope, the transformation of the centers of transmis-
sion domains is homothetic, for all k and l, we have u′kl = ukl/γ.

Using this property, the procedure to simulate an hypertele-
scope image may be seen as a simple modification of the linear
filtering process used to simulate an image with a diluted aper-
ture array. In the Fizeau mode, the image I(α) observed in the
focal plane of an ideal cophased array is simulated by taking the
inverse Fourier transform

I(α) = F −1
[
Î(u)
]
= F −1

[
T (u)Ô(u)

]
. (3)

In that relation, Ô(u) is the two-dimensional Fourier transform
of the geometrically perfect image of the object O(α), and T (u)
is the optical transfer function of the aperture array

T (u) = T0(u) +
1
K

K∑

l=1

K∑

k�l

T0(u − ukl), (4)

where T0(u) is the MTF of an elementary aperture and the ukl

are the position differences between the rk, expressed in units of
wavelength, as already indicated.

The simulation of images obtained with a perfect hypertele-
scope is easily performed by modifying Î(u) of the Fizeau mode
into a new value Î′(u) that corresponds to the densified mode.
Rewriting Eq. (12) of Tallon & Tallon-Bosc (1992), Î′(u) can be
written as

Î′(u) = T0(u)Ô(u) +
1
K

K∑

l=1

K∑

k�l

T0(u − u′kl)Ô(u − u′kl + ukl), (5)

The term u′kl−ukl represents a translation in the frequency plane.
We note that making u′kl = ukl, we have Î′(u) = Î(u) and re-
cover the filtering relationship given in the former equations. The
hypertelescope image I′(α) is obtained as the inverse Fourier
transform

I′(α) = F −1[Î′(u)]. (6)

An illustration of the operation that transforms Î(u) into Î′(u) is
given in Fig. 1. The array of 4 telescopes provides a sampling
of 13 zones in the image transform plane, which are called ini-
tial sampling in the figure. The figure illustrates the two modes
of densification FAD and FSD already presented. The four top

Fig. 2. Block-diagram of the numerical simulation giving the interfer-
ometric and hypertelescope images at high light level (I(α) and I′(α))
and in photodetection mode (Ip(α) and I′p(α)).

figures show the pupil configurations in both the initial pupil
plane and re-imaged pupil planes. The four bottom figures in-
dicate how the spatial frequencies are sampled and manipulated,
and the illustration is given for the phase of the transform, and
an astronomical test object.

We now examine in more detail the two cases of FAD and
FSD. In the Fourier plane, the MTF is given by the aperture au-
tocorrelation function. Apertures separated by a distance of d
give frequency transmissions at 0 and ±d/λ. The MTF T0(u)
of elementary apertures spreads over a frequency area of diam-
eter 2D/λ. In the FAD mode, making d′ = D will produce a
strong overlapping in the MTF, as illustrated in Fig. 1. In con-
trast, the FSD is the strongest possible densification that pre-
serves the spectrum from overlapping (because d′ = 2D). This
can also be analyzed using Eq. (5). The support of T0(u) is a
circle of diameter 2D/λ. To avoid any overlap between different
T0(u − u′kl), it is mandatory that distances between different u′kl
be larger than D/λ.

In conclusion to this section, we wish to emphasize that a
densification rate no stronger than in the FSD mode is mandatory
if the initial Fizeau mode is to be recovered. This inverse opera-
tion is impossible in the fully densified FAD mode that was orig-
inally proposed by Labeyrie (1996), and we will demonstrate in
the following sections that this prevents any improvement in the
hypertelescope image quality.

2.2. Numerical simulations of the images

Figure 2 shows a block diagram of the simulations performed
to obtain the images observed at the focus of a cophased
stellar interferometer and a cophased hypertelescope. The in-
puts are the astronomical object O(α) and the aperture array
P(r) =

∑K
k=1 P0(r − rk), leading to the MTF T (u) by means of

the autocorrelation function of the aperture, in units of wave-
length. The product T (u)Ô(u) gives the image transform Î(u),
which is the common point after which the two simulations
differ. Taking the inverse Fourier transform of Î(u) directly in-
fers the (dirty) image I(α) that can be observed at the focus
of a perfect turbulence-free stellar interferometer. The densified
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Fig. 3. Example of positions for a configuration of 25 point-like
non-redundant apertures (left), with its corresponding autocorrelation
function (right).

image I′(α) is obtained through the transformations described
by Eqs. (5) and (6).

To simulate realistic images obtained by a diluted array of
telescopes, it is necessary to have a sufficiently large number of
pixels to correctly sample each individual telescope.

Numerically, this involves a sampling over of the Fourier
plane. A simple way of achieving this is to use zero padding
of the discrete image O(α). This facilitates the frequency trans-
lations described in Eq. (5), from Î(u) to Î′(u) in the diagram
of Fig. 2.

While several parameters (number of telescopes, apertures
sizes, and configuration) have a direct impact on the quality of
the final image, it is unnecessary to optimize these parameters
to check if a deconvolution technique can improve the hyperte-
lescope image. Thus, any non-redundant configuration may be
used for this demonstration. The greater the number and sizes of
apertures, the greater the number of pixels in the images. Since
we use iterative algorithms for the deconvolution, we limited the
image size to 1024 × 1024 pixels for the deconvolution of im-
ages obtained in the FSD mode over a large number of iterations,
or 2048× 2048 for the comparison of images obtained with the
FAD and FSD modes.

The number of telescopes is here K = 25, all apertures to be
identical circular apertures of diameter D, set on a regular grid
in x and y, with a minimal distance d = dm between them. In
Fig. 3, we show the apertures positions in the configuration that
we use (one among many possible). Making it non-redundant
makes it possible to obtain the largest number of independently
sampled spatial frequencies for this number or telescopes, and
to recover images good enough for a visual interpretation. The
figure is drawn in units of dm. The real array transmission P(r)
can be obtained by substituting the elementary aperture P0(r) for
the positions indicated in Fig. 3, and by giving to d a sufficiently
large value. In the same figure, we also represented the ensemble
of differences of positions ukl that appear in Eq. (4) and provide
the Fizeau MTF T (u). This figure is drawn in units of dm/λ.
Since the array is fully non-redundant, with K = 25, there are
601 regions of the Fourier plane associated with the array. In
addition to the central region, for which all apertures contribute,
there are K(K−1) = 600 regions corresponding to every possible
pair of apertures, all transmitted with the amplitude 1/K = 1/25.
Half of these 600 regions correspond to symmetric positions.
For arrays of 1024 × 1024 points, our simulation is made for
dm = 7 units and D = 1.5, so that T0(u) is 3×3 points wide in the
Fourier plane. For arrays of 2048×2048 points, our simulation is
made for dm = 16 units and D = 3.5, so that T0(u) spreads over
7×7 points in the Fourier plane. Though the two cases are not en-
tirely identical, they have strong similarities (7/3 ≈ 16/7 ≈ 2.3).

Fig. 4. Left: Fizeau mode. Middle: FSD mode. Right: pseudo-FAD
mode. Top: autocorrelations. Center: PSF. Bottom: focal plane images.

Thus, a fair comparison can be made between the deconvolu-
tions applied to the FSD and FAD modes (which are performed
on arrays of 2048 × 2048 points) and the deconvolutions ap-
plied after rediluting the images taken in FSD mode (on arrays
of 1024 × 1024 points).

Three examples of MTF, PSF, and images are given in Fig. 4
to illustrate the Fizeau case, the FSD case, and the FAD case.
However, owing to the constraints in our numerical simulations,
we cannot study a pure FAD case and have to approximate it:
instead of considering a minimum distance of D between two
apertures, we consider a minimum distance equal to 8/7 D.
A more accurate approximation could be obtained for arrays
composed of a greater number of points. For example, with ar-
rays of 4096 × 4096 points, the minimum distance would be
14/13 D. Nevertheless, we believe that the difference between
the true FAD mode and the approximation that we make has
no consequences for the conclusion that we draw in the rest
of the paper about the interests and limitations of the FAD and
FSD modes.

Since the array rather regularly fills a low frequency square
grid, the PSF shows a series of peaks that are also located on a
square grid. Moreover, because there are gaps in the grid cov-
erage of the MTF, a diffuse speckle-like pattern is present. The
focal image given in Fig. 4 is the result of the convolution of the
PSF with the object (here a low-resolution version of an image
taken by NASA’s MODIS1). The Fizeau image appears as an en-
semble of object replicas superimposed on a cloudy background.
If the extent of the object is larger than the distance between
peaks in the PSF, replicas of the Earth-like planet will overlap.
A discussion of these effects is made in Aime (2008). A way
to interpret these effects is to use the Shannon theorem, by re-
versing the usual two spaces, firstly dm playing the role of the
sampling interval and secondly the extent of the astronomical
object that of the usual frequency cutoff.

A few elements of the simulation of the hypertelescope im-
age in the FAD and FSD cases are also given in the same Fig. 4.

1 http://visibleearth.nasa.gov/view.php?id=57723
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Fig. 5. Effect of the application of a pre-filter on photodetected images
of Fig. 4 for ∼ 1 million photons per image. Top: direct Fizeau images,
bottom: FSD hypertelescope images, left: before and right: after appli-
cation of the filter.

The operation of densification in the Fourier space is similar to
that shown in Fig. 1. Since we now have 601 regions, it is no
longer possible to represent the image with its full resolution
as we did before, and the values of Î(u) and Î′(u) are clipped
to black and white. In the simulation, the densification param-
eter γ is approximately equal to 7/3 ∼ 2.3 (dm = 7 and to
d′m = 3), which corresponds to the FSD case. Because of this
shift to lower frequency structures, the resulting densified im-
age I′(α) appears as a zoomed version of the Fizeau image, as
described by Aime (2008).

2.3. Photodetected images

The procedure we use to simulate the photodetected images is
based on the semi-classical theory of photodetection. Goodman
(1985) assumes a classical propagation of the light down to the
detector, using the Huygens-Fresnel theory of wave propaga-
tion, and the quantum part is introduced in the transformation of
the energy that arrives at a pixel’s location into photoelectrons.
Assuming that an integrated energy m arrives at a pixel, m being
a real positive number measured in units of photon energy hν,
the possible integer number of photoelectrons n can be simu-
lated using a random draw that obeys the Poisson distribution of
mean m, i.e. a law of the form P(n/m) = e−mmn/n!.

From a practical point of view, we start from discrete rep-
resentations of the deterministic images I(α) and I′(α). We as-
sociate the pixels of these images with the elements of a two-
dimensional detector. In what follows, we work with simulated
images of 1024 × 1024 pixels. We assume that in average an
image is formed of a number N of photons. For each pixel, we
then proceed to a random draw using a Poisson process of mean
value the number of photons mi j that changes from one pixel to
an other.

In the example of Fig. 5, we have represented the photode-
tected Fizeau and FSD images of Fig. 4, for N = 106 photons.
The mean number of photons per pixel is then ∼0.95. The mi j are
real positive numbers smaller than a maximum of ∼3.7, which
are the same in the direct and densified images. There are no
more photons per pixel in the densified image than in the direct

Fig. 6. Left and middle: two point-like sources observed at different po-
sitions on the sky by the densified array. Right: absolute difference of
the two previous images.

image because of the zooming effect (pixels correspond to dif-
ferent angular units in the two images). If a de-zooming were
applied, the number of photons per pixel in the densified image
would increase as γ2, i.e. by a factor of about 5.4. The interest
in the densification would be more obvious if γ could be larger,
but this would also require an increase in the number of pixels in
the images, thus an increase in computation time when applying
the deconvolution algorithms. In the procedure we used, the final
total number of photons in the images is not exactly N, but fluc-
tuates around N with a standard deviation of

√
N. The examples

of photodetected images shown in Fig. 6 indeed correspond to
photon numbers of 999 960 and 999 355. These numbers differ
negligibly from N = 106 when a fair comparison between the
two images is done.

These images appear to be very noisy. It is however easy to
improve them using a simple linear filtering, which we now de-
scribe. We know that because the photodetection is a Poisson
process, a white noise is superimposed on the image spectrum.
Since we know the domain of frequencies transmitted by the ar-
ray of telescopes, we can suppress this noise in the region of
the spectrum where no signal is expected. Thus, for the Fizeau
image, we can multiply the spectrum by the indicator func-
tion of the MTF T (u), a function equal to 1 for T (u) � 0
and 0 elsewhere. We denote this function Z(u), and can com-
pute it as sign(|T (u)|). The filtered direct image is IpZ(α) =
|F −1[Z(u)Îp(u)]|. It is necessary to take the absolute value (or
alternatively the positive value) of the final image to get rid of
small negative values, which are artifacts that appear when tak-
ing the Fourier transform of the filtered image. A similar opera-
tion can be applied to the densified image. The results are shown
in Fig. 5. This filtering produces an apparently great improve-
ment in the direct noisy image. In term of the application of a
deconvolution algorithm, the images after deconvolution are in-
deed quite insensitive to this pre-filtering.

3. Image enhancement using the deconvolution
algorithms

3.1. Brief presentation of the image space reconstruction
(ISRA) and Richardson-Lucy algorithms

Two classical types of noise can be considered in astronomy:
Gaussian and Poisson noise. In the present analysis, we con-
sider two algorithms that similarly minimize the negative log-
likelihood of these two noises.

For an additive, zero mean, Gaussian white noise, the
deconvolution can be performed by means of the Image
Space Reconstruction Algorithm (ISRA) (Daube-Witherspoon
& Muehllehner 1986). The aim of this iterative multiplicative
algorithm is to minimize the negative log likelihood of data
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corrupted by a Gaussian noise process, that is the Euclidean dis-
tance between the noisy data and the convolutive model, subject
to the non-negativity constraint of the successive estimates. The
convergence of this algorithm was analyzed by De Pierro (1987)
and in its relaxed form by Lantéri et al. (2002).

The classical multiplicative form of ISRA can be written as

Xk+1(α) = Xk(α) × R(−α) ∗ Ip(α)

R(−α) ∗ R(α) ∗ Xk(α)
, (7)

where Xk(α) is the estimate at the iteration k for the object O(α)
we seek to recover and R(α) the PSF.

For a Poisson noise process, the deconvolution is gener-
ally performed by means of the iterative algorithm proposed by
Lucy (1974) and Richardson (1972). This algorithm belongs to
the general approach of the Expectation Maximization (EM) al-
gorithm (Dempster et al. 1977; Rubin 1977). It has been shown
that this algorithm maximizes the likelihood for data corrupted
by a Poisson noise process, subject to a non-negativity constraint
of the estimates. In an equivalent way, it can be considered as
an algorithm that minimizes the negative log-likelihood that is
the Kullback-Leibler divergence between the noisy data and the
convolutive model, subject to a non-negativity constraint. The
classical multiplicative form of RLA can be written as

Xk+1(α) = Xk(α) × R(−α) ∗ Ip(α)

R(α) ∗ Xk(α)
· (8)

For both algorithms, the iterative process generally starts with an
initial estimate X0(α), whose value is a constant that equals the
mean of Ip(α).

The effect of these algorithms is well-known when the PSF
R(α) corresponds to a low-pass filter. Roughly speaking, dur-
ing the iterative process, the low spatial frequencies are recon-
structed first and the higher frequencies appear progressively
when the iteration number increases. The main drawback of the
iterative algorithm, as well as all other non-regularized decon-
volution algorithms, is that the deconvolution problem is an ill-
posed problem (Bertero & Boccacci 1998), and as a consequence
the reconstructed image becomes very noisy when the iteration
number becomes too large. To avoid this problem, the classical
ways of solving this problem are either to regularize explicitly
(Lantéri et al. 2002) the problem by introducing at some level a
smoothness penalty, or to stop the iterative process before noise
amplification that corresponds to a smoothing operation.

We see in the simulation that the effects of both RLA and
ISRA on the interferometric and hypertelescope images is more
complex, and that the filling of spatial frequencies spreads from
areas transmitted by the diluted array.

3.2. Deconvolution applied to the densified image

We intend to test the deconvolution procedure by applying it to
densified images, independent of the degree of densification. In
practice, we give illustrations for rates corresponding to the FSD
and pseudo-FAD modes.

The exact object-image relationship for an hypertelescope
is described by a Fredholm integral for a non-separable space-
variant PSF. According to Andrews & Hunt (1977), this involves
the manipulation of a N2 × N2 matrix for a N × N image, e.g. a
one million square matrix for an image of 1000 × 1000 pixels.
This exceeds the possibilities of current computers.

As claimed by Labeyrie (2007), for an object of small an-
gular extent, the hypertelescope performs a pseudo-convolution,

Fig. 7. Deconvolution of densified noiseless images. From left to right:
result of RLA for k = 10, 100, 1000. Top: FAD. Bottom: FSD.
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Fig. 8. Efficiency of the RLA deconvolution when operating in the FAD
and FSD modes (respectively red and black solid lines).

and we can try to apply a direct deconvolution technique as-
suming a space-invariant PSF. We assimilate this PSF to the
response of the densified array for the center of the field. We
assume that the PSF R′(α) is simply the Fourier transform
squared of the densified MTF T ′(u). The images of two point-
like sources located at two different positions are indeed very
similar. An example of two such responses, is shown in Fig. 6.
The differences are indeed very small, leading to a mean nor-
malized Euclidean distance of 0.35% between numerous pairs
of sources. These slight differences seems to justify the direct
use of a deconvolution technique.

Figure 7 shows the output of the RLA X′k(α) at iterations
k = 10, 100, and 1000, for the FSD and FAD modes. The results
are disappointing, especially for the FAD mode, but this is not
unexpected. Results obtained with ISRA are very similar but not
given here for the sake of conciseness.

Figure 8 details the evolution of the normalized Euclidean
distance between the deconvolved images resulting from the two
densification modes (FSD and FAD) and the true object. As can
be seen in this figure, both distances decrease sharply with the it-
eration number until they reach a minimum value. In both cases,
this value is reached for k ∼ 100. They are however different, and
images obtained in the FSD mode are slightly closer to the orig-
inal image than images obtained in the FAD mode. This is ex-
plained by the autocorrelation peaks being partially mixed, mak-
ing it impossible for the deconvolution algorithm to distinguish
the information they contain.

A42, page 6 of 9

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201117554&pdf_id=7
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201117554&pdf_id=8


C. Aime et al.: Deconvolution of hypertelescope images

Fig. 9. Result of the application of RLA to I′p(α) for k = 100 (left) and
k = 590 (right).

None of the results are truly satisfactory.
Since the application of the deconvolution algorithms cannot

provide good results in the noiseless case, it is unsurprising that
similarly poor results are obtained for the photodetected image
I′p(α). An example of X′kp (α) for k = 100 and k = 590 is shown in
Fig. 9. We can deduce from this study that the raw deconvolution
of densified data never gives satisfactory results, regardless of
the degree of densification.

3.3. MTF redilution: recovering the true convolution
relationship

One may conclude that the problems encountered during the de-
convolution of a raw densified image are due to the lack of a true
convolution relationship. There is indeed a way to try to recover
that relation.

We assume that a telescope operates in a densified mode
and has produced the densified image I′(α). It is possible to re-
cover the Fizeau image I(α) by inverting, using a numerical post-
process, the operation of densification. The technique, which
consists of a redilution, was previously described in Tallon &
Tallon-Bosc (1992) and in a different context by Guyon &
Roddier (2002) for coronagraphic applications. We note that this
operation is possible only for γ values smaller than that corre-
sponding to FSD mode. For larger values, spectral overlapping
occurs.

3.3.1. Noiseless images

We first consider the case of the noiseless image. There is here
no specific reason to choose ISRA over RLA, or conversely,
RLA over ISRA, since these algorithms have been developed
for specific types of noise. To recover the Fizeau image I(α), we
start by computing the Fourier transform Î′(u) of I′(α). The fre-
quency domains around u′kl are then shifted back to their origi-
nal positions ukl. We therefore obtain a quantity equal to Î(u),
and the Fizeau image I(α) can be simply obtained by an in-
verse Fourier transform. The relation of convolution is now re-
covered, the PSF being that of the Fizeau array. We note that
this step is performed in a post-process, and without any signal
deterioration.

We run the deconvolution algorithm up to the iteration k =
50 000. After a few hundred iterations, the replicas in the orig-
inal image disappear and only a single central image of the
Earth-like object remains. In these first steps, the deconvolution
gathers the replicas by means of a computation process. In this
view, the deconvolution process achieves numerically an oper-
ation analogous to that performed by the hypertelescopes with
an optical device.

Fig. 10. Deconvolution of rediluted noiseless images. Top: from left to
right, result of RLA on the re-diluted images for k = 10, 1000, and
10 000. Bottom: corresponding modulus in the Fourier plane. Only a
limited part of the first quadrant of the Fourier plane is shown.
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Fig. 11. Euclidean distance computed between the result of the decon-
volution and the original object (solid lines), or its image as seen by the
meta telescope (dashed lines, see Fig. 12). Black: RLA. Red: ISRA.

The way in which the deconvolution algorithms delete repli-
cas can be well-understood in the Fourier plane (Fig. 10, bottom
figures). The algorithms RLA and ISRA are non-linear and ex-
tend the frequency spectral range of the image (Lantéri et al.
1999). For the diluted array, the coverage of the angular fre-
quencies preferentially grows from known spectral regions. As
the number of iterations increases, these algorithms spread en-
ergy into the missing zones of the spectrum, thus populating the
gaps between the known frequency regions. This can be con-
sidered as an inpainting of the Fourier plane. Once the gaps
are filled, there is no more reasons for replicas to appear in the
reconstructed image.

The deconvolution can then continue, making it possible to
recover yet more intricate details of the astronomical object. This
requires a much larger number of iterations (a few thousands),
as it can be seen in Fig. 10, which gives the results restricted
to the central part of the image (top line), and its counterpart
in a limited area of the first quadrant of the Fourier plane. In
Fig. 11, we have indicated by solid lines the evolution of the
Euclidean distance between the original image and the result of
both deconvolution processes from k = 1 to k = 50 000. It can
be seen that, as a result for the noiseless data, the quality of the
reconstructed image increases monotonically with the number
of iterations. After k = 5000 or so, the image improvement is
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Fig. 12. Images of the original object (left) and as seen by the meta
telescope (center). The modulus in the Fourier plane of the latter is also
displayed (right).

very slow. As expected, the behavior of both algorithms is very
similar, and they reach the same values. When comparing these
curves with those obtained for the deconvolution of the densified
image (Fig. 8), we can see the improvement in the results. It is
excellent, especially when compared to what can be obtained
with the raw meta telescope image shown in Fig. 12.

Although the results of RLA and ISRA must fundamentally
be compared to the original image O(α), they can be compared
to the image Im(α) that the meta telescope would give. The result
is shown in Fig. 11 (dashed lines). For comparison, the distance
to the original image is also given (continuous lines). We can ob-
serve that regardless of the reference image, the two algorithms
converge toward the same value. The distance is however smaller
for the reference image Im(α). As a matter of fact, in the absence
of photodetection noise, the image obtained for k = 50 000 com-
pares favorably with the direct image obtained with the meta
telescope, independently of the algorithm used.

3.3.2. Noisy images

We now consider the case of noisy data. The operation of im-
age redilution for noisy data is more tricky. Whatever the ori-
gin of the noise, the image obtained after redilution is cor-
rupted by a noise whose statistical properties are unknown. The
redilution indeed changes the properties of the noise. There is
then no strong reason to prefer one algorithm over the other.
Fortunately, we are able to show that both algorithms lead to
almost similar results.

As already discussed for the application of the filter Z(u),
the image spectrum Î′(u) is contaminated by a noise that spreads
over the whole frequency plane, particularly in areas where there
is no expected signal. We cannot handle the redilution of the
noise spectrum per se. What we can do is to set to zero the val-
ues of Î′(u) that are in the region where no signal is expected,
i.e. apply a filter such as Z(u). We note that this does not sup-
press the noise, but limits its influence to the regions where the
signal is expected. The rediluted and pre-filtered image shown
in Fig. 13 (left), appears to be very similar to the pre-filtered
Fizeau image of Fig. 5. The difference between them, shown in
absolute value in the right image of Fig. 13 is compatible with
statistical fluctuations.

The effect of the algorithm on this noisy image is shown by
the Euclidean distance drawn in Fig. 14 (dashed lines). In the
same figure, we also show the equivalent curves for the noise-
less case, which have been previously given in Fig. 11. It can
be seen that the curves for the noisy case are very similar for
both algorithms. Moreover, the reconstruction error increases
with the iteration number, after having passed through a min-
imum. This is a classical behavior for non-regularized decon-
volution problems. To prevent this phenomena, we can either
stop the iterations before noise amplification or use an explic-
itly regularized algorithm. Here, as already indicated, we just

Fig. 13. Left: FSD hypertelescope image after MTF redilution. Right:
absolute difference between this image and the interferometric image
shown in Fig. 5. Differences are due to the statistical origin of the
photodetection process.
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Fig. 14. Efficiency of the deconvolution algorithms with and without a
photon noise (represented in dashed and solid lines, respectively). The
color code is the same as in Fig. 11.

Fig. 15. Image restoration in the presence of photodetection noise: Top:
from left to right, result of RLA on the re-diluted images for k = 10,
1000, and 10 000. Bottom: corresponding modulus in the Fourier plane.

stopped the iterations k. In our example, there is a flat minimum
around k = 2000, as shown by the Euclidean distance drawn in
Fig. 14. There are indeed very few differences for a broad range
of k values, between 600 to 10 000 or so. An example of the
reconstructed images for several values k is shown in Fig. 15.
The reconstructed image spectrum presents the same behavior
as for the noiseless data, i.e. a filling of spatial frequencies that
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develops from known regions of the spectrum, i.e. correspond-
ing to an inpainting of the Fourier plane. Noise amplification
arises for k values larger than a few thousands, as illustrated by
the result for k = 10 000.

4. Discussion and conclusion

In this paper, we have focused on improving the snapshot image
given by an hypertelescope using deconvolution techniques.

We have considered two types of hypertelescopes. The first
one consists of a complete densification of the pupils which
is denoted here by FAD and originally proposed by Labeyrie
(2007). The other one corresponds to a complete densification
of only the MTF, referred to herein as FSD. The application of
a direct deconvolution of images obtained by a hypertelescope,
whether in the case FSD or FAD did not give good results. This
was an unsurprising result. Our interpretation is that because
the hypertelescope mode is no longer represented by a convo-
lution relationship, there is no reason to assume that a simple
deconvolution can invert the Fredholm relation for an angular-
dependent PSF. Because the variation in the impulse response
across the field is very small, Labeyrie’s suggestion to replace
the Fredholm relation with a simple convolution had to be tested,
though the result is unfortunately unsatisfactory.

We have presented in this paper a practical way of improving
an hypertelescope image. The procedure involves two steps, a
first of which numerically re-dilutes the hypertelescope image
to artificially retrieve a Fizeau image. We emphasize that this
cannot be done for the FAD mode of operation (because the
complex amplitudes from the different apertures are entangled),
and that the FSD mode is the maximum densification for which
it is possible to apply a redilution (or de-densification) without
difficulty. In the second step, the application of a deconvolution
to these images is then legitimate and gives excellent results. We
discuss the problems that occur when photon noise is taken into
account. This study thus leads to a practical result of interest to
researchers wishing to use a hyperspectral technique. We advise

them not to use a densification stronger than FSD if they wish to
further improve the quality of the image by deconvolution. This
result is not unexpected, but useful to recall, especially when
considering all the experimental efforts underway to develop hy-
pertelescopes in the FAD mode.

References

Aime, C. 2008, A&A, 483, 361
Andrews, H. C., & Hunt, B. R. 1977, Digital image restoration (Prentice Hall)
Bertero, M., & Boccacci, P. 1998, Introduction to inverse problems in imaging

(IoP Publishing)
Daube-Witherspoon, M. E., & Muehllehner, G. 1986, IEEE Trans. Med. Imgng.,

61
De Pierro, A. R. 1987, IEEE Trans. Med. Imgng., 174
Dempster, A. D., Laird, N. M., & Rubin, D. B. 1977, J. Roy. Stat. Soc., 1
Goodman, J. W. 1985, Stat. Opt. (New York: Wiley-Interscience)
Guyon, O., & Roddier, F. 2002, A&A, 391, 379
Kopilovich, L. E., & Sodin, L. G. 2001, Multielement system design in astron-

omy and radio science, Astrophysics and Space Science Library (Dordrecht:
Kluwer Academic Publishers), 268

Labeyrie, A. 1975, ApJ, 196, L71
Labeyrie, A. 1996, A&AS, 118, 517
Labeyrie, A. 2007, Compt. Rendus Phys., 8, 426
Lantéri, H., Soummer, R., & Aime, C. 1999, A&AS, 140, 235
Lantéri, H., Roche, M., & Aime, C. 2002, Inv. Probl., 18, 1397
Lardière, O., Martinache, F., & Patru, F. 2007, MNRAS, 375, 977
Lucy, L. B. 1974, AJ, 79, 745
Michelson, A. A. 1920, ApJ, 51, 257
Michelson, A. A., & Pease, F. G. 1921, ApJ, 53, 249
Mourard, D., Tallon-Bosc, I., Blazit, A., et al. 1994, A&A, 283, 705
Mourard, D., Clausse, J. M., Marcotto, A., et al. 2009, A&A, 508, 1073
Ohnaka, K., Weigelt, G., Millour, F., et al. 2011, A&A, 529, A163
Patru, F., Mourard, D., Clausse, J.-M., et al. 2008, A&A, 477, 345
Patru, F., Tarmoul, N., Mourard, D., & Lardière, O. 2009, MNRAS, 395, 2363
Richardson, W. H. 1972, J. Opt. Soc. Am. (1917-1983), 62, 55
Rubin, A. P. D. N. M. L. D. B. 1977, J. Roy. Stat. Soc. Ser. B (Methodological),

39, 1
Tallon, M., & Tallon-Bosc, I. 1992, A&A, 253, 641
ten Brummelaar, T. A., McAlister, H. A., Ridgway, S. T., et al. 2005, ApJ, 628,

453
Thiebaut, E., & Giovannelli, J.-F. 2010, IEEE Signal Proc. Mag., 27, 97

A42, page 9 of 9


	Introduction
	Simulation of hypertelescope images
	Principle of the hypertelescopes
	Numerical simulations of the images
	Photodetected images

	Image enhancement using the deconvolution algorithms
	Brief presentation of the image space reconstruction (ISRA) and Richardson-Lucy algorithms
	Deconvolution applied to the densified image
	MTF redilution: recovering the true convolution relationship
	Noiseless images
	Noisy images


	Discussion and conclusion
	References

