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Chapter 1

Introduction

Homogeneous turbulence is rarely encountered in flows of practical relevance. Ne-
vertheless, homogeneous turbulent flows have been long in focus of turbulence research,
because they enable to study selected turbulence interactions separated or isolated from
others. In addition to bringing in more transparency in turbulence dynamics, homoge-
neous approximation simplifies to a great degree the mathematical description and the
solution of the equations. Furthermore, homogeneity in space enables the use of periodic
boundary conditions, which, in turn, allow to study the turbulence dynamics in a fraction
of actual flow space, making these flows very attractive for direct numerical simulations
(DNS). Finally, flow homogeneity reduces the demands on experimental set up and enables
the turbulence phenomena to be studied in well control conditions.

The analysis of homogeneous turbulent flows has played a major role in the develop-
ment, calibration and validation of turbulent closure models. Studies of such flows offer
several advantages. First, the mean flow is externally imposed and uncoupled from the
fluctuating motion, so that the state of the turbulence does not affect the mean motion.
However the mean motion governs directly the evolution of the turbulence. This allows
to study the performance of various closure models and the response of modelled terms
and equations to the imposed mean velocity field. It also enables to determine the li-
miting (homogeneous) values of empirical constants associated with the models of the
turbulent processes that are dominant in the flow considered. Second advantage is in the
simplification of the governing equations and their solutions. A common feature of all
homogeneous flows is the absence (or neglect) of diffusion. Hence, the variation of the
turbulent quantities can be simply reduced to the variation in time only, or in one space
coordinate (with assumed constant or prescribed mean velocity in that direction). The
mathematical description is then reduced to an initial value problem defined by a sys-
tem of ordinary differential equations that can be conveniently solved by e.g. fourth-order
order Runge-Kutta, or similar methods.

Homogeneous approximations have particularly been used to derive the second mo-
ment closure models, because they enable to study and derive the models of the pressure
- strain-rate process and of the stress dissipation, separated from other interactions: mo-
delling these two processes is still one of the most challenging issues in single-point closure
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CHAPTER 1. INTRODUCTION

modelling (e.g. (Lumley, 1970), Speziale et al. (1991)).
In this report we present a comparative analysis of the performance of various second-

moment closure models published in the literature, in a range of homogeneous flows. The
general form of equations set for the second-moment closures for homogeneous incompres-
sible flows is first presented, followed by an overview of models from the literature. The
focus of the analysis is the pressure-strain term: it is the modelling of this term, where the
proposals by various authors differ most one from another. For all models considered, the
standard equation for the energy dissipation rate ε is used to provide the characteristic
turbulence scale, as well as the stress dissipation tensor εij. For the latter, the isotropic
dissipation model εij = 2/3εδij has been used, except in models where a different form
was originally proposed, such as in the model of Fu, Launder and Tselepidakis (1987).

Models considered are then used to compute a series of homogeneous flows and the
results obtained were compared with the direct numerical simulations or experiments
from literature. Considered were the flows subjected separately to axisymmetric and plane
deformation, successive plane strains, homogeneous shear without and with rotation, and
two cases of homogeneous flows with dilatation effects: isotropic compression and one-
dimensional homogeneous compression. For the latter two cases, the two-scale scalar model
of Wu, Ferziger and Chapman (1985) for compressible flow is used.
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Chapter 2

Homogeneous equations

2.1 General form of the homogeneous closures

2.1.1 Incompressible flow

For an incompressible homogeneous turbulence, the equations of motion, and a second-
moment closure model can be written in a general form, using the conventional notations
and including possibly a rotating frame:

∂V i

∂t
= −1

ρ
P,i − V k V i,k − 2 εimk Ωm V k (2.1a)

∂Rij

∂t
= Pij + Gij + φij − εij (2.1b)

∂ε

∂t
= P ε1 + P ε2 + P ε4 + Gε − Eε + φε (2.1c)

where, V i is the mean velocity vector, P, i is the mean pressure gradient, Ωm is system
rotation angular velocity, Rij is the Reynolds stress tensor and ε is the kinetic energy
dissipation rate. The terms in the transport equations for Rij and ε have conventional
meanings: Pij is the mean strain stress production, φij pressure-strain correlation and εij

stress dissipation. In the ε equation, P ε1, P ε2 and P ε4 are the production terms, Eε is
viscous destruction, and φε the term with fluctuating pressure. System rotation in both
equations is represented by G terms, defined as

Gij = 2 [Rik θjk + Rjk θik] (2.2a)

Gε = 0 (2.2b)

where θik = εijm Ωm. It should be noted that the mean velocity gradients are independent
of their spatial location and, therefore, the mean deformation and rotation rate tensors,
Sij and Wij obey the following equations:

∂Sij

∂t
= −1

ρ
P,ij − SikSkj − WikWkj + θik (Skj + Wkj) − (Sik − Wik) θkj (2.3a)

3



CHAPTER 2. HOMOGENEOUS EQUATIONS

∂Wij

∂t
= Sik (Wjk − θjk) − (Wik − θik) Skj + (Wik θjk − θik Wjk) (2.3b)

The pressure gradient does not explicitly appear in the rotation rate tensor equation.
Consequently, only the homogeneous turbulent flows undergoing a rotation in the mean
flow, can be affected by their relative rotation rate evolving in time.

The stress and dissipation equation can be written in another form, which may be
more convenient when considering rotating flows

∂Rij

∂t
= −Rik Ṽaj,k − Rjk Ṽai,k + φij − εij (2.4a)

∂ε

∂t
= −Cε1 Rmn Smn

ε

K
− Cε2

ε2

K
(2.4b)

where Ṽai,j = V i,j − 2 θij. Because of homogeneity, the turbulence statistical quantities
are independent of their position in space.

Alternatively, the model can be reformulated in terms of Reynolds stress anisotropy
tensor, bij = Rij/2K − 1/3δij, and its trace, the turbulence kinetic energy K = 1/2Rii:

∂K

∂t
= −2 K bmnSmn − ε (2.5a)

∂bij

∂t
= −2

3
Sij + (2 bmnSmn +

ε

K
) bij (2.5b)

+φij − Dεij − (bikSjk + bjkSik −
2

3
bmnSmn δij) − (bik W̃ajk + bjk W̃aik)

∂ε

∂t
= −Cε1 Rmn Smn

ε

K
− Cε2

ε2

K
(2.5c)

where the pressure-strain correlation tensor and the dissipation rate are nondimensionna-
lized by the kinetic energy

φij =
1

2K
φij (2.6a)

Dεij =
1

2K
Dεij (2.6b)

For modelling purpose, it is a common to decompose the pressure-strain correlation into
the rapid and slow part. The deviatoric part of the dissipation tensor Dεij is usually
assumed to be closely related to the stress anisotropy tensor bij , so that it is closed toge-
ther with the slow part of the pressure-strain tensor (Lumley, 1970), hence the following
notations will be used

φ
∗

ij = φ
∗R

ij + φ
∗S

ij (2.7)

and

φ
∗R

ij = 2 V ap,q (Xiqpj + Xjqpi) (2.8a)

φ
∗S

ij = φ
S

ij − Dεij (2.8b)
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2.1. GENERAL FORM OF THE HOMOGENEOUS CLOSURES

where
V ap,q = V p,q − θpq (2.9)

X ijpq =
1

2K
Xijpq (2.10)

Since the turbulence is supposed to be homogeneous, this term can be expressed as a
Fourier transform of the spectral density of Rij , as practiced in a spectral description of
turbulence:

X ijpq =
1

2K

∫ kpkq

k2
Φij(k) dk (2.11)

where k denotes the wave number and Φij , the spectral tensor of the velocity correlations.
We consider now the general practice of closing the stress equation and modelling the

unknown terms.
The rapid term is usually closed by a model for Xijpq, which is assumed to depend

only on the anisotropy tensor. According to the tensor representation theorem (functional
theory), the most general form of this closure can be written as

Xijpq = C1 δijδpq + C2 (δipδjq + δiqδjp)
+ C3 δijbpq + C4 δpqbij

+ C5 (δipbjq + δiqbjp + δjqbip + δjpbiq)
+ C6 δijb

2
.pq + C7 δpqb

2
.ij

+ C8 (δipb
2
.jq + δiqb

2
.jp + δjqb

2
.ip + δjpb

2
.iq)

+ C9 bijbpq + C10 (bipbjq + biqbjp)
+ C11 bijb

2
.pq + C12 bpqb

2
.ij

+ C13 (bipb
2
.jq + biqb

2
.jp + bjqb

2
.ip + bjpb

2
.iq)

+ C14 b2
.ijb

2
.pq + C15 (b2

.ipb
2
.jq + b2

.iqb
2
.jp)

(2.12)

Inserting the expression (2.12) in (2.8a) and rearranging yields φ
∗R

ij as a general func-

tional in terms of bij , Sij and W ij , with the coefficients βi to be determined later:
(ANNE, PLEASE CHECK IF THIS EXPRESSION IS CORRECT: SOMETHING

SEEMS TO BE INCORRECT WITH β2, see equation 2.20!)

φ
∗R

ij = β1 bij

+ β2[b
2
.ij + 2

3
IIδij]

+ β3 Sij

+ β4[bikSjk + bjkSki − 2

3
bmnSmnδij ]

+ β5[b
2
.ikSjk + b2

.jkSki − 2

3
b2
.mnSmnδij]

+ β6[bikW jk + bjkW ik]
+ β7[b

2
.ikW jk + b2

.jkW ik]
+ β8[bikW kpb

2.pj + bjpW pkb
2
.ik]

(2.13)

This expression (2.12) satisfies all symmetries properties of the tensor Xijpq for a
homogeneous turbulence, that is

Xijpq = Xijqp (2.14a)
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CHAPTER 2. HOMOGENEOUS EQUATIONS

given by the permutation of the second derivatives, and

X ijpq = Xjipq (2.14b)

because of the homogeneous character of the flow.
The 15 coefficients of (2.12) are not independent. Their number can be reduced by

applying the incompressibility and normalisation constraints on the anisotropy tensor.
The incompressibility condition imposes:

Xnjnq = 0 (2.15)

which leads to the following three relations between the coefficients:

C1 + 4 C2 − 2 II C8 + III (C11 + C12 + 2 C13) = 0 (2.16a)

C3 + C4 + 5 C5 − II (C11 + C12 + 4 C13) + III (C14 + C15) = 0 (2.16b)

C6 + C7 + 5 C8 + C9 + C10 − II (C14 + 3 C15) = 0 (2.16c)

where II = −1/2{b2} = −1/2{bijbij} and III = 1/3{b3} = 1/3{bijbjkbki} are the
second and third invariants of the stress anisotropy tensor bij , respectively.

The normalisation of the anisotropy tensor express the fact that the Reynolds tensor
is a contraction of the fourth order tensor in the case of a homogeneous flow

X ijpp = bij +
1

3
δij (2.17)

and this constraint must be satisfied by the model if X ijpq is to be closed by a functional
depending solely on bij . This condition gives three additional equations:

3 C1 + 2 C2 − 2 II C6 + 4 III C13 =
1

3
(2.18a)

3 C4 + 4 C5 − 2 II (C11 + 2 C13) + 2 III C15 = 1 (2.18b)

3 C7 + 4 C8 + 2 C10 − 2 II (C14 + C15) = 0 (2.18c)

reducing the number of independent coefficients to 9. It is convenient (though not neces-
sary) to choose the following unknowns of the model:

C5 C8 C9 C10 C11 C12 C13 C14 C15 (2.19)

The remaining 6 coefficients is then expressed in terms of the above selected 9 independent
coefficients from equations (2.15) and (2.16):

C1 =
2

15
− 2 II (

5

3
C8 +

2

5
C9 +

2

15
C10) +

1

5
III (C11 + C12 − 6 C13) (2.20a)

+
4

15
II2 (C14 + 7 C15)

C2 = − 1

30
+ II (

4

3
C8 +

1

5
C9 +

1

15
C10) −

1

5
III [

3

2
(C11 + C12) + C13] (2.20b)

6



2.1. GENERAL FORM OF THE HOMOGENEOUS CLOSURES

− 1

15
II2 (C14 + 7 C15)

C3 = −1

3
− 11

3
C5 + II (

1

3
C11 + C12 +

8

3
C13) − III (C14 +

1

3
C15) (2.20c)

C4 =
1

3
− 4

3
C5 +

2

3
II (C11 + 2 C13) −

2

3
III C15 (2.20d)

C6 = −11

3
C8 − C9 −

1

3
C10 +

1

3
II (C14 + 7 C15) (2.20e)

C7 = −4

3
C8 −

2

3
C10 +

2

3
II (C14 + C15) (2.20f)

Inserting the expressions for the coefficients C1 to C7 in the closure hypothesis for Xijpq

tensor and rearranging leads to the following model of the rapid pressure-strain term:

Φ
∗R
ij = [4 {bS} (C9 + 2 C10) + 2 {b2S} (C11 + C12 + 4 C13)] bij (2.21)

+ [2 {bS} (C11 + C12 + 4 C13) + 4 {b2S} (C14 + 2 C15)]
Db2

.ij

+ [
2

5
− 8 II (C8 +

4

5
C9 +

3

5
C10) −

12

5
III (C11 + C12 + 4 C13) −

8

5
II2 (2 C14 − C15)] Sij

+ [−6 C5 + 2 II (C11 + C12 + 4 C13) − 6 III (C14 + C15)] [bik Sjk + bjk Sik −
2

3
bmnSmn δij]

+ [−6 (C8 + C9 + C10) − 2 II (C14 − C15)] [b
2

.ik Sjk + b2

.jk Sik −
2

3
b2

.mnSmn δij ]

+ [
4

3
+

14

3
C5 − 2 II (−1

3
C11 + C12 −

4

3
C13) + 2 III (C14 −

1

3
C15)] [bik W ajk + bjk W aik]

+ [
14

3
C8 + 2 C9 −

2

3
C10 +

2

3
II (C14 − 5 C15)] [b

2

.ik W ajk + b2

.jk W aik]

+ [2 (C12 − C11)] [bik W akp b2

.pj + b2

.ik W apk bjp]

The dependency of the βi coefficients coming from the direct expression of the functional
clearly appears here. This is also clear that if the two models are tensorially similar,
they are not equivalent. They do not exactly contain the same information. There exist
no truncature of the polynomial development of the βi coefficients in the II and III
invariants which corresponds to the form obtained with the closure on X ijpq. Such a
development gives a more important number of scalar unknown that the nine coefficients
that are to be retained with the closure on X ijpq.

The slow term is closed directly by an isotropic functional depending uniquely on the
anisotropy tensor of the Reynolds stresses:

φ∗S
ij = ε [βS

1 bij + βS
2

Db2

.ij ] (2.22)

or again

φ
∗S

ij = [βS
1 bij + βS

2

Db2

.ij] (2.23)

In the following paragraph we present the most common model expressions for the
rapid and for the slow term. The closures are presented separately even if the original
proposition treats the rapid term jointly with the slow term.

7



CHAPTER 2. HOMOGENEOUS EQUATIONS

2.1.2 Extension to a weakly compressible homogeneous flow

For compressible turbulence additional terms need to be introduced in all turbulence
closure equations to account for the non-zero velocity divergence Skk and density variation.
In this report we consider only a case of a weakly compressed homogeneous turbulence,
for which it suffices to introduce the Skk term only in the dissipation equation, by which
to account for the modification of the turbulence time and length scale, K/ε and K3/2/ε
respectively. A simple way to introduce the compressibility effects in the model of stress
redistribution is to replace Sij in the rapid term by S∗

ij = Sij − 1/3Skkδij . Other modifi-
cations have also been proposed, but no conclusive outcome has been reported. Even the
coefficient of the divergence term in the dissipation equation is still controversial. Because
in a weakly compressed homogeneous turbulence the scale modification seems most do-
minant, we confine our attention to the standard K − ε model, with an extra term in the
ε equation as proposed by Watkins (1977):

dK

dt
= P − ε (2.24a)

dε

dt
= Cε1

P ε

K
− Cε2

ε2

K
+ Cε3

ε Skk (2.24b)

The coefficients have standard values, usually associated with Launder and Spalding
(1974). In addition the value of Cε3 proposed by Watkins (1977) is listed, hence the nota-
tion LSW. The same form of the model was also considered by Reynolds (1980), except
that the values of the coefficients, denoted by R, differ substantially from the common
values, as shown in the table below:

Model Cε1
Cε2

Cε3
Cµ

LSW 1.44 1.92 1.00 0.09
R 1.0 1.83 −2/3 0.09

The Boussinesq closure takes the conventional form:

Rij =
2

3
K δij − 2 νt (Sij −

1

3
Skk δij)

with

νt = Cµ
K2

ε

with the standard value of Cµ = 0.09.

A more advanced three equations eddy viscosity closure, developed by Wu et al. (1985)
specifically for compressed flows will be considered later.

8



2.2. MODELS CONSIDERED FOR THE INCOMPRESSIBLE FLOW CASES

2.2 Models considered for the incompressible flow

cases

2.2.1 Models of the rapid term

Naot, Shavit and Wolfshtein model

The model proposed by Naot et al. (1973), called ”isotropization of production” (IP),
is the most simple of all models for the rapid terms. Its form follows directly from the
rapid distortion theory (RDT), hence this model can be regarded as as a RDT limit of a
general model of the rapid term. However, the first derivation of the IP term was based on
the assumption that the rapid pressure-scrambling process is proportional to the negative
deviatoric part of the stress production:

φ
R

ij = −C2 [Pij −
2

3
P δij ] (2.25)

or, expressed in terms of Sij and W aij again:

φ
R

ij = C2 [
2

3
Sij + (bik Skj + bjk Ski −

2

3
bmnSmn δij) + (bik W ajk + bjk W aik)] (2.26)

The coefficients of the functional for this model are

β1 = 0 β2 = 0
β3 = 2

3
C2 β4 = C2

β5 = 0 β6 = C2

β7 = 0 β8 = 0

(2.27)

where C2 = 0.6.

The slow term associated with the IP model of Naot et al. (1973) is also linear, in
the form as proposed by Rotta (to be discussed in more details in the next paragraph).
but the coefficient is slightly different, i.e. C1 = 3.6 instead of C1 = 3.0. The dissipation
rate tensor is also assumed to be isotropic and the coefficients of the dissipation transport
equation are close to the standard values, Cε1 = 1.45 and Cε2 = 1.92.

Launder, Reece and Rodi model

This model (LRR) Launder et al. (1975) is the most general form of the homogeneous
linear closure expressed uniquely in terms of the anisotropy of the Reynolds stress tensor.
It has been derived through the closure of the fourth order tensor Xijpq, satisfying all
basic constraint: symmetry, incompressibility and the normalisation on bij . This model
has one degree of freedom, resulting in one free coefficient C2. The expression satisfy the

9



CHAPTER 2. HOMOGENEOUS EQUATIONS

limit of the rapid term in the case of a homogeneous isotropic turbulence, for which the
exact form has been derived by Crow, see Leith (1968). The model can be written as

φ
R

ij =
2

5
Sij +

9 C2 + 6

11
(bik Skj + bjk Ski −

2

3
bmnSmn δij) +

10 − 7 C2

11
(bik W ajk + bjk W aik)

(2.28)
where the coefficients of the functional are

β1 = 0 β2 = 0
β3 = 2

5
β4 = 9 C2+6

11

β5 = 0 β6 = 10−7 C2

11

β7 = 0 β8 = 0

(2.29)

This rapid term is associated with the linear model of the slow term of Rotta (1951).
The dissipation is closed in the same way as in the previous model, with the coefficients
Cε1 = 1.45 and Cε2 = 1.90. For the coefficient C2, Launder et al. (1975) proposed C2 = 0.4.
This value was derived from the assumption that the asymptotic state of a homogeneous
constant shear flow satisfy the energy equilibrium condition, P = ε, as also discussed by
Speziale and Mhuiris (1988).

It is now known that the linear approximation of the rapid term does not satisfy the
realisability constraint when the turbulence reaches a two-component (2C) state Lumley,
1978. Therefore, we consider also some of the nonlinear closures proposed in the literature.

Speziale, Sarkar and Gatski model

The form of the Speziale et al. (1991) model, (SSG), has been derived by a direct
modelling of the complete pressure-strain term. The rapid part needs to be associated
with the slow term that will be presented in the next paragraph. The rapid part can be
written as

φ
R

ij = C∗
1 bmnSmn bij (2.30)

+
1

2
(C3 −

√

bmnbmn C∗
3 ) Sij +

1

2
C4 (bik Skj + bjk Ski −

2

3
bmnSmn δij)

+
1

2
C5 (bik W ajk + bjk W aik)

where the coefficients of the functional are

β1 = C∗
1 bmnSmn β2 = 0

β3 = 1

2
(C3 −

√
bmnbmn C∗

3) β4 = 1

2
C4

β5 = 0 β6 = 1

2
C5

β7 = 0 β8 = 0

(2.31)

and the free parameter, chosen by the authors, are:

C∗
1 = 1.8 C3 =

4

5
C∗

3 = 1.3 C4 = 1.25 C5 = 0.4 (2.32)

10



2.2. MODELS CONSIDERED FOR THE INCOMPRESSIBLE FLOW CASES

The dissipation rate tensor is assumed to be isotropic, and the coefficients of the dissipa-
tion equation are Cε1 = 1.44 and Cε2 = 1.83.

The Speziale et al. (1991) model is of a non-linear nature, and usually classified as a
quasi-linear model, because the non linearity arises from the coefficients of the functional
and not from its tensorial form. The calibration of the fourth coefficients, (the number
resulting from the fact that the normalisation constraint is not enforced here), is done by
imposing the stability limit of a homogeneous sheared flow in presence of an orthogonal
rotation. This model, just as LRR, does not satisfy entirely the realisability criterion.

Fu, Launder and Tselepidakis model

The derivation of the Fu et al. (1987) model (FLT) was based on the same principles
as the Launder et al. (1975) model, except that the closure of the Xijpq functional is here
extended to its complete form. Applying the Cayley-Hamilton theorem to the matrix
expansion closes the expression at the cubic level (in terms of bij so that the resulting
rapid term is cubic and can be written as:

φ
R

ij = 2

5
Sij

+ 3

5
[bikSjk + bjkSkj − 2

3
bmnSmn δij ]

+ 2

5
[b2

.ikSjk + b2
.jkSkj − 2 bim Smn bnj − 3 bmnSmn bij ]

+ (13

15
− 16 r II) [bikW ajk + bjkW aik]

+ 2

5
[b2

.ikW ajk + b2
.jkW aik]

+ 24 r [bikW akpb
2
.pj + b2

ikW apkbjp]

(2.33)

with coefficients:
β1 = −2 bmnSmn β2 = 0
β3 = 2

5
+ 4

5
II β4 = 3

5

β5 = 6

5
β6 = 13

15
− 16 r II

β7 = 2

5
β8 = 24 r

(2.34)

with r = 0.7.
This model is closed with an anisotropic expression of the dissipation tensor:

εij = 2 ε
[

(1 −
√

F ) bij +
2

3
δij

]

(2.35)

where F = 1 + 9II + 27III is Lumley’s ”flatness” parameter which is zero in isotropic
turbulence and takes the value 1 in the limit of two-component turbulence.

It is clear that the deviatoric part of this tensor can be grouped with the slow term
of the pressure-strain correlation tensor, which leads to the following contributions to the
slow term coefficients:

βS
1 = 2 (1 −

√
F ) βS

2 = 0 (2.36)

The slow term associated to this model, proposed by Fu et al. (1987) is described in
the next paragraph. The equation for the dissipation rate is in the standard form, with
Cε1 = 1.45 and Cε2 = 1.90.

This cubic rapid term has only one degree of freedom. The model of Xijpq satisfies all
basic constraints and the 2C limit, and is fully realisable.

11



CHAPTER 2. HOMOGENEOUS EQUATIONS

Shih and Lumley model

The model of Shih and Lumley (1985) (SL) is quadratic, but the coefficients are
expressed in terms of invariants of the anisotropy tensor, so that it has in fact a cubic
character. Therefore, this model is sometimes classified as a quasi-quadratic one. It can
be written as

φ
R

ij = 2

5
Sij

+ 6 α5 [bikSjk + bjkSkj − 2

3
bmnSmn δij ]

+ 2

5
[b2

.ikSjk + b2
.jkSkj − 2 bim Smn bnj − 3 bmnSmn bij ]

+ 2

3
(2 − 7 α5) [bikW ajk + bjkW aik]

+ 2

5
[b2

.ikW ajk + b2
.jkW aik]

(2.37)

The coefficients are summarized as:

β1 = −2 bmnSmn β2 = 0
β3 = 2

5
+ 4

5
II β4 = 6 α5

β5 = 6

5
β6 = 2

3
(2 − 7 α5)

β7 = 2

5
β8 = 0

(2.38)

with

α5 =
1

10
(1 + 0.8

√
F ) (2.39)

The dissipation tensor is assumed to be isotropic and the coefficients of the dissipation
rate equation are modified in order to take account for the turbulent Reynolds number
and stress inavriant.

Cε1 = 1.2 (2.40a)

Cε2 =
7

5
+ 0.49 exp

(

2.83
1√
Rt

)

[1 − 0.33 ln(1 − 55 II)] (2.40b)

where

Rt =
4

9

K2

νε
(2.41)

The slow term associated to this closure is that proposed by Lumley (1978), and will be
outlined in the next chapter.

This model satisfy the 2C realisability limit.

Ristorcelli, Lumley and Abid model

The model proposed by Ristorcelli et al. (1994), (RLA), has been derived from the
same general tensorial expansion principle, but to satisfy the realisability constraint on
Xijpq proposed by Lumley. In addition to the constraints used in most of the previously
outlined models, here also the joint realisability constraint Ristorcelli et al. (1994), has
been imposed to satisfy the material indifference principle in the limit of a two-component

12



2.2. MODELS CONSIDERED FOR THE INCOMPRESSIBLE FLOW CASES

turbulence. This yields an additional condition to derive the coefficients of the functional.
This last condition leads to the application of the Taylor-Proudman theorem in the case
of a rotating turbulence. The coefficients can be summarized as:

β1 = 2 (C6 bmnSmn + C
′′′

4 b2
.mnSmn) β2 = 2 C

′′′

4 bmnSmn

β3 = 2 (C3 − 2 II C
′′

3 + 3 III C
′′′

3 ) β4 = 2 C4

β5 = 2 C7 β6 = −2 C5

β7 = −2 C8 β8 = −2 C9

(2.42)

All C coefficients, denoted here as Ci, can be written in a general form:

Ci = Bi + F Ac
i (2.43)

where the Bi coefficients satisfy the basic constraint, and the Ac
i coefficients allow the Ci

to satisfy the asymptotic equilibrium of a shear flow. Introducing

IId =
(1 + 3 II)

(7 + 12 II)
(2.44)

yields the following expressions for Ci coefficients:

C3 = B3 −
2

5
F (10Ac

8 + 3 Ac
9 + Ac

10) II − 1

5
F (Ac

11 + Ac
12 + 14 Ac

13) III (2.45a)

C
′′

3 = B
′′

3 + F (Ac
9 + Ac

10) (2.45b)

C
′′′

3 = B
′′′

3 − 1

3
F (Ac

11 + Ac
12 + 2 Ac

13) (2.45c)

C4 = B4 + F [−3 Ac
5 + II (Ac

11 + Ac
12 + 4 Ac

13)] (2.45d)

C
′′′

4 = B
′′′

4 + F (Ac
11 + Ac

12 + 4 Ac
13) (2.45e)

C5 = B5 + F [−7

3
Ac

5 +
1

3
II (−Ac

11 + 3 Ac
12 + 4 Ac

13)] (2.45f)

C6 = B6 + F (2 Ac
9 + 4 Ac

10) (2.45g)

C7 = B7 − 3 F (Ac
8 + Ac

9 + Ac
10) (2.45h)

C8 = B8 −
1

3
F (7 Ac

8 + 3 Ac
9 − Ac

10) (2.45i)

C9 = B9 + F (Ac
11 − Ac

12) (2.45j)

The coefficients Ac
i are determined by three constraints. The first one is given by the

incompressibility condition, which imposes:

Ac
1 + 4 Ac

2 − 2 Ac
8 II + III (Ac

11 + Ac
12 + 2 Ac

13) = 0 (2.46a)

Ac
3 + Ac

4 + 5 Ac
5 − II (Ac

11 + Ac
12 + 4 Ac

13) = 0 (2.46b)

Ac
6 + Ac

7 + 5 Ac
8 + Ac

9 + Ac
10 = 0 (2.46c)

The second condition is imposed by the normalisation constraint on bij :

3 Ac
1 + 2 Ac

2 − 2 Ac
6 II + 4 Ac

13 III = 0 (2.47a)

3 Ac
4 + 4 Ac

5 − 2 II(Ac
11 + 2 Ac

13) = 0 (2.47b)

3 Ac
7 + 4 Ac

8 + 2 Ac
10 = 0 (2.47c)

13



CHAPTER 2. HOMOGENEOUS EQUATIONS

The last condition presumes the linear modelling of the slow term, associated to the rapid
term, and is imposed to satisfy the asymptotic state of a pure sheared flow. This condition
yields the following relations:

Ac
5 = −0.29 − 0.06 (Ac

10 − Ac
8) (2.48a)

Ac
11 = −3.6 + 5 Ac

10 − 2 Ac
13 − 12.7 Ac

8 − 3.8 Ac
9 (2.48b)

Ac
12 = −24.5 − 44.2 Ac

10 − 2 Ac
13 + 29 Ac

8 − 8 Ac
9 (2.48c)

where
Ac

8 = 0.8 Ac
9 = −1.0 Ac

10 = −0.01 Ac
13 = 0. (2.49)

The solution of this system determines entirely the Ac
i coefficients. The Bi coefficients are

given by

B3 =
2

27

1

IId
[41 + 42 II − 0.1 F (221 + 420 II)] (2.50a)

B
′′

3 = −14

3

1

IId
(1 + 3 II) + 0.6 F

1

(1 + 3 II)
(2.50b)

B
′′′

3 =
1

3

1

IId
(55 + 84 II) (2.50c)

B4 =
3

IId

− 0.9 F
1

(1 + 3 II)
(2.50d)

B
′′′

4 = − 9

IId

(2.50e)

B5 = − 1

30
(10 + 21 F )

1

(1 + 3 II)
(2.50f)

B6 = −18
II

IId

+ 3 F
1

(1 + 3 II)
(2.50g)

B7 = − 9

IId

− 1.8 F
1

(1 + 3 II)
(2.50h)

B8 =
1

5
(3 F − 5)

1

(1 + 3 II)
(2.50i)

B9 = − 3

(1 + 3 II)
(2.50j)

The equation for the dissipation rate is closed in the conventional manner, with Cε1 = 1.44
and Cε2 = 1.83.

2.2.2 Models of the slow term

Rotta model

The model proposed by Rotta (1951) is linear, and simply proportional to the aniso-
tropy tensor:

φ
S

ij = −C1 bij (2.51)
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2.2. MODELS CONSIDERED FOR THE INCOMPRESSIBLE FLOW CASES

with C1 = 3.0. This formulation corresponds to the first term in the expansion of the
isotropic functional depending only on the Reynolds stress anisotropy tensor, with the
following coefficients:

βS
1 = −C1 βS

2 = 0 (2.52)

In the computations reported here, this model is associated with the LRR model and
used with their rapid term model. Even though it does not give non-physical solutions, it
does not allow the turbulence to reach a 2C state.

Lumley model

The non-linearities can be introduced in the slow term through the coefficients defined
as functions of stress anisotropy itself, or by taking into account the quadratic term of the
functional. In fact the Cayley-Hamilton theorem closes this term at the quadratic level,
if expressed only in terms of stress anisotropy tensor, so that the quadratic expression is
the most complete tensorial expansion. The model proposed by Lumley (1978) adopts the
first possibility and therefore can be characterized as quasi-linear:

φ
S

ij = −β bij − γ Db2

.ij (2.53)

where

β = 2 +
F

9
exp

(

− 7.77√
Rt

) [

72√
Rt

+ 80.1 ln(1 + 62.4 (−II + 2.3 III))

]

(2.54a)

γ = 0 (2.54b)

and Rt = 4K2/9νε. Recalling that the Db2
.ij denotes the deviator b2

.ij + 2/3 II δij, this
above model expression corresponds to the functional with the following coefficients:

βS
1 = −β βS

2 = −γ (2.55)

This model was calibrated on the experiment of Comte-Bellot and Corrsin (1966) for
configurations where the structures of the turbulence are of the disk type, that is III < 0.

Sarkar and Speziale model

The Sarkar and Speziale (1990) model is defined by a quadratic functional with
constants coefficients. The coefficients have been adjusted with reference to the beha-
viour of the invariants of the anisotropy tensor in the case of return to isotropy of an
homogeneous turbulence, yielding:

φ
S

ij = −C1 bij + 3 (C1 − 2) Db2

.ij (2.56)

with C1 = 3.4. Although this models satisfies the realisability condition in the invariant
map, just as Rotta (1951) model it still does not allow the turbulence to reach a 2C state
e.g. in the immediate vicinity of walls. This model is associated to the Speziale et al.
(1991) model.
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CHAPTER 2. HOMOGENEOUS EQUATIONS

Fu, Launder et Tselepidakis model

The slow term of Fu et al. (1987), that includes the deviator of the dissipation rate
tensor, is in full quadratic form:

φ
S

ij = −2 C1

√
F [bij + γ Db2

.ij ] − 2 (1 −
√

F ) bij (2.57)

so that the coefficients can be written as:

βS
1 = −2 C1

√
F − 2 (1 −

√
F ) βS

2 = −2 γ C1

√
F (2.58)

with C1 = −60 II and γ = 1.2.
This model has been developed in order to comply with the 2C realisable limit.

Ristorcelli, Lumley and Abid model

The slow term, associated to the Ristorcelli et al. (1994) model, also includes the
deviator of the dissipation rate tensor, and is of the same type as the Lumley (1978)
model: the nonlinearity is included through the coefficient of the linear term, which is
expressed as a function of the stress anisotropy invariants:

φ
S

ij = βS
1 bij + βS

2

Db2

.ij (2.59)

with
βS

1 = −2 + 31 II
√

F βS
2 = 0 (2.60)

For simplicity, the non-linear term is not taken into account, and the value of βS
1 is tuned

to satisfy the isotropic limit where βS
1 = −2, as well as the asymptotic state in a pure

shear flow, where βS
1 = −3.4.

2.3 Models considered for the compressible cases

2.3.1 Wu, Ferziger and Chapman model

The closure developed by Wu et al. (1985) is derived from an inspection of the scale
behaviour in the spectral space for homogeneous flows. This model is defined by the
following set of model equations: :

dK

dt
= P − ε (2.61a)

dε

dt
= −ε/K + C1 P ε/K − (C4 − C1)

2

3
Skk ε (2.61b)

dτ

dt
=

5

11
+ C5 (

ετ

K
− 6

11
) + C6

1

3
Skkτ (2.61c)

where C1 = 2, C4 = 1.0, C5 = −1.1 and C6 = −0.5.
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Chapter 3

Homogeneous test cases

The performance of the homogeneous closures can be compared in various homoge-
neous turbulent flows of distinct characteristics. The focus of our study is the treatment
of the pressure-strain correlation and of the turbulent scale, the latter provided by the
standard dissipation rate transport equation. It should be noted that the decomposition
of the pressure-strain correlations into a slow and a rapid term originates from the cha-
racter of various terms in the Poisson equation for the fluctuating pressure, where some
terms are associated with the mean flow deformation (rapid term) and some only with
the fluctuating turbulence properties (slow term). However, the decomposed terms do not
correspond strictly to two distinct processes so that there is no real justification of asses-
sing they behaviour separately in a general flow (Speziale et al., 1992). The closure of the
slow and of the rapid terms can, however, be individually validated by considering selec-
ted flows where each of these parts represent the physical processes associated with the
pressure-strain term in a preponderant manner. It is therefore justified to compare models
for the rapid term whenever the turbulent is subjected to rapid distortions of the mean
flow, and the models for the slow term when the flow, without any mean deformation,
evolves toward an isotropic turbulent state.

The homogeneous test cases can, therefore, be classified into three types: flows that
reach the rapid distortion limit, flows that are allowed to relax towards the isotropic state,
and flows that are in an intermediate state.

The return to isotropy belongs to the test cases for which the turbulence is initially
non isotropic. Here it is necessary to know the initial values of every variable that appears
in the considered closure level. For example, for the second moment closure, we need to
know initial Reynolds stress components and the dissipation rate of the kinetic energy .
We can further distinguish the cases according to whether or not the initial variables were
obtained from the application of a rapid distortion to an initially isotropic turbulence.

Two of the flow types are particularly illustrative

flows subjected to irrotational deformations, such as flow in axisymmetric contrac-
tion, axisymmetric expansion, and the plane deformation: these three modes of
deformation all lead to very different turbulent structures. For all these three flows
direct numerical simulations are available (Lee and Reynolds, 1985), covering a wide
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CHAPTER 3. HOMOGENEOUS TEST CASES

range of conditions, including mild deformations that have also been investigated
experimentally, to the rapidly distorted ones. Analytical solutions for some of the
cases are also available (Lee, 1990). flows with a mean rotation, possibly imposed by
a rotating frame. The pure shear flows subjected to an orthogonal rotation, as well
as nonrotating ones have been calculated by large eddy simulations by Bardina et
al. (1983). Kassinos and Reynolds (1995) also reported on rapid approximation of
these flows. Pure rotation applied to an initially axisymmetric turbulence has also
been considered using the rapid distortion approach by (Cadiou and Piquet, 1994).

For comparison, it is useful to express the equations in non-dimensional form. The
characteristic parameter defining the intensity of the deformation of the mean flow is
denoted as S. This allows to compare each distortion reduced to the same nondimensional
time, defined by

t∗ = S t (3.1)

except for the pure rotation case, where the nondimensional time is given by

t∗ = Ω t (3.2)

The mean flow equations can now be written in the nondimensional form:

∂W ∗
ij

∂t∗
= S∗

ik (W ∗
jk − Ro θ∗jk) − (W ∗

ik − Ro θ∗ik) S∗
kj + (W ∗

ik Ro θ∗jk − Ro θ∗ik W ∗
jk)(3.3a)

∂Rij

∂t∗
= −Rik (V

∗
aj,k − 2 Ro θ∗jk) − Rjk (V

∗
ai,k − 2 Ro θ∗ik) (3.3b)

+ φR
ij(Rmn, S∗

mn, W
∗
amn) + φS

ij(Rmn, ε/S, Rt) − εij(Rmn, ε/S, Rt)

∂(ε/S)

∂t∗
= −Cε1 Rmn S∗

mn

(ε/S)

K
− Cε2

(ε/S)2

K
(3.3c)

However, in the discussion that follows we will omit the star (∗) for simplicity!

ANNE: ARE YOU SIMPLY OMITTING THE STAR, switching again to DIMEN-
SIONAL EQUATIONS?

The non-dimensional parameter that characterises the time scale of turbulent motion
is defined by:

τ =
ε

S K
(3.4)

This allows to characterise various distortions according to their intensities. Another
nondimensional parameter can be used also when irrotational strain is considered, that is
the total strain parameter, defined by:

c = exp
(
∫ t

0

S(t′)dt′
)

(3.5)

The expression and the value of c varies then according to the considered configuration.
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In the case of a homogeneous flow, the dissipation rate of kinetic turbulent energy can
be directly written in terms of the vorticity and the dynamic viscosity as:

ε = ν ω2 (3.6)

so that the turbulence Reynolds number defined as:

Rt =
K2

ν ε
(3.7)

can also be expressed as

Rt =
(

K ω

ε

)2

(3.8)

The description of the test cases and their characteristic parameters are given in the tables
below.
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3.1 Decay of isotropic turbulence

Homogeneous isotropic turbulence is the simplest state that a turbulent flow can have.
The flows investigated by Lee and Reynolds (1985) corresponds to

ν0 ε0 K0 b11 b22 b33 b12 b13 b23

HIA 0.004299 2.264 0.4735 0 0 0 0 0 0
HIB 0.001706 0.898 0.4735 0 0 0 0 0 0
HIC 0.004299 2.350 0.4830 0 0 0 0 0 0
HID 0.004299 2.344 0.4775 0 0 0 0 0 0
HIE 0.001377 0.570 0.4975 0 0 0 0 0 0

In this case the equations are very simple and only the dissipation of the turbulence
kinetic energy remains to be defined in order to close the system. The direct numerical
simulation give an exponential law of decay, i.e. a constant slope in log-log k− t diagram.
This has also been observed by experiments with the grid turbulence, Comte-Bellot and
Corrsin (1966).
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3.2. IRROTATIONAL MEAN DEFORMATIONS

3.2 Irrotational mean deformations

The intensity of the deformation of the mean flow defined by Lee and Reynolds (1985)
is:

Sd =

√

1

2
SmnSmn (3.9)

and the characteristic parameter of the turbulent time is given by:

S∗ = 2
K

ε
Sd (3.10)

or again

τ = 2
Sd

S

1

S∗
(3.11)

The simulations of Lee and Reynolds (1985) are performed for various values of S∗, cove-
ring the plane distortions investigated also experimentally by Tucker and Reynolds (1968)
or Mills and Corrsin (1959), as well as rapidly distorted axisymmetric and plane flow cases.

3.2.1 Axisymmetric deformation

The mean deformation rate Sij is here identical to the imposed mean velocity gradient,
and can be defined by

Sij =







S 0 0
0 −1

2
S 0

0 0 −1

2
S





 (3.12)

where the characteristic parameter S = S11 is related to the intensity of the deformation
of the mean flow by

|S| =
2√
3

Sd (3.13)

S is positive in the case of a contraction and negative in the case of an expansion. The
nondimensional deformation time scale is given by

τ =
√

3
1

S∗
(3.14)

Even if these two cases differ only by the sign of S, they lead to two very different
behaviour of the turbulence. The evolution of the anisotropy of the Reynolds stress tensor
depends, however, in both cases on the total deformation parameter c, defined by :

c = e|S| t (3.15)

and not on the mean deformation.
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CHAPTER 3. HOMOGENEOUS TEST CASES

Axisymmetric contraction

The eddy structures of various scales, initially randomly oriented in the isotropic
turbulent state, tend to become aligned and stretched in the positive direction of the de-
formation, and to decrease in the lateral directions. Therefore, at high values of the total
deformation rate, the turbulence reaches an organised pattern with cigar-like structures of
circular cross-sections. The components of the pressure-strain tensor decrease under the
influence of the axisymmetric contraction. The behaviour of the turbulent flow, described
by Lee (1990) in the rapid distortion case, shows clearly that the orientation of the struc-
tures depend solely on the imposed total deformation rate. The larger the deformation
rate, the more aligned become the structures with the positive deformation axis. The ra-
pid distortion assumption also allows to determine an asymtotic state of the 3D-2C type
around this symmetry axis. This state is reached at c = 3.0 (Lee, 1990).

Among several cases considered by Lee and Reynolds (1985), we have selected two test
cases, defined by the following parameters:

Sd S∗ ε0 K0 ω0 b11 b22 b33 b12 b13 b23

AXL 8.66 9.653 0.2117 0.11795 7.0167 0 0 0 0 0 0
AXM 86.6 96.53 0.2117 0.11795 7.0167 0 0 0 0 0 0

with ν0 = 0.004299, or equivalently:

|S| τ0 ε0 K0 Rt0 b11 b22 b33 b12 b13 b23

AXL 10.00 0.179 0.2117 0.11795 15.28 0 0 0 0 0 0
AXM 100.0 0.0179 0.2117 0.11795 15.28 0 0 0 0 0 0

The first test case, AXL, has an evolution of the kinetic energy close the the experiment
of Mills and Corrsin (1959). The second one, AXM, with a strong deformation, corresponds
to the rapid distortion approximation.

Figures (3.1) to (3.4) show the evolution of the turbulent kinetic energy and the Rey-
nolds stress anisotropy tensor for AXL given by the various models. In order to facilitate
the reading of these results, the graphs are grouped in two groups, the first one corres-
ponds to the tensorially linear formulations (IP, LRR, SSG) and the second the non linear
ones (FLT,SL,RLA). It is clear here that in the AXL flow, the SSG model does not bring
any amelioration over the LRR model. The FLT model has also a similar behaviour, whe-
reas the RLA formulation gives clearly inferior performance. The SL model gives here
undoubtedly better results. The next figures show the evolution of the anisotropy in the
invariant map for each model. All models reproduce the evolution of the models along
the axisymmetric contraction limit and clearly show the intensity of the anisotropy that
is reached at the end of the contraction.

The same sort of conclusion can be reached for the AXM case. Figures(3.11) to (3.14)
show again the evolution of the Reynolds stress anisotropies and the turbulent kinetic
energy. The models are compared to the analytical solution for the rapid distortion.

A general conclusion emerging from this test case is that the only model that is able to
correctly predict the anisotropy levels is the SL model. All other closures underestimate
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3.2. IRROTATIONAL MEAN DEFORMATIONS

the anisotropy intensity imposed by the axisymmetric contraction. It can be pointed out
that the RLA model, even though it is the most recent one, performs less well than than
the LRR or SSG models.

23



CHAPTER 3. HOMOGENEOUS TEST CASES

––

0.0 0.5 1.0 1.5 2.0
t*

0.00

0.50

1.00

1.50

2.00

K
/K

(0
)

AXL
IP
LRR
SSG

Figure 3.1: Turbulent kinetic energy evolution for the axisym-
metric contraction AXL.
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Figure 3.3: Turbulent kinetic energy evolution for the axisym-
metric contraction AXL.
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Figure 3.5: Axisymmetric contraction AXL. IP model.
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Figure 3.6: Axisymmetric contraction AXL. LRR model.
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Figure 3.7: Axisymmetric contraction AXL. SSG model.
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Figure 3.8: Axisymmetric contraction AXL. FLT model.
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Figure 3.9: Axisymmetric contraction AXL. SL model.
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Figure 3.10: Axisymmetric contraction AXL. RLA model.
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Figure 3.11: Turbulent kinetic energy evolution for the axi-
symmetric contraction AXM.
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Figure 3.13: Turbulent kinetic energy evolution for the axi-
symmetric contraction AXM.
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Figure 3.14: Anisotropy tensor evolution for the axisymmetric
contraction AXM. 2
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Figure 3.15: Axisymmetric contraction AXM. IP model.
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Figure 3.16: Axisymmetric contraction AXM. LRR model.
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Figure 3.17: Axisymmetric contraction AXM. SSG model.
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Figure 3.18: Axisymmetric contraction AXM. FLT model.
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Figure 3.19: Axisymmetric contraction AXM. SL model.
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Figure 3.20: Axisymmetric contraction AXM. RLA model.
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Axisymmetric expansion

When the turbulence is subjected to an axisymmetric expansion, the negative defor-
mation rate deforms the vortical structures into relatively flat disks, orthogonal to the
symmetry axis. In the same time the positive (weaker) components of the deformation
rate tensor, stretch them in the radial directions. This reduced axial vorticity tends to
decrease the lateral velocity fluctuations in the plan orthogonal to the symmetry axis.
This decay is, however, counterbalanced by the general increase of the anisotropy level.
The components of the pressure-strain tensor are augmented during the fluid motion. The
asymptotic limit in the rapid distortion approximation is of the 3D-3C type, which is a
priori less difficult to capture by the models than the rapid axisymmetric contraction
limit, because it does not take place on the 2C realisability boundary.

The axisymmetric expansion cases, considered here, are taken from Lee and Reynolds
(1985), and are defined by the following parameters:

Sd S∗ ε0 K0 ω0 b11 b22 b33 b12 b13 b23

EXO 0.6213 0.7071 0.1931 0.1099 6.702 0 0 0 0 0 0
EXQ 62.13 70.71 0.1931 0.1099 6.702 0 0 0 0 0 0

with again ν0 = 0.004299, or alternatively by:

|S| τ0 ε0 K0 Rt0 b11 b22 b33 b12 b13 b23

EXO 0.7174 2.45 0.1931 0.1099 14.54 0 0 0 0 0 0
EXQ 71.74 0.0245 0.1931 0.1099 14.54 0 0 0 0 0 0

The EXQ simulation corresponds to the rapid distortion approximation (Lee, 1990).
For the two flows in axisymmetric contraction, the models considered gave roughly

the same and consistent hierarchy of performance.
For the two flows in axisymmetric expansion the performance of the models considered

is different and not conclusive. In the EXO case, where the slow term has a significant
role, the SL model behaves again relatively well as compared with others, but the best
performance is achieved by the SSG model. In the EXQ case, where the rapid term is
the major process, none of the closures is able to correctly predict the level of the final
anisotropy.

It is difficult to qualify the various closures in the EXQ case, since the evolutions of
the anisotropy and the kinetic energy do not follow the same tendencies in all models.
Generally, we can conclude that the simplest formulations, LRR and SSG respond better
to this type of deformation than more complex models.
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Figure 3.21: Turbulent kinetic energy evolution for the axi-
symmetric expansion EXO.
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Figure 3.22: Anisotropy tensor evolution for the axisymmetric
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Figure 3.23: Turbulent kinetic energy evolution for the axi-
symmetric expansion EXO.
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Figure 3.24: Anisotropy tensor evolution for the axisymmetric
expansion EXO. 2
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Figure 3.25: Axisymmetric expansion EXO. IP model.
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Figure 3.26: Axisymmetric expansion EXO. LRR model.
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Figure 3.27: Axisymmetric expansion EXO. SSG model.
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Figure 3.28: Axisymmetric expansion EXO. FLT model.
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Figure 3.29: Axisymmetric expansion EXO. SL model.
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Figure 3.30: Axisymmetric expansion EXO. RLA model.

39



CHAPTER 3. HOMOGENEOUS TEST CASES

0.0 0.5 1.0 1.5 2.0
t*

0.00

0.50

1.00

1.50

2.00

K
/K

(0
)

EXQ - RDT
IP
LRR
SSG

Figure 3.31: Turbulent kinetic energy evolution for the axi-
symmetric expansion EXQ.

0.0 0.5 1.0 1.5 2.0
t*

-0.40

-0.30

-0.20

-0.10

0.00

0.10

0.20

0.30

0.40

bi
j

EXQ - RDT
IP
LRR
SSG

b11

b22, b33

Figure 3.32: Anisotropy tensor evolution for the axisymmetric
expansion EXQ. 2
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Figure 3.33: Turbulent kinetic energy evolution for the axi-
symmetric expansion EXQ.
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Figure 3.34: Anisotropy tensor evolution for the axisymmetric
expansion EXQ. 2
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Figure 3.35: Axisymmetric expansion EXQ. IP model.
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Figure 3.36: Axisymmetric expansion EXQ. LRR model.
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Figure 3.37: Axisymmetric expansion EXQ. SSG model.
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Figure 3.38: Axisymmetric expansion EXQ. FLT model.
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Figure 3.39: Axisymmetric expansion EXQ. SL model.
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Figure 3.40: Axisymmetric expansion EXQ. RLA model.
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3.2.2 Plane deformation.

The mean rate of strain in this type of flow is defined by the following matrix:

Sij =







0 0 0
0 −S 0
0 0 S






(3.16)

with S > 0. In this case it is obvious that |S| = Sd and τ = 2/S∗.
The evolution of the kinetic energy and the Reynolds stress anisotropy are very sensi-

tive to the deformation rate, especially in the direction of the contraction axis. The rapid
distortion limit is similar to the case of an axisymmetric contraction.

Only two simulations has been considered, corresponding to the two extreme cases.
The first one has the same evolution of the turbulence kinetic energy as in the experiment
of Tucker and Reynolds (1968), though the initial parameters (particularly the dissipation
rate and the imposed strain rate) are different. The second case corresponds to the rapid
distortion approximation. The two flows considered are defined by the following set of
parameters:

Sd S∗ ε0 K0 ω0 b11 b22 b33 b12 b13 b23

PXA 0.65 1.0 0.08469 0.0652 4.438 0 0 0 0 0 0
PXF 100. 154.0 0.08469 0.0652 4.438 0 0 0 0 0 0

or, with again ν0 = 0.004299:

|S| τ0 ε0 K0 Rt0 b11 b22 b33 b12 b13 b23

PXA 0.65 2.0 0.08469 0.0652 11.67 0 0 0 0 0 0
PXF 100. 0.0129 0.08469 0.0652 11.67 0 0 0 0 0 0

It should be pointed out how the PXA case is close to the Tucker and Reynolds (1968)
experiment, which has been widely referred to in the validation of homogeneous models.
In contrast to the direct numerical simulation, the initial state is not fully isotropic. For
the same initial dynamic viscosity, the flow is defined with the following parameters:

|S| τ0 ε0 K0 Rt0 b11 b22 b33 b12 b13 b23

TR68 4.45 2.91 0.6300 0.0486 0.872 0.0859 −0.0239 −0.0636 0 0 0

Despite obvious similarities between the two cases (see figures 3.41 and 3.42), there are
differences. The major source of difference comes from the fact that the initial state of
turbulence in the experimental case is not fully isotropic. It is, therefore, interesting to
inspect the performance of the models in both cases. The turbulent kinetic energy and the
anisotropy tensor are given first for the experimental flow TR68 in figures 3.43 to 3.46).
The behaviour of the models however follows roughly the same hierarchy of quality as in
PXA flow, though some differences appear.

As in the preceding case, the presence of the slow and rapid term allows the different
models to reproduce the first DNS configuration, PXA, as well as TR68, closer to the
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direct numerical simulation results, than the PXF case, which is in the rapid distortion
limit.

All models give a good behaviour of the turbulent kinetic energy in both the PXA and
TR68 cases. The predictions of the anisotropies in the PXA flow by the LRR and SSG
models are relatively close and it is difficult to decide which is better, since SSG predict
b22 better than LRR, but LRR captures b11 better than SSG. Both closures, however,
predict very similar b33 (direction of the stretching), though not in good agreement with
DNS. Because b11 corresponds to the non-constrained direction and b22 is in the direction
of the compression, SSG be might be considered as marginally better. However, in the
experimental case TR68, both the LRR and SSG give excellent reproduction of b33, but
LRR reproduces better both b11 and b22 than SSG.

The predictions of the first flow case with the non-linear models are easier to rank.
The SL model captures a good level of all components of the Reynolds stress anisotropy
in the PXA flow, but performs worst of all in the TR68 flow, where FLT is superior. It
should be noted that in these flow cases the slow term is important. The FLT and RLA
models give solutions which are relatively close to each other, but that their performance
is not clearly superior to SSG or LRR. The differences between predictions with various
models can also be observed on the invariant maps.

The above discussion does not lead to a conclusive model ranking because no model
performs superior in both flows. However, if a choice is to be made, the performance in
PXA flow should serve as a more reliable basis simply because the DNS results should
be regarded as more reliable than the TR68 experiment. Some inaccuracies, particular
in measuring the stress anisotropy, in those days (thirty years ago) are possible, but also
there is some uncertainty in defining the initial dissipation rate ε0 which has a strong
influence on the flow predictions.

The second case seems to be even more challenging for all models. It should be noted
that the sign of b11 changes, but this feature is not captured by any of the models. They
all give the same sort of predictions of the normal Reynolds stress in the non-constrained
direction. On the whole the non-linear models, do not show any superiority over the three
linear models.
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Figure 3.41: Comparison of the turbulent kinetic energy evo-
lution for the plane deformations PXA and TR68.
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Figure 3.42: Comparison of the anisotropy tensor evolution
for the plane deformations PXA and TR68.
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Figure 3.43: Turbulent kinetic energy evolution for the plane
deformation TR68.
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Figure 3.44: Anisotropy tensor evolution for the plane defor-
mation TR68.
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Figure 3.45: Turbulent kinetic energy evolution for the plane
deformation TR68.

0.0 0.5 1.0 1.5 2.0
t*

-0.40

-0.30

-0.20

-0.10

0.00

0.10

0.20

0.30

0.40

bi
j

TR68
FLT
SL
RLA

b22

b11

b33

Figure 3.46: Anisotropy tensor evolution for the plane defor-
mation TR68.
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Figure 3.47: Turbulent kinetic energy evolution for the plane
deformation PXA.

0.0 0.5 1.0 1.5 2.0
t*

-0.40

-0.30

-0.20

-0.10

0.00

0.10

0.20

0.30

0.40

bi
j

PXA
IP
LRR
SSG

b22

b11

b33

Figure 3.48: Anisotropy tensor evolution for the plane defor-
mation PXA.
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Figure 3.49: Turbulent kinetic energy evolution for the plane
deformation PXA.
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Figure 3.50: Anisotropy tensor evolution for the plane defor-
mation PXA.
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Figure 3.51: Plane deformation PXA. IP model.
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Figure 3.52: Plane deformation PXA. LRR model.
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Figure 3.53: Plane deformation PXA. SSG model.
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Figure 3.54: Plane deformation PXA. FLT model.
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Figure 3.55: Plane deformation PXA. SL model.
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Figure 3.56: Plane deformation PXA. RLA model.
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Figure 3.57: Turbulent kinetic energy evolution for the plane
deformation PXF.
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Figure 3.58: Anisotropy tensor evolution for the plane defor-
mation PXF.
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Figure 3.59: Turbulent kinetic energy evolution for the plane
deformation PXF.
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Figure 3.60: Anisotropy tensor evolution for the plane defor-
mation PXF.
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Figure 3.61: Plane deformation PXF. IP model.
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Figure 3.62: Plane deformation PXF. LRR model.
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Figure 3.63: Plane deformation PXF. SSG model.
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Figure 3.64: Plane deformation PXF. FLT model.
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Figure 3.65: Plane deformation PXF. SL model.
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Figure 3.66: Plane deformation PXF. RLA model.
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3.2.3 Successive plane deformations

The next test case is a turbulent flow subjected to two successive plane deformations.
After the first deformation, the second one is imposed by rotating the principal axes by
an angle of 45 degrees. The flow is defined by the mean rate of strain with the following
matrix patterns: the first plane deformation, PS1, has a matrix:

Sij =







S 0 0
0 −S 0
0 0 0





 (3.17a)

applied to an initially isotropic turbulence, until c = 2.72. The second one, noted PS2 is
defined by:

Sij =







0 1

2
S 0

1

2
S 0 0
0 0 0






(3.17b)

Calculation of this type of flows in the rapid distortion approximation was reported by
Kassinos and Reynolds (1995). Experiments have also been done for this configurations
by Gence and Mathieu (1980). Only the results of the rapid distortion approximation are
given here for reference.

For the first deformation PS1, the results are obtained numerically using the rapid
distortion approximation, whereas for the second one the results have been obtained in
a digitalized form from the Kassinos and Reynolds (1995) report; that explain the less
smoothed form of the lines. The evolutions in the invariant map are also presented. They
are, however, identical to the PXF case. The kinetic energy was not available in the second
case.

It is interesting to note that none of the models correctly predicts the second defor-
mation.
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Figure 3.67: Kinetic energy evolution for two successive plane
deformation PS12R.
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Figure 3.68: Anisotropy evolution for two successive plane
deformation PS12R.
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Figure 3.69: Kinetic energy evolution for two successive plane
deformation PS12R.
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Figure 3.70: Anisotropy evolution for two successive plane
deformation PS12R.
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Figure 3.71: Successive plane deformations PS12R. IP model.
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Figure 3.72: Successive plane deformations PS12R. LRR mo-
del.
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Figure 3.73: Successive plane deformations PS12R. SSG mo-
del.
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Figure 3.74: Successive plane deformations PS12R. FLT mo-
del.
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Figure 3.75: Successive plane deformations PS12R. SL model.
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Figure 3.76: Successive plane deformations PS12R. RLA mo-
del.
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3.3 Flows with mean rotation effect

3.3.1 Homogeneous shear

The simple homogeneous shear is defined by the velocity gradient matrix

V i,j =







0 S 0
0 0 0
0 0 0





 (3.18)

In the rapid distortion limit the flow should reach a 2D-1C state.

3.3.2 Homogeneous shear in a rotating frame

The case of a homogeneous rotating shear flow is interesting because it constitutes an
arbitrary combination of a plane deformation and a rotation. It represents, therefore, in
a simplified form a relatively general class of turbulent homogeneous flows. The relative
mean velocity gradient is defined by

V i,j =







0 S 0
0 0 0
0 0 0






(3.19)

with
Ω = [0, 0, Ω] (3.20)

being the rotation rate of the rotating frame, relatively to an inertial reference frame.
Starting from an initially isotropic state, a turbulent flow subjected to a pure shear

reaches rapidly an asymptotic state, in a monotonic manner (Speziale et al., 1992). The
correct prediction of this asymptotic state is not particularly challenging test of the com-
plete model because most of the closures are calibrated by enforcing them to restore the
asymptotic values of the Reynolds stress anisotropy tensor. The non dimensional form of
the equations shows that the evolution of the components of the stress anisotropy depends
only on the ratio ε0/S K0.

The performances of the models are compared with the large eddy simulations of
Bardina et al. (1983), calculated for an initially isotropic turbulence, subjected to a shear
of the following strength:

ε0

S K0

= 0.296 (3.21)

The evolution of the turbulent kinetic energy are compared to the result of those simu-
lations, even though the latter are not defiltered. According to Speziale et al. (1990) the
differences between the filtered and defiltered results can be considered as negligible, at
least for the turbulent kinetic energy.

The addition of the Coriolis inertial forces bring a stabilising or destabilising effect
on the flow (Speziale and Mhuiris, 1988). This effect appears explicitly in the momentum
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equations, as well as an additional mechanism of production in the transport equation
for the Reynolds stress. The large eddy simulations (Bardina et al., 1983), as well as
the linear theory (Bertoglio, 1982), show that the kinetic energy and its dissipation rate
grow exponentially when the ratio of the rotation of the frame to the shear intensity
Ro is located between 0 et 0.5. The most energetic case corresponds to Ro = 0.25. All
intermediate state 0 < Ro < 0.5 correspond to a destabilising action of the rotation on
the shear flow. The turbulent models are generally not calibrated for such mechanisms,
except the SSG model (Speziale et al., 1991). It is, therefore, interesting to see how are the
models able to predict the stability interval, without introducing any explicit corrections
to take into account the rotation of the frame.
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Figure 3.77: Kinetic energy evolution in the case of rotating
shear. IP model.

0.0 2.0 4.0 6.0 8.0 10.0
t*

0.00

1.00

2.00

3.00

4.00

5.00

K
/K

(0
)

BFR   0.00
BFR   0.25
BFR   0.50
Model 0.00
Model 0.25
Model 0.50

Figure 3.78: Kinetic energy evolution in the case of rotating
shear. LRR model.

S

Ω

69



CHAPTER 3. HOMOGENEOUS TEST CASES

0.0 2.0 4.0 6.0 8.0 10.0
t*

0.00

1.00

2.00

3.00

4.00

5.00

K
/K

(0
)

BFR   0.00
BFR   0.25
BFR   0.50
Model 0.00
Model 0.25
Model 0.50

Figure 3.79: Kinetic energy evolution in the case of rotating
shear. SSG model.
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Figure 3.80: Kinetic energy evolution in the case of rotating
shear. FLT model.
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Figure 3.81: Kinetic energy evolution in the case of rotating
shear. SL model at high Reynolds number.
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Figure 3.82: Kinetic energy evolution in the case of rotating
shear. RLA model.
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The asymptotic solutions in the pure shear case are compared with the results evalua-
ted by averaging the experimental data of Tavoularis and Corrsin (1981), Tavoularis and
Karnik (1989), and the results of Rogers et al. (1986) direct numerical simulations. The
asymptotic values of the characteristic turbulence quantities are:

b∞11 = 0.203 b∞22 = −0.143 b∞33 = −0.06 b∞12 = −0.156
(

ε

S K

)

∞
= 0.180

(

P

ε

)

∞
= 1.73

Each model reaches an asymptotic state. The asymptotic values of the characteristic
parameters obtained by different models are given in the next table:

Model b∞11 b∞22 b∞33 b∞12

(

ε

S K

)

∞

(

P

ε

)

∞

IP 0.192 −0.096 −0.096 −0.185 0.177 2.09
LRR 0.155 −0.121 −0.034 −0.187 0.183 2.04
SSG 0.218 −0.145 −0.073 −0.163 0.180 1.82
FLT 0.210 −0.196 −0.647 −0.145 0.141 2.04
SL 0.192 −0.186 −0.054 −0.090 0.055 3.24

RLA 0.207 −0.143 −0.061 −0.248 0.263 1.88

The calculations show that the SSG model captures relatively well the tendencies of the
Bardina et al. (1983) simulations. The linear models IP and LRR restore a too large level of
turbulent kinetic energy in the case without rotation. They also predict a relaminarization
in the stability limit at Ro = 0.5. Those tendencies can be also observed with the non
linear model FLT which perform similar to LRR, as well as with RLA. All the models
give a too low level of turbulent kinetic energy in the most energetic case at Ro = 0.25.
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3.4 Return to isotropy

Sij = 0 (3.22)

ANNE: DO YOU WANT TO PUT ONE OR TWO SENTENCES HERE.

3.4.1 Relaxation form irrotational strains

ε0 K0 b11 b22 b33 b12 b13 b23

U56 0.0339 0.0016 −0.272 0.136 0.136 0 0 0
LGC85 P 0.0423 0.02241 −0.140 −0.041 0.181 0 0 0
LGC85 M 0.0101 0.00403 −0.198 0.061 0.137 0 0 0
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3.5 Homogeneous flows with dilatation effects

The study of homogeneous compressed flows is of interest for the analysis of the
response of the turbulence to the mean flow perturbations as encountered in a piston-
engine configuration. The homogeneous approximation allows to simplify the configuration
by neglecting the presence of solid boundaries. It also allows to uncouple the mean flow
evolution from the state of the turbulence field. These are idealised cases, which enable
to focus on the sole effect of compression on turbulence.

Two configurations are particularly of interest here. The first one is a uniform isotropic
compression, which can be seen as a simulation of the squish effect of an engine with a
cup-in-piston design. The second one is a one-dimensional compression which represents
the compression stroke in an internal combustion engine with a flat piston.

In this study the fluid is supposed to satisfy the ideal gas law and the compression is
adiabatic. The Mach number is furthermore supposed to be sufficiently small to neglect
the role of sound waves. The fluid density is, therefore, independent in space coordinates.
The fluctuation of temperature can also be neglected so that the fluid properties are only
functions of time.

Direct numerical simulations are available for both cases. The computations by Wu et
al. (1985) are interesting also because they covers the same range of irrotational deforma-
tion, as in the cases studied before. For the description of the mean flow, therefore, the
same notations as in Wu et al. (1985) are used.

The compression speed is assumed to be constant and is denoted by Vp. The homo-
geneous turbulent box has initially a size of L0 whereas the instantaneous box length is
xp.
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3.5.1 Isotropic compression

For an isotropic compression, the mean velocity gradient can be written as

Sij =







S 0 0
0 S 0
0 0 S





 (3.23)

where S < 0. With the notations introduced above, the strain rate can be expressed as:

S =
Vp

xp
or again S =

Vp

L0 + Vp t
(3.24)

It can be noted that the total strain rate c, which can be expressed as

c =
L0 + Vp t

L0

(3.25)

can be used here as a basis for comparison of results obtained by different models. From
the assumed thermodynamic conditions we can express the time evolution of the fluid
properties, e.g.

ρ(t)

ρ(0)
=

(

L0

xp

)3

(3.26a)

ν(t)

ν(0)
=

(

L0

xp

)−2.1

(3.26b)

The test cases considered are defined by the following parameters (Wu et al. (1985)):

( L0 Vp ε0 K0 ν0 b11 b22 b33 b12 b13 b23

SQF 0.3 −5.6 0.0324 0.0407 0.01 0 0 0 0 0 0
SQG 1.0 −1.0 0.0324 0.0407 0.01 0 0 0 0 0 0
SQH 0.3 −0.06 0.0324 0.0407 0.01 0 0 0 0 0 0
SQI 0.3 −0.012 0.0324 0.0407 0.01 0 0 0 0 0 0

or, in terms of non-dimensional parameters,

|S0| τ0 ε0 K0 Rt0 b11 b22 b33 b12 b13 b23

SQF 18.66 0.0425 0.0324 0.0407 5.133 0 0 0 0 0 0
SQG 1.0 0.7944 0.0324 0.0407 5.133 0 0 0 0 0 0
SQH 2.0 3.9721 0.0324 0.0407 5.133 0 0 0 0 0 0
SQI 0.04 19.860 0.0324 0.0407 5.133 0 0 0 0 0 0

The first case represents the fastest compression and is close to the rapid distortion ap-
proximation. On the other hand, the last case, with the extremely slow compression exhi-
bits negligible effect of the strain, so that the flow evolves like in an isotropic turbulence
decay.
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Figures 3.83 to 3.90 show a clear superiority of the Wu et al. (1985) model in com-
parison with other two, LSW (Launder and Spalding 1974, with Watkins modifications
1977) and R model (Reynolds, 1980). However, this performance is expected since the the
Wu et al. (1985) model was tuned specifically for this flow. It is interesting to note that
all three models considered reproduce very well the evolution of the turbulence kinetic
energy in the fast compression case SQF, despite poor reproduction of ε by LSW and R
models. In the case of a very weak compression, SQI, the model LSW gives non-physical
increase of the kinetic energy in the later stage.
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Figure 3.83: Kinetic energy evolution for the SQF isotropic
compression.
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Figure 3.84: Dissipation of the kinetic energy evolution for
the SQF isotropic compression.
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Figure 3.85: Kinetic energy evolution for the SQG isotropic
compression.
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Figure 3.86: Dissipation of the kinetic energy evolution for
the SQG isotropic compression.
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Figure 3.87: Kinetic energy evolution for the SQH isotropic
compression.
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Figure 3.88: Dissipation of the kinetic energy evolution for
the SQH isotropic compression.
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Figure 3.89: Kinetic energy evolution for the SQI isotropic
compression.

0.00 4.00 8.00 12.00
t

0.00

0.01

0.02

0.03

0.04

 ε

SQI
LSW
R
WFC

Figure 3.90: Dissipation of the kinetic energy evolution for
the SQI isotropic compression.
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3.5.2 One-dimensional compression

In the case of an one-dimensional compression, the mean strain rate is:

Sij =







S 0 0
0 0 0
0 0 0





 (3.27)

For comparison with the incompressible flows subjected to irrotational strain, it is conve-
nient to decompose Sij into isotropic and anisotropic dilatation:

Sij =







2

3
S 0 0
0 −1

3
S 0

0 0 −1

3
S





+







1

3
S 0 0
0 1

3
S 0

0 0 1

3
S





 (3.28)

anisotropic strain isotropic dilatation

An one-dimensional compression, for which S < 0, corresponds to an incompressible
axisymmetric expansion while a one-dimensional expansion, for which S > 0, corresponds
to an incompressible axisymmetric contraction.

With Wu et al. (1985) notations, it can be written

S =
Vp

xp
or again S =

Vp

L0 + Vp t
(3.29)

and the total strain rate is again

c =
L0 + Vp t

L0

(3.30)

The evolution of the density and molecular viscosity are given by

ρ(t)

ρ(0)
=

(

L0

xp

)

(3.31a)

µ(t)

µ(0)
=

(

L0

xp

)−0.7

(3.31b)

The flow cases considered are defined by the following parameters:

L0 Vp ε0 K0 ν0 b11 b22 b33 b12 b13 b23

ODB 0.3 −24.3 1.5369 0.4462 0.015 0 0 0 0 0 0
ODC 0.3 −1.29 1.5369 0.4462 0.015 0 0 0 0 0 0
ODD 0.3 −0.26 1.5369 0.4462 0.015 0 0 0 0 0 0
ODE 0.3 −0.052 1.5369 0.4462 0.015 0 0 0 0 0 0

or, again using the previously defined non-dimensional parameters:

S0 τ0 ε0 K0 Rt0 b11 b22 b33 b12 b13 b23

ODB −81.00 0.0425 1.5369 0.4462 8.637 0 0 0 0 0 0
ODC −4.3 0.8009 1.5369 0.4462 8.637 0 0 0 0 0 0
ODD −0.866 3.974 1.5369 0.4462 8.637 0 0 0 0 0 0
ODE −0.173 0.050 1.5369 0.4462 8.637 0 0 0 0 0 0
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Again the first case. ODB, corresponds to the rapid distortion limit, whereas the last
case corresponds to a very weak compression.

These test case were computed using the LSW and R models. Figures 3.92-3.94 show
that none of the model can deal with a very rapid one-dimensional compression. More
moderate compressions seem to be tractable, with R-model performing generally much
better than the LSW in reproducing the evolution of kinetic energy, stress component R11

and dissipation rate. The exception is the stress anisotropy for weak compressions, cases
ODD and ODE, where LSW is slightly better, but still far from the DNS results.

82



3.5. HOMOGENEOUS FLOWS WITH DILATATION EFFECTS

0.00 0.00 0.00 0.01 0.01
t

0.0

0.4

0.8

1.2

1.6

K

ODB
LSW
R

Figure 3.91: Kinetic energy evolution for the ODB one-
dimensional compression.
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Figure 3.92: Dissipation of the kinetic energy evolution for
the ODB one-dimensional compression.
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Figure 3.93: Prediction of R11 for the ODB one-dimensional
compression.
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Figure 3.94: Anisotropy tensor for the ODB one-dimensional
compression.
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Figure 3.95: Kinetic energy evolution for the ODC one-
dimensional compression.
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Figure 3.96: Dissipation of the kinetic energy evolution for
the ODC one-dimensional compression.
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Figure 3.97: Prediction of R11 for the ODC one-dimensional
compression.
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Figure 3.98: Anisotropy tensor for the ODC one-dimensional
compression.
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Figure 3.99: Kinetic energy evolution for the ODD one-
dimensional compression.
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Figure 3.100: Dissipation of the kinetic energy evolution for
the ODD one-dimensional compression.
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Figure 3.101: Prediction of R11 for the ODD one-dimensional
compression.
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Figure 3.102: Anisotropy tensor for the ODD one-
dimensional compression.
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Figure 3.103: Kinetic energy evolution for the ODE one-
dimensional compression.
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Figure 3.104: Dissipation of the kinetic energy evolution for
the ODE one-dimensional compression.
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Figure 3.105: Prediction of R11 for the ODE one-dimensional
compression.
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Figure 3.106: Anisotropy tensor for the ODE one-dimensional
compression.
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3.6 Comments

The study of the performances of various closure models for homogeneous flows in a
range of classic test cases gave no conclusive evidence for a general ranking of the models.
In fact, no model was found to perform superior in all cases considered. case. Depending
on the importance of the slow term, the Reynolds number and the imposed distortions,
the hierarchy of the performances of the complete models changes.

Based on the overall performances and taking into account all aspects, it can, however,
be noted that the model of Shih and Lumley (1993) (SL) behaves generally better as com-
pared to the other models, when the influence of the slow term is important. When the
distortion is more rapid, the model of Speziale et al. (1991) (SSG) gives reasonable results
in the whole. In view of its simplicity and reasonable performance in non-homogeneous,
wall-attached flows, the SSG model seems at present to be the best compromise. The-
Launder et al. (1975) model (LRR) also yields in most cases reasonable results and is
the simplest formulation that is able to relatively correctly predict the pure deformation
cases.
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