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INTRODUCTION

Introduction

The turbulence in a fluid flow can be defined as an ensemble of eddy motion where
the velocity and other flow properties evolve in an apparently irregular, disorderly and
chaotic manner. Because of the inherent non-linearity, an infinite number of realization is
possible so that details of the fluid particles trajectory seem to be unpredictable. These,
seemingly random motions in time and space, occur even if ensemble-averaged properties
exhibit a unique steady and unidirectional character, as in the case of a channel flow : the
turbulence is by nature a three-dimensional and unsteady phenomenon. Associated with
fluctuations of the velocity are the fluctuations of pressure in accord with the law of fluid
motion expressed in form of Navier-Stokes equations, which are assumed to be satisfied
at each time instant. The same applies for fluctuations of density, temperature and other
scalars, governed by energy and mass (species concentration) conservation equations in
non-isothermal and multi-component systems.

Turbulent motion is not only random but possess a rotational character : the eddy
motion is indeed present in a broad spectrum in space and time, corresponding to a wide
range of eddies of various size and life-time. In reality, the smallest scales present in a
flow are limited by the action of molecular viscosity, whereas the largest scales are of the
order of size of the flow domain (Launder, 1991).

A direct access to the details of the turbulent motion is still difficult and restricted to
very specific simple flows. In most cases of practical interest, the temporal variations of
the flow properties appear to be of secondary importance, the main interest being in the
time or ensemble averaged velocity and the pressure field (also the temperature, concen-
tration, density), evaluated over a time long enough compared to the characteristic time
scale of the fluctuating field, or over a large number of samples. Therefore, for practical
applications, the Navier-Stokes equations for the instantaneous motion can be averaged
and treated by a statistical approach, as proposed a century ago by Reynolds (1895).

The application of any statistical operator to the Navier-Stokes equation results in
unknown statistical moments as a consequence of the non-linear nature of the convective
terms. Of primary importance are the second order moments of the fluctuating velocity
in the mean momentum equation, which constitute the Reynolds stress tensor when eva-
luated in the same point. The transport equation for any statistical moment involves the
moments of immediate higher order which are unknown and remain to be closed.
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INTRODUCTION

An one-point statistical description of the turbulence involves furthermore other unk-
nowns in addition to those arising directly from averaging the convection process. These
are the terms involving pressure and molecular dissipation. The pressure terms are charac-
terized by nonlocal effects because of the elliptic nature of the pressure in an incompres-
sible flow, whereas the dissipation terms reflect the character of turbulent spatial scales.
These are properties which are not explicitly taken into account by a single point statistics
and, therefore, are unknown.

The transport equations for the Reynolds stresses describe in essence the dynamics of
large scales, energy-containing motion, because they are of the same order of magnitude
as the kinetic energy, providing thus far an information on the characteristic turbulent
velocity scale. In order to close the unknown processes, it is necessary to introduce another
scale, in length or time. One of the most common choices is the scalar dissipation rate
of kinetic energy, because this quantity appears as a sink term in the kinetic energy
equation, and its physical interpretation is straightforward. The entire turbulent field is
then described by a unique set of characteristic time and space scales.

This is one of the major assumption underlining the one-point statistical closure hie-
rarchy. The turbulent spectrum is supposed to be in an equilibrium state. This implicitly
assumes that all spatial information can be given by a unique length scale for the whole
spectrum and that various eddies and the major processes associated with them are lin-
ked together by a transfer of energy at a constant rate. Therefore, the dissipation process,
acting on the small eddies, is assumed to respond with the same characteristic time to
any change occurring on the energy containing eddies, located at the large scales.

This assumption seems to be satisfactory for a wide range of flows of practical in-
terest. That is why the single-scale modelling approach has been so successful since the
early development. There are, however, many flows where such a spectral equilibrium is
not attained. A case in point is the flow in reciprocating engines, where a moving piston
generates periodic perturbations. To capture the salient features of such turbulent flows,
it may be necessary to introduce different scales by which to describe eddies of different
sizes, their evolution and mutual interaction.

A first attempt to distinguish different scales associated with various processes in the
dynamics of turbulence within the one-point methodology is the multiple-scale approach.
This type of closure, which is the focus in this study, has conceptually been proposed
by Launder and Schiestel (1978) and formulated for both the eddy-viscosity and second-
moment closure levels by Hanjalić et al. (1979). The main idea is based on a decomposition
of kinetic energy or Reynolds stress spectrum into several wave-number regions to which
major turbulence interactions are associated, and to propose a closure for each spectrum
slice. This led to the development of the split spectrum technique, which has been widely
applied in most of the multiple-scales models derived thereafter.

This approach can be regarded as an intermediate route between the classical one-
point approach and the two-point statistical description of turbulence.

The split-spectrum method follows the one-point methodology, and therefore, can ac-

2
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cess neither the non-linear nor the non-local character of the energy distribution between
the eddies of various sizes and their interactions. The full information can only be re-
covered by the full resolution of the turbulence spectra. However, some information can
be provided by formulating and solving the transport equations for additional turbulence
scales. The closures of these equations can be performed with the help of a two-point
description of turbulence in which the non-local and non-linear effect are naturally taken
into account.

It is, therefore, useful to revisit the two-point approach, which can serve as a basis for
deriving at least one additional scale equation. Far from an exhaustive review, the short
outline that follows recollects some of the past ideas as well as some novelties, and also,
introduces the notations used in this report.

The development of any multiple-scale model is strongly linked to the treatment of
various scale processes. The Fourier transformation of the two-point equation permits
a better description and interpretation of the processes and governing equations. This is
presented in the chapter 1 where the Reynolds stress equations are derived. This also leads
to the hierarchy of spectral models which are defined by different sets of the transformed
equations.

The spectral approach is presented in order to illustrate the derivation of the spectral
equations used for multiple-scale derivation. The brief review, however, does not pretend
to be exhaustive, nor to give a detailed view of the spectral models. It is only intended
to point out at some interesting features of the multiple-scale modelling and to provide a
better understanding of the processes and the underlying assumptions of the well-known
closures.

3
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Chapter 1

Two-point correlations and spatial
scales

The statistical two-point description of turbulence has been regarded as a convenient
mathematical framework for better understanding and modelling of the one-point quan-
tities. Kármán and Howarth (1938) used this technique to study the evolution of the
turbulent length scales in decaying isotropic turbulence. It was also used later by Crow
(1968) to express the rapid distortion of isotropic turbulence and by Naot et al. (1973) to
derive a transport equation for the Reynolds stress tensor. The two-point description of
turbulence provides indeed a convenient framework to study the length scales equations.
Rotta (1951) applied the integral operator of the two-point correlation equations to derive
the equation for the product of the Reynolds stresses and a scalar integral length-scale.
The two-point description served also to derive transport equations for the length-scale
tensor (Lin and Wolfshtein (1980), Donaldson and Sandri (1981) or Oberlack and Peters
(1993)), and to provide a better insight in the closure of the classical one-point dissipation
equation (Jovanović et al. (1995), Oberlack (1994)). However, most of these studies were
confined to homogeneous turbulent flows. The two-point spatial approach has also been
used to develop multiple-scales models (Schiestel, 1987), though this can also be achieved
by starting from a description of the two-point equations in the spectral space through a
Fourier transformation.

The latter approach is adopted in this study. The spectral equations are presented in
the next chapter. As a starting point for the Fourier transformation it is interesting first
to look at the two-point equations in the physical space.

1.1 The two-point description and notations

The evolution equation of the two-point second order tensor is derived in this chap-
ter. The expression for the source term is written in a form that permits to isolate the
contribution specific to a two-point description of turbulent flow. This is achieved by a
suitable transformation of the independent variable, currently used in classical two-point
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CHAPTER 1. TWO-POINT CORRELATIONS AND SPATIAL SCALES

representation of turbulence (Hinze, 1975). Details of this transformation are given in
Appendix B and only the interpretation of each term is recalled in this chapter.

The fluctuating quantities are evaluated at points M ′ and M ′′ defined by coordinates
(x′, t) and (x′′, t) respectively. In the following text each quantity defined at M ′ (resp.
M ′′) is denoted by ′ (resp. ′′). The differential operators written in the Einstein notation
are also indexed by ′ (resp. ′′) when applied to variables x′ (resp. x′′). This notation
is also valid for two-point quantities. However, when the two-point tensor corresponds to
the one-point quantity, the indices related to x′ and those related to x′′ are only separated
by a dot.

The derivation of the two-point equation is obtained by the combination of the two
fluctuating equations evaluated at each point (see Appendix A) :

u′
i,t + Li(u

′) = 0 (1.1a)

u′′
j,t + Lj(u

′′) = 0 (1.1b)

in order to form :
u′′

j [u′
i,t + Li(u

′)] + u′
i [u

′′
j,t + Lj(u

′′)] = 0 (1.2)

The evolution equation of the fluctuating velocity written at points M ′ and M ′′ are :

u′
i,t + V

′
n u′

i,n′ = −1

ρ
p′,i′ − u′

n V
′
i,n′ − [u′

iu
′
n − u′

iu
′
n],n′ + ν u′

i,n′n′ + f ′
i (1.3a)

u′′
j,t + V

′′
m u′′

j,m′′ = −1

ρ
p′′,j′′ − u′′

m V
′′
j,m′′ − [u′′

ju
′′
m − u′′

ju
′′
m],m′′ + ν u′′

j,m′′m′′ + f ′′
j (1.3b)

Therefore, the two-point Reynolds-stress tensor equation may be written as :

(u′
iu

′′
j ),t + V

′
k (u′

iu
′′
j ),k′ + V

′′
k (u′

iu
′′
j ),k′′ = −u′

iu
′′
k V

′′
j,k′′ − u′′

ju
′
k V

′
i,k′ (1.4)

+ f ′
iu

′′
j + f ′′

j u′
i

− (u′
iu

′′
ju

′′
k),k′′ − (u′

iu
′
ku

′′
j ),k′

− 1

ρ
(u′

ip
′′
,j′′ + u′′

jp
′
,i′)

+ ν [(u′
iu

′′
j ),k′k′ + (u′

iu
′′
j ),k′′k′′]

Each source term can be written in the form used in the one-point equation and with
the above notations, leading to :

Ci′.j′′ = V
′
k Ri.j,k′ + V

′′
k Ri.j,k′′ (1.5a)

Pi′.j′′ = −Ri.k V
′′
j,k′′ − Rk.j V

′
i,k′ (1.5b)

Gi′.j′′ = f ′
iu

′′
j + f ′′

j u′
i (1.5c)

du
i′.j′′ = T u

i.jk,k′′ + T u
ik.j,k′ (1.5d)

Πi′.j′′ = −1

ρ
(u′

ip
′′
,j′′ + u′′

jp
′
,i′) (1.5e)

dν
i′.j′′ = ν [(u′

iu
′′
j ),k′k′ + (u′

iu
′′
j ),k′′k′′] (1.5f)
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1.1. THE TWO-POINT DESCRIPTION AND NOTATIONS

with

Ri.j = u′
iu

′′
j (1.6a)

T u
i.jk = −u′

iu
′′
ju

′′
k (1.6b)

T u
ik.j = −u′

iu
′
ku

′′
j (1.6c)

The viscous tensor above includes both the viscous diffusion and viscous dissipation. Their
corresponding forms in the two-point description will be obtained by adequate splitting,
exactly as it is done for one-point description.

In order to identify clearly the meaning of each process and to separate specific two-
point contributions from the expressions that degenerate into the corresponding one point
terms when the two points collapse, it is necessary to adopt a local coordinate system
and to rewrite the equation in terms of the adopted two-point independent variables.
The most immediate choice is the well-known mid-point description, i.e. to place the lo-
cal coordinate system in the middle between the two points M ′ and M ′′. The two-point
properties are then expressed in terms of the mid-point position vector and the distance
vector between M ′ and M ′′. Such transformation is used by Chou (1945), Hinze (1975) or
again Jovanović et al. (1995). The kinematic characteristics of this centered transforma-
tion are given in Appendix B. This, of course, is not the only possible choice and a popular
alternative is the decentered local coordinate system with its origin at one of the points.
This is used by Rotta (1972) and Oberlack and Peters (1993). Although the Jacobian
of the latter transformation is simpler, the first choice leads to a clearer description of
different processes in the equations, because it allows to separate in an obvious manner
each of the local or spatial contributions. The illustration of this is shown in Appendix B.

The adopted independent variables are :

Xk =
1

2
(x′

k + x′′
k) (1.7a)

rk = (x′′
k − x′

k) (1.7b)

Any derivative with respect to Xk will be denoted by .,k and the derivative with respect to
rk by .|k. The details of the application of this transformation are provided in Appendix
B. The evolution equation of the two-point Reynolds stress tensor can now be written as :

dRi.j

dt
= Pi.j + du

i.j + du..
i.j + dp

i.j + dp..
i.j + dν

i.j − εi.j − C ..
i.j (1.8)

where the material derivative is defined as

d.

dt
=

∂.

∂t
+

1

2
[V

′
k + V

′′
k]

∂.

∂Xk

(1.9)

The part of the convective term included in this derivation is denoted as

Ci.j =
1

2
[V

′
k + V

′′
k] Ri.j,k (1.10a)
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CHAPTER 1. TWO-POINT CORRELATIONS AND SPATIAL SCALES

whereas the second contribution of the two-point convective tensor is defined as

C ..
i.j = [V

′′
k − V

′
k] Ri.j|k (1.10b)

The production terms are then defined by

Pi.j = −Ri.k V
′′
j,k − Rk.j V

′
i,k (1.11)

The turbulent diffusion involves the triple correlations :

du
i.j =

1

2
[T u

i.jk + T u
ik.j],k (1.12a)

du..
i.j = [T u

i.jk − T u
ik.j]|k (1.12b)

where

T u
i.jk = −u′

iu
′′
ju

′′
k (1.13a)

T u
ik.j = −u′

iu
′
ku

′′
j (1.13b)

The same notation can be used for the pressure-velocity tensor, so that :

dp
i.j =

1

2
[T p

i.jk + T p
ik.j],k (1.14a)

dp..
i.j = [T p

i.jk − T p
ik.j]|k (1.14b)

where

T p
i.jk = −1

ρ
u′

ip
′′ δjk (1.15a)

T p
ik.j = −1

ρ
u′′

jp
′ δik (1.15b)

The viscous diffusion can be written as

dν
i.j = ν Ri.j,kk (1.16)

The dissipation tensor can be directly expressed in terms of second derivatives of the
two-point Reynolds stress tensor such as

εi.j = 2 ν [
1

4
Ri.j,kk − Ri.j|kk] (1.17)

This particular splitting of the dissipation rate tensor has already been applied by several
authors working in the physical space (Jovanović et al., 1995) or in the spectral space
(Laporta, 1995). It enables to write a part of the dissipation tensor with the same operator
as the viscous diffusion process, and is denoted as the inhomogeneous part. It is noted
that this formulation is entirely due to the choice of a centered description of the two

8



1.2. DISSIPATION- AND LENGTH-SCALE

independent variables, as it can be seen by comparison with the decentered description,
preferred by some researchers (Rotta (1972), Oberlack and Peters (1993)), which leads
to a different outcome, (see Appendix B). The splitting presented here with the centered
transformation has been shown to be convenient to describe the wall limit behaviour of
the scalar dissipation in the case of a low-Reynolds number channel flow, as shown by
comparison with direct numerical simulation (Kim et al., 1987). It allows to close the
homogeneous part of the viscous dissipation with an equation of the same form as the
classical closure usually adopted for the entire term, but also to capture some feature of
the wall effect through the inhomogeneous part.

The two-point equations presented here can serve as a basis for the development of
spectral equations, and this will be briefly presented in the following chapter.

The approach adopted for the two-point Reynolds stress tensor can also be used to
derive an equation for the dissipation rate tensor or its trace (see Appendix B). A direct
application of the system of two-point equations to the one-point modelling using the
closure hypothesis based on local homogeneity approximation and dimensional analysis
leads to a form very similar to the core of the usual one-point models. Such a two-point
description does not provide much insight into the two-point characteristics, but can be
used to provide other parameters describing the turbulent scales. Some of the proposal
are presented in the next section.

1.2 Dissipation- and length-scale

In order to close the equation set, the Reynolds stress equation needs to be associated
with at least one characteristic turbulence scale. The dissipation rate ε is widely used as the
additional scale-providing parameter, although other proposals have also been studied. An
alternative choice, frequently adopted for practical applications is based on ω, interpreted
as the rate of dissipation per unit turbulence kinetic energy (e.g. Wilcox (1988)). Such a
closure is, however, mainly linked to two-equations models. In one of the earliest Reynolds
stress models, developed by Rotta (1951), the closure was achieved using a scalar integral
length scale equation. This equation was derived by applying an integral operator to the
two-point correlation equation in the physical space. More recently Besnard et al. (1992)
derived a similar equation starting the analysis in the spectral space. In order to account
for some features of the turbulence structures, additional tensorial equations have been
studied, such as the tensor length scale equation. Such an equation was earlier proposed
by Donaldson and Sandri (1981), but some important processes have been neglected in
their formulation. This is also the case in ? (?) approach as mentioned recently by ?
(?). The latter authors use a volume integral of the two-point correlation as well as an
homogeneity approximation. The same restriction can also be found in Oberlack (1997)
equation, who retains higher order terms in the extension of the functional, but did not
provide suggestions for all of the coefficients arising in the derivation. The expression for
some of these closures will be used in the next chapter as a basis for comparison with the
model derived in this report.
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Chapter 2

Treatment of the equations in the
spectral space

The two-point statistical description of turbulence allows in principle to account for
interaction and energy transfer between eddies of different sizes. It involves only the
unknowns arising from the averaging process. The potential of the method for a refined
description of turbulence has long been recognized and various routes to deriving a clo-
sed set of equations have been investigated and reported in the literature. Three major
approaches can be distinguished, each offering some advantages, but also shortcomings.

The most straightforward method is to derive equations for statistical moments up
to an adopted order and expressing the higher moments in terms of the lower ones. For
instance, at the third order level the fourth order correlation can be closed by the quasi-
normal approximation which assumes a quasi gaussianity (Millionschtchikov, 1941). The
quadruple correlations can then be written in terms of second moments. The numeri-
cal calculations performed for homogeneous isotropic turbulence by O’Brien and Francis
(1962) and Ogura (1963) showed some inconsistencies of this assumption resulting in ne-
gative kinetic energy spectrum. Orszag (1970) noted that the relaxation time introduced
by the QN closure on the triple correlations does not take into account the non-linear
processes and proposed an eddy damping approximation. The original spectral closure of
this type, known as the Eddy Damped Quasi Normal (EDQN) approximation, ensures
the widely accepted K−5/3 energy spectrum decay in the inertial zone in accord with the
theory of Kolmogorov (1941). The EDQN closure does not, however, satisfy the realisabi-
lity of the kinetic energy spectrum. Therefore, Orszag added a modification to the original
closure called Markovianisation, which led to the EDQNM closure. The one-point closure
for the triple correlation proposed by Hanjalić and Launder (1972) has some similarities
with this procedure, even though it was derived directly from the single-point transport
equation and for different reason and purpose. The EDQNM closure has been refined by
several authors (Leith (1971), Pouquet et al. (1975) or André and Lesieur (1977)) and it
is basically aimed at retaining the non-locality of the triadic interactions captured by the
spectral description, while proposing a simpler formulation of the interactions themselves.

The approach developed by Kraichnan (1958) has also been targeted at deriving the

11



CHAPTER 2. TREATMENT OF THE EQUATIONS IN THE SPECTRAL SPACE

spectral equations, but using the perturbation expansion (Direct Interaction Approxi-
mation). This can be seen from the exact solution of the hierarchy of the equations of
moments associated with a particular stochastic model equation. This equation stands
instead of the Navier-Stokes equation, though it keeps the same structural properties.
The realisability of the energy spectrum is, therefore, assured by this equation. However
the first derivation of the DIA did not satisfy the Galilean invariance of the statistics and
led to a K−3/2 variation of the kinetic energy spectrum in the inertial range (Kraichnan,
1959). This deficiency was later modified by adopting a Lagrangian formulation (LHDIA)
of the DIA (Kraichnan, 1965), but doing so the existence of a stochastic model could
not be proved anymore. This technique is rather cumbersome and so far it has not been
proved viable for numerical computation of turbulent flows.

The Test Field Model (TFM) method has also been initially proposed by Kraichnan
(1972) to restore the Galilean invariance in its DIA formulation. This technique leads to a
closure of the triple correlations similar to the EDQNM approximation, where the relaxa-
tion time is determined by the advection of a test field by mean velocity. Its formulation
is simpler than the LHDIA, but still more complex than the EDQNM approach.

All studies mentioned above have considered only simple flows, in most cases the
homogeneous turbulence. However, they lead to a better understanding of the evolution
of turbulence in presence of very specific physical effects such as, for instance, the rotation
(Cambon et al., 1991). In the inhomogeneous case it is essential to simplify the closure
and to restrict the spectral description to a manageable level if the method is to be
used for practical purpose. For this reason several authors have integrated the spectral
equations over a shell of the wave-number radius and proposed closure for this directional
information (? (?), Jeandel et al. (1978), Cambon et al. (1981) or Besnard et al. (1992)).
Such an integration introduces additional unknowns and again three different approaches
can be found in the literature to deal with the problem.

In the first approach the unknown terms are closed in a similar way as in the one-point
method, which means that the nonlocal interactions are modelled by a local formulation
(Leith (1967) or Kovasznay (1948)). This approach abandons any directional information
but still allows to capture the cascade of energy in the Fourier space. The model, adopted
in this report as a basis for the derivation of the multiple scale model, belongs to this
category. It will be presented at the end of this chapter.

The second approach adopts a three-dimensional spectral closure of the EDQNM type
and introduces some directional information in order to integrate the spectral equations
over the shells of the wave-number radius (Cambon (1979) or Laporta (1995) ).

The third route is based more on the DIA approximation while using two-scales (Yo-
shizawa, 1987). In contrast to the other two approaches, it has not been used for practical
calculations, but rather to explain some features of Large Eddy Simulation or one-point
two-equations closures.
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2.1. APPLICATION OF THE FOURIER TRANSFORM TO THE REYNOLDS

STRESS EQUATIONS

2.1 Application of the Fourier transform to the Rey-

nolds stress equations

The Fourier transform of the Reynolds stress transport equation can be performed
following the definitions recalled in Appendix C. However the treatment of the terms
involving the mean velocity components necessitates an approximation. The direct trans-
formation of such terms introduces not only the Fourier transform of the mean velocity
but also convolution products. In order to avoid these products, the mean velocity compo-
nents are usually expanded around an averaged position (Cambon et al. (1981), Besnard
et al. (1992) or Laporta (1995)). The mean velocity components are then defined with a
differential operator (Laporta, 1995)

V
′
n = exp(−1

2
rk

∂V .

∂Xk
) V n (2.1a)

V
′′
n = exp(

1

2
rk

∂V .

∂Xk
) V n (2.1b)

that can be transformed into the Fourier space as

V
′
n = exp(−I

2

∂.

∂km

∂V .

∂Xm
) = V n (2.2a)

V
′′
n = exp(

I

2

∂.

∂km
=

∂V .

∂Xm
) = V n (2.2b)

where the superscript .V over the partial derivative indicates that this operator only
applies to the mean velocity component.

The truncation applied in this expansion retains the major characteristics of an in-
homogeneous turbulent flow, what is assumed to be sufficient to expand the spectral
Reynolds stress tensor equation up to the second order in the spatial derivative (Laporta,
1995). This assumption is not too restrictive as long as the terms present in the one-point
description of turbulence come from no more than the second order spatial derivatives
in the spectral space. Higher contributions are entirely spectral processes. This implies
that a truncation of the spectral equation at the second order level is justified as a first
approximation in the sense of one-point models.

2.2 Transformation of the terms which do not expli-

citly involve the mean velocity

The Fourier transformation of these terms is straightforward and is listed below.
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2.2.1 Unsteady term

This transformation is :

TF [Ri.j,t] = R̂i.j,t ≡ Φij,t (2.3)

where TF stands for Fourier transformation of the quantity in square brackets. In order
to simplify further the notations, the transformed quantities are denoted by a hat {̂.}.

2.2.2 Turbulent diffusion terms

In order to simplify the notations, the Fourier transform of the triple correlations are
here denoted without a superscript, i.e. :

Ti.jk = T̂ u
i.jk (2.4)

so that the expression for the turbulent diffusion can be written as :

TF [du
i.j + du..

i.j ] =
1

2
[Ti.jk + Tik.j],k + I kk [Ti.jk − Tik.j] (2.5)

2.2.3 Pressure-velocity correlations

These terms can be expressed in the spectral space as functions of the second order
tensor and the triple correlations using Poisson equations. They can be denoted as :

TF [dp
i.j + dp..

i.j] =
1

2
[T̂ p

i.jk + T̂ p
ik.j],k + I kk [T̂ p

i.jk − T̂ p
ik.j] (2.6)

or again

TF [dp
i.j + dp..

i.j] =
1

2
[Πj,i + Π∗

i,j] + I [kj Π∗
i − ki Πj ] (2.7)

with

Π∗
i = TF [−1

ρ
u′

ip
′′] (2.8a)

Πj = TF [−1

ρ
u′′

jp
′] (2.8b)

The treatment of the Poisson equation is elaborated later.

2.2.4 Viscous diffusion

The transformation of the viscous diffusion is direct :

TF [ν Ri.j.kk] = ν Φij,kk (2.9)
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2.3. TRANSFORMATION OF THE TERMS WHICH EXPLICITLY INVOLVE THE

MEAN VELOCITY

2.2.5 Viscous dissipation

This term is exact in the spectral space and can be written as :

TF [εi.j] = 2 ν [
1

4
Φij,kk + k2 Φij ] (2.10)

2.3 Transformation of the terms which explicitly in-

volve the mean velocity

It can be noted that the terms which explicitly involve the mean velocity gradient
might be written in a condensed form. They appear in the convection and production
terms, which can be considered jointly :

SV
i.j = −1

2
[V

′
k + V

′′
k] Ri.j,k − [V

′′
k − V

′
k] Ri.j|k − Ri.k V

′′
j,k − Rk.j V

′
i,k (2.11)

Using the incompressibility condition this term can be reduced to :

SV
i.j = −[(

1

2
.,k + .|k) [V

′′
k Ri.j + V

′′
j Ri.k] (2.12)

−[(
1

2
.,k − .|k) [V

′
k Ri.j + V

′
i Rk.j]

or, in the form :

SV
i.j = − (

1

2
.,k + .|k) [δnk δmj + δmk δnj ] V

′′
n Ri.m (2.13)

− (
1

2
.,k − .|k) [δnk δmi + δmk δni] V

′
n Rm.j

It is clear that any expansion of the mean velocities needs to be calculated only once. As
already mentioned, for this reason the velocity components are expanded in Taylor series
where :

V
′
n = V (X − 1

2
r) (2.14a)

V
′′
n = V (X +

1

2
r) (2.14b)

is expanded as :

V
′
n = exp(−1

2
rk

∂V .

∂Xk
) V n (2.15a)

V
′′
n = exp(

1

2
rk

∂V .

∂Xk
) V n (2.15b)
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where the superscript .V over the partial derivative indicates that this operator only
applies to the mean velocity component. The Fourier transform of those quantities leads
to :

V
′
n = exp(−I

2

∂.

∂km

∂V .

∂Xm
) V n (2.16a)

V
′′
n = exp(

I

2

∂.

∂km

∂V .

∂Xm
) V n (2.16b)

It is convenient to introduce here the notation proposed by Besnard et al. (1992) for this
operator :

Σ(X, k) =
∞
∑

m=0

(

I

2

∂.

∂kn

∂V .

∂Xn

)

m
1

m!
(2.17)

The transformation of the derivative operators with respect to the first and second point
is denoted by the following notation :

∇n(k) =
1

2

∂.

∂Xn
+ I kn (2.18)

This quantity is precisely the derivative with respect to the second point in the spectral
space. Their conjugate forms are applied to the first point and will be denoted with a
star, as :

∇∗
n(k) = ∇n(−k) (2.19)

Using these notations the transformation of the group of terms involving explicitly the
mean velocity is straightforward :

ŜV
i.j = − ∇k [δnk δmj + δmk δnj] ΣV n Φim (2.20)

− ∇∗
k [δnk δmi + δmk δni] Σ

∗V n Φmj

Again it has to be pointed out that the combinations of the expansion of ∇ and Σ operators
have to be used with care since the spatial derivative in the Σ operator only concern the
mean velocity components.

The compact form of the terms explicitly dependent on mean velocity may seem
convenient for a practical calculation, but this notation has also some drawbacks. It does
not allow to clearly separate every physical effect. Therefore, the Fourier transform is
applied to each process separately, using the earlier adopted notations.

2.3.1 Convective terms

Ci.j contribution

The expression involved in the particular derivative can be written as :

Ĉij =
1

2
[Σ + Σ∗] V k

∂Φij

∂Xk
(2.21)
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2.4. CALCULATION OF THE PRESSURE TERMS

and its expansion up to the second order in spatial derivatives yields :

Ĉij = V k
∂Φij

∂Xk
+ O(3) (2.22)

C ..
i.j contribution

The expression involved in the particular derivative can be written as :

Ĉ ..
ij = −[Σ − Σ∗] V k (I kk Φij) (2.23)

and its expansion up to the second order leads to :

Ĉ ..
ij = −

[

I
∂.

∂kp

∂V .

∂Xp

]

V k (I kk Φij) + O(3) (2.24)

which can be simplified as :

Ĉ ..
ij = V m,n

∂.

∂kn

[

km Φij

]

+ O(3) (2.25)

This term is usually named as the linear transfer term.

2.3.2 Production terms

The Fourier transformation of the production terms can be written as :

P̂ij = −[Σ V j],k Φik − [Σ∗ V i],k Φkj (2.26)

so that the expansion yields :

P̂ij −V j,k Φik − V i,k Φkj (2.27)

+
I

2

[

V i,kp
∂Φkj

∂kp

− V j,kp
∂Φik

∂kp

]

+O(3)

The fact that the mean velocity gradients are expanded up to the second order can be
traced only in the production terms which explicitly involve the mean velocity.

2.4 Calculation of the pressure terms

The pressure-velocity terms can be expressed using the earlier introduced notations
as :

T̂ p
ij = TF [dp

i.j + dp..
i.j]

= ∇∗
i Πj + ∇j Π∗

i (2.28)
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They can be calculated using the Poisson equations obtained by taking the divergence
of the transport equations for the Reynolds stresses. These expressions is recalled in
Appendix C.

When the Poisson equations are integrated in the physical space and transformed into
the spectral space, the resulting contribution of the pressure-velocity correlation can be
written as :

∇j Π∗
i (X, k) = −∇j ∇m ∇n G [ 2 ΣV n Φim − Ti.mn] (2.29)

where the spectral transform of the Green function can be chosen to be :

G =
[

−
(

1

2

∂.

∂Xn
+ I kn

)2]−1

(2.30)

Hence, using the Taylor expansion of the Poisson equation operators the expanded ex-
pression of the pressure-velocity correlation can be obtained.

For a shorter description it may be convenient to split these correlations into two
contributions, the first one involving the spectral Reynolds stress tensor and the second
one the triple correlations.

2.4.1 Contribution from the triple correlations

The contribution involving explicitly the triple correlations can be written as :

T̂
p(u)
ij = ∇∗

i ∇∗
m ∇∗

n G∗ Tmn.j + ∇j ∇m ∇n G Ti.mn (2.31)

and it immediately leads to :

T̂
p(u)
ij = I

km kn

k2

[

ki Tmn.j − kj Ti.mn

]

(2.32a)

+
km kn kl

k4

∂.

∂Xl

[

ki Tmn.j + kj Ti.mn

]

− 1

2

km kn

k2

[

∂.

∂Xi
Tmn.j +

∂.

∂Xj
Ti.mn

]

−
[

ki km

k2

∂.

∂Xn
Tmn.j +

kj km

k2

∂.

∂Xn
Ti.mn

]

− I

4

1

k2

∂2.

∂Xn∂Xm

[

ki Tmn.j − kj Ti.mn

]

− I

2

kn

k2

[

∂2.

∂Xi∂Xm
Tmn.j −

∂2.

∂Xj∂Xm
Ti.mn

]

+
I

2

km kn kl

k4

[

∂2.

∂Xi∂Xl

Tmn.j −
∂2.

∂Xj∂Xl

Ti.mn

]

+ I
kl kn

k4

∂2.

∂Xm∂Xl

[

ki Tmn.j − kj Ti.mn

]
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+
I

4

(

δls − 4
kl ks

k2

)

km kn

k4

∂2.

∂Xl∂Xs

[

ki Tmn.j − kj Ti.mn =
]

+ O(3)

2.4.2 Contribution involving mean velocity gradients

The contribution involving explicitly the mean velocity can be written as :

T̂
p(V )
ij = −∇∗

i ∇∗
m ∇∗

n G∗ [ 2 Σ∗ V n Φmj ] −∇j ∇m ∇n G [ 2 Σ V n Φim] (2.33)

The operator involved can be conveniently split into a first order and a second order
contribution (in terms of mean velocity derivatives).

First order expansion

A direct application of the first order terms of the developed operators leads to the
following expression :

T̂
p(V )
ij.1 = −2 I

km kn

k2

[

ki V n Φmj − kj V n Φim

]

(2.34a)

+
km kn

k2

[

V n,i Φmj + V n,j Φim (2.34b)

+ V n Φmj,i + V n Φim,j

]

+
km

k2

[

ki V n,n Φmj + kj V n,n Φim (2.34c)

+ ki V n Φmj,n + kj V n Φim,n

]

+
kn

k2

[

ki V n,m Φmj + kj V n,m Φim (2.34d)

+ ki V n Φmj,m + kj V n Φim,m

]

− 2
km kn kl

k4

[

ki V n,l Φmj + kj V n,l Φim (2.34e)

+ ki V n Φmj,l + kj V n Φim,l

]

− V n,l
km kn

k2

[

ki
∂Φmj

∂kl
+ kj

∂Φim

∂kl

]

(2.34f)

+ O(2)

In order to simplify these expressions and to display the order of expansion in a more
transparent way, the incompressibility condition is applied allowing to replace the follo-
wing terms :

km Φmj = −I

2

∂Φmj

∂Xm
(2.35a)
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km Φim =
I

2

∂Φim

∂Xm

(2.35b)

Each term has been labeled in order to make the simplification more obvious.

Simplification of (2.34a)

[2.34a] T̂
p(V )
ij.1 = −kn

k2
V n

[

ki Φmj,m + kj Φim,m

]

(2.36a)

Simplification of (2.34b)

[2.34b] T̂
p(V )
ij.1 = −I

2

kn

k2

[

V n,i Φmj,m − V n,j Φim,m

]

(2.36b)

−I

2

kn

k2
V n

[

Φmj,im − Φim,jm

]

This shows explicitly a contribution of second order terms.

Simplification of (2.34c)

[2.34c] T̂
p(V )
ij.1 = −I

2

1

k2
V n,n

[

ki Φmj,m − kj Φim,m

]

(2.36c)

−I

2

1

k2
V n

[

ki Φmj,nm − kj Φim,nm

]

Simplification of (2.34d)

This term needs is in fact not to be transformed.

[2.34d] T̂
p(V )
ij.1 =

kn

k2
V n,m

[

ki Φmj + kj Φim

]

(2.36d)

+
kn

k2
V n

[

ki Φmj,m + kj Φim,m

]

The second part of this term can be simplified using [2.34a] T̂
p(V )
ij.1 .

Simplification of (2.34e)

[2.34e] T̂
p(V )
ij.1 = I

kn kl

k4
V n,l

[

ki Φmj,m − kj Φim,m

]

(2.36e)

+I
kn kl

k4
V n

[

ki Φmj,lm − kj Φim,lm

]
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Simplification of (2.34f)

[2.34f] T̂
p(V )
ij.1 = V n,m

kn

k2

[

ki Φmj + kj Φim

]

(2.36f)

+
I

2
V n,l

kn

k2

[

ki Φmj,m|l − kj Φim,m|l

]

where the .,n denotes the derivative with respect to Xn and .|n denotes the derivative with
respect to kn. The first part of this term can be grouped with the first part of (2.34d).

Second order expansions

A direct application of the second order terms of the expanded operators leads to the
following expression : :

T̂
p(V )
ij.2 =

I

4

km kn

k2

[

ki V n,pq Φmj|pq − kj V n,pq Φim|pq

]

(2.37a)

+ I
km kn kl

k4

∂.

∂Xl

[

ki V n,p Φmj|p − kj V n,p Φim|p

]

(2.37b)

− I

2

km kn

k2

[

∂.

∂Xi

(

V n,p Φmj|p

)

− ∂.

∂Xj

(

V n,p Φim|p

)]

(2.37c)

− I

2

km

k2

∂.

∂Xn

[

ki V n,p Φmj|p − kj V n,p Φim|p

]

(2.37d)

− I

2

kn

k2

∂.

∂Xm

[

ki V n,p Φmj|p − kj V n,p Φim|p

]

(2.37e)

+
I

2

1

k2

∂2.

∂Xm∂Xn

[

ki V n Φmj − kj V n Φim

]

(2.37f)

+
I

2

kn

k2

∂.

∂Xm

[

∂.

∂Xi

(

V n Φmj

)

− ∂.

∂Xj

(

V n Φim

)]

(2.37g)

+
I

2

1

k2

∂.

∂Xn

[

∂.

∂Xi

(

V n km Φmj

)

− ∂.

∂Xj

(

V n km Φim

)]

(2.37h)

− I
kl kn

k4

∂.

∂Xl

[

∂.

∂Xi

(

V n km Φmj

)

− ∂.

∂Xj

(

V n km Φim

)]

(2.37i)

− I
kl

k4

∂2.

∂Xl∂Xn

[

ki V n km Φmj − kj V n km Φim

]

(2.37j)

− I
kl kn

k4

∂2.

∂Xl∂Xm

[

ki V n Φmj − kj V n Φim

]

(2.37k)

− I

2

kn

k4

(

δls − 4
kl ks

k2

)

∂2.

∂Xl∂Xs

[

ki km V n Φmj − kj km V n Φim

]

(2.37l)

+ O(3)

It is again illustrative to write explicitly the derivative with respect to X.
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Simplification of (2.37a)

This term contains the contributions from higher order terms and therefore can be
simplified. It is written as :

[2.37a] T̂
p(V )
ij.2 =

I

4

kn

k2
V n,pq

[

ki km Φmj|pq − kj km Φim|pq

]

The second derivatives with respect to k can be transformed as :

km Φmj|pq =
∂.

∂kq

[

km Φmj|p

]

− Φqj|p

km Φim|pq =
∂.

∂kq

[

km Φim|p

]

− Φiq|p

and again :

km Φmj|pq =
∂.

∂kq

[(

km Φmj

)

|p
− Φpj

]

− Φqj|p

km Φim|pq =
∂.

∂kq

[(

km Φim

)

|p
− Φip

]

− Φiq|p

As for the first order terms, the incompressibility condition allows to express the deriva-
tives with respect to X explicitly, so that :

km Φmj|pq =
∂.

∂kq

[(

− I

2
Φmj,m

)

|p
− Φpj

]

− Φqj|p

km Φim|pq =
∂.

∂kq

[(

I

2
Φim,m

)

|p
− Φip

]

− Φiq|p

It is clear that the contributions involving the derivatives of the spectral tensor with
respect to X makes it a third order expansion term and therefore can be truncated.
Furthermore, because the second derivatives are commutative, the term can be written
as :

[2.37a] T̂
p(V )
ij.2 = − I

2

kn

k2
V n,pq

[

ki Φpj|q − kj Φip|q

]

(2.38a)

Simplification of (2.37b)

The original term can be written as :

[2.37b] T̂
p(V )
ij.2 = I

km kn kl

k4

∂.

∂Xl

[

ki V n,p Φmj|p − kj V n,p Φim|p

]
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However it should be noted that :

km Φmj|p =
∂.

∂kp

[

km Φmj

]

− ∂km

∂kp
Φmj

km Φim|p =
∂.

∂kp

[

km Φim

]

− ∂km

∂kp
Φim

which, using the incompressibility conditions, becomes :

km Φmj|p = −I

2

∂.

∂kp

[

Φmj,m

]

− Φpj

km Φim|p =
I

2

∂.

∂kp

[

Φim,m

]

− Φip

The term can then be written as :

[2.37b] T̂
p(V )
ij.2 = − I

kn kl

k4

∂.

∂Xl

[

ki V n,p Φpj − kj V n,p Φip

]

+
1

2

kn kl

k4

∂.

∂Xl

[

ki V n,p Φmj,m|p − kj V n,p Φim,m|p

]

It is quite obvious that the second part of this term is of the third order with respect to
the X derivatives. Therefore, the contribution of this term to the second order expansion
can be written as :

[2.37b] T̂
p(V )
ij.2 = − I

kn kl

k4
V n,pl

[

ki Φpj − kj Φip

]

(2.38b)

− I
kn kl

k4
V n,p

[

ki Φpj,l − kj Φip,l

]

+ O(3)

Simplification of (2.37c)

The same kind of simplification can be applied to the next two terms, (2.37c) and
(2.37d).

[2.37c] T̂
p(V )
ij.2 =

I

2

kn

k2
V n,p

[

Φpj,i − Φip,j

]

(2.38c)

+
I

2

kn

k2

[

V n,pi Φpj − V n,pj Φip

]

+ O(3)
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Simplification of (2.37d)

[2.37d] T̂
p(V )
ij.2 =

I

2

1

k2
V n,pn

[

ki Φpj − kj Φip

]

(2.38d)

+
I

2

1

k2
V n,p

[

ki Φpj,n − kj Φip,n

]

+ O(3)

Simplification of (2.37e)

The derivation leads to two terms :

[2.37e] T̂
p(V )
ij.2 = − I

2

kn

k2
V n,p

[

ki Φmj|p,m − kj Φim|p,m

]

(2.38e)

− I

2

kn

k2
V n,pm

[

ki Φmj|p − kj Φim|p

]

The first term is exactly the opposite of (2.34f), whereas the second term can be added
to the second part of (2.37a), since it has exactly the same form.

Simplification of (2.37f)

[2.37f] T̂
p(V )
ij.2 =

I

2

1

k2
V n,nm

[

ki Φmj − kj Φim

]

(2.38f)

+
I

2

1

k2
V n,m

[

ki Φmj,n − kj Φim,n

]

+
I

2

1

k2
V n

[

ki Φmj,nm − kj Φim,nm

]

+
I

2

1

k2
V n,n

[

ki Φmj,m − kj Φim,m

]

The last two terms cancel with the (2.34c) term while the first two terms can be lumped
with the (2.37d) term.

Simplification of (2.37g)

[2.37g] T̂
p(V )
ij.2 =

I

2

kn

k2
V n,m

[

Φmj,i − Φim,j

]

(2.38g)

+
I

2

kn

k2

[

V n,im Φmj − V n,jm Φim

]

+
I

2

kn

k2
V n

[

Φmj,mi − Φim,mj

]

+
I

2

kn

k2

[

V n,i Φmj,m − V n,j Φim,m

]
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The last two terms cancel with (2.34b) and the first two terms can be added to the (2.37c)
term.

Simplification of (2.37h)

This term is in fact of a higher order than two, so that :

[2.37h] T̂
p(V )
ij.2 = O(3) (2.38h)

Simplification of (2.37i)

This is also the case for the next term :

[2.37i] T̂
p(V )
ij.2 = O(3) (2.38i)

Simplification of (2.37j)

This simplification can again be applied to the next term :

[2.37j] T̂
p(V )
ij.2 = O(3) (2.38j)

Simplification of (2.37k)

No change has to be introduced in the next term.

[2.37k] T̂
p(V )
ij.2 = − I

kl kn

k4
V n,lm

[

ki Φmj − kj Φim

]

(2.38k)

− I
kl kn

k4
V n,m

[

ki Φmj,l − kj Φim,l

]

− I
kl kn

k4
V n

[

ki Φmj,lm − kj Φim,lm

]

− I
kl kn

k4
V n,l

[

ki Φmj,m − kj Φim,m

]

Here again the last two terms cancel with (2.34e) while the first two terms can be asso-
ciated with the (2.37b) term.

Simplification of (2.37l)

The incompressibility solution again makes this contribution a third order one, so
that :

[2.37l] T̂
p(V )
ij.2 = O(3) (2.38l)
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Regrouping the first and second order expansions

As already shown, the contribution of the pressure terms involving the Reynolds stress
tensor can be simplified as :

T̂
p(V )
ij = 2

kn

k2
V n,m

[

ki Φmj + kj Φim

]

(2.39a)

−I
kn

k2
V n,pm

[

ki Φmj|p − kj Φim|p

]

+I
1

k2
V n,nm

[

ki Φmj − kj Φim

]

+I
1

k2
V n,m

[

ki Φmj,n − kj Φim,n

]

+I
kn

k2
V n,m

[

Φmj,i − Φim,j

]

+I
kn

k2

[

V n,im Φmj − V n,jm Φim

]

−2 I
kl kn

k4
V n,lm

[

ki Φmj − kj Φim

]

−2 I
kl kn

k4
V n,m

[

ki Φmj,l − kj Φim,l

]

The first terms can be easily recognized to be the zero order rapid term in the spectral
space.

2.5 Second order expansion of the Reynolds stress

equation in the spectral space

Now that each process has been identified, we can summarize the expression for the
second order expansion of the Reynolds stress transport equation in the spectral space.
Various contributions are written in the increasing order of the expansion with respect to
the spatial derivatives. The physical meaning of each term and the processes which they
represent are also indicated. Hence, the transport equation for the spectrum tensor can
be summarized as :

Φij,t + V k Φij,k = ν Φij,kk − 2 ν
[

1

4
Φij,kk + k2 Φij

]

unsteadiness convection viscous diffusion viscous dissipation

(1a) (1b) (1c) (1d)

+ V m,n
∂

∂kn

[

km Φij

]

linear spectral transfer
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(2)

− V j,k Φik − V i,k Φkj

production by mean velocity gradients (first order terms)

(3)

+ 2
kn

k2
V n,m

[

ki Φmj + kj Φim

]

rapid pressure strain term (first order term)

(4)

+
1

2

[

Ti.jm + Tim.j

]

,m
+ I km

[

Ti.jm − Tim.j

]

inhomogeneous turbulent diffusion spectral turbulent diffusion

(5a) (5b)

+ I
km kn kl

k2

[

δil Tmn.j − δjl Ti.mn

]

contribution to the spectral cascade by the triple correlations

arising from the pressure-velocity correlations

(zero order terms)

(6)

+
[

km kn kl kp

k4
− 1

2

km kn

k2
δlp −

km kl

k2
δnp

] [

δil Tmn.j + δjl Ti.mn

]

,p

triple correlations term arising from pressure-velocity correlations

(first order terms)

(7)

+
[

− I

4

kl

k2
δnp δmq −

I

2

kn

k2
δlp δmq +

I

2

km kn kp

k4
δql + I

kp kn kl

k4
δmq

+
I

4

(

δpq − 4
kp kq

k2

)

km kn kl

k4

] [

δil Tmn.j − δjl Ti.mn

]

,pq

triple correlations term arising from pressure-velocity correlations

(second order terms)

(8)

+
I

2
δnl V n,pm

[

δil Φmj − δjl Φim

]

|p
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production by mean velocity gradients (second order terms)

(9)

− I
kn kl

k2
V n,pm

[

δil Φmj − δjl Φim

]

|p

terms arising from pressure-velocity correlations

(first part of the second order terms)

(10)

+
[

− 2 I
kl kn kp

k4
+ I

kn

k2
δpl + I

kl

k2
δpn

] (

V n,m

[

δil Φmj − δjl Φim

])

,p

terms arising from pressure-velocity correlations

(end of the second order terms)

(11)

The molecular effects are here written in the first line of the right hand side of this
equation. They are respectively the viscous transport and the viscous dissipation terms.
Although they are here separately written, it is obvious (as it has been already noted for
the two-point equations in the physical space), that the viscous diffusion can be grouped
with the non-homogeneous part of the viscous dissipation in order to obtain a more
compact form.

The two-point contribution from the convective terms, usually named as the linear
spectral transfer, is given in the second line of the equation (term (2)).

The first order contribution of the production by mean velocity gradient is the next
term (3), representing the interactions between mean and fluctuating field. Its second
order contribution appears later in the equation and can be written in a similar form to
the part of the second order terms involving the mean velocity gradient and arising from
the pressure-velocity terms.

The next term (4) is the only remaining contribution of the pressure-velocity correla-
tions involving the mean velocity gradient for the case of a homogeneous turbulence. This
is the first order term in the expansion of the rapid pressure-strain term.

The terms (5a) and (5b) are derived from the turbulent diffusion. The first one is an
inhomogeneous contribution depending on the spatial derivatives. The second one takes
into account the influence of the distance between the two-points in the physical space,
and is therefore a spectral contribution to the turbulent diffusion.

The zero order expansion of the pressure-velocity correlations involves only the triple
correlations (6). It can be noted that for homogeneous turbulence, only the terms up to
(6) remain. In addition, the viscous diffusion (1c), the diffusion-like term of the viscous
dissipation (1d) as well as the inhomogeneous turbulent diffusion (5a) vanish. Therefore,
in the case of a homogeneous turbulence, the cascade of energy is described via the linear
spectral transfer (2) and the non linear spectral transfer decomposed in the spectral
turbulent diffusion (5b) and the zero order pressure-velocity correlation term (6). The

28
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integral of each of these terms over all wave numbers is indeed zero in a homogeneous
flow. In the case of an inhomogeneous flow, the contribution of the spectral turbulent
diffusion (5b) in the one-point physical space remains zero. This is not the case with
the integration of the zero order pressure-velocity correlations term (6) which has to be
integrated together with the higher order term ( (7), (8), (10) and (11) to give a zero
contribution. Based on the above interpretation it could be more suitable to name the
entire redistribution term in the spectral space as the nonlinear transfer term. However,
for convenience and a more transparent comparison with relevant literature, we follow here
the nomenclature used by Bertoglio and Jeandel (1993) and Laporta (1995). The name
spectral transfer is then reserved for the processes which do not come from any spatial
inhomogeneity, while the name diffusion is associated with typically inhomogeneous terms.

The summarized equation allows to recognize the various terms to be retained for a
homogeneous flow, as well as those representing the first order spatial inhomogeneity or
the contributions from spatial second derivatives. In a way, it simplifies also the physical
interpretation of each term.

However, the non linear spectral transfer term can be written in a more compact form,
as shown below.
First, we can rewrite the spectral turbulent diffusion (5b) as :

I km

[

Ti.jm − Tim.j

]

= −I km δnl

[

δil Tmn.j − δjl Ti.mn

]

so that it has a form similar to the zero order term (6) :

I km
kn kl

k2

[

δil Tmn.j − δjl Ti.mn

]

allowing to write the non linear spectral transfer as

(5b) + (6)

=

I km

[

kn kl

k2
− δnl

] [

δil Tmn.j − δjl Ti.mn

]

The inhomogeneous turbulent diffusion (5a) can be written together with the first
order term from the pressure-velocity correlations involving the triple correlations (7).

The inhomogeneous turbulent diffusion terms are first rewritten as :

1

2

[

Ti.jm + Tim.j

]

,m
=

1

2
δpm δnl

[

δil Tmn.j + δjl Ti.mn

]

,p

whereas, using the symmetry of the indices m and n in this expression, the terms of the
first order are expanded as :

(7) =
[

km kn kl kp

k4
− 1

2

km kn

k2
δlp −

1

2

km kl

k2
δnp −

1

2

kn kl

k2
δmp

] [

δil Tmn.j + δjl Ti.mn

]

,p
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allowing to express together all first order term depending on the triple correlations as :

(5a) + (7)

=
[

km

(

kn kl kp

k4
− 1

2

kn

k2
δlp −

1

2

kl

k2
δnp

)

− 1

2

(

kn kl

k2
− δnl

)

δmp

] [

δil Tmn.j + δjl Ti.mn

]

,p

All second order terms depending on the triple correlations are already grouped in one
term (8). The second order contributions depending on the spectral tensor can be written
as :

(9) + (10) + (11)

=

−2 I
[(

kn kl kp

k4
− 1

2

kn

k2
δlp −

1

2

kl

k2
δnp

) ] (

V n,m

[

δil Φmj − δjl Φim

])

,p

− I
[

− 1

2

(

2
kn kl

k2
− δnl

)

δmp

]

V n,pm

[

δil Φmj − δjl Φim

]

|p

It can also be seen that a more compact form of the equation might be obtained for
the higher order terms. Since the derivation of one-point equations is the main target
of this study, it is convenient to decompose the term arising from the pressure-velocity
contribution in the same way as it is done with the correlation between the pressure-
gradient and velocity in the physical space. This decomposition leads to a diffusive and
a redistributive term, the latter called the pressure-strain term. The correspondence is
elaborated in Appendix C.

2.6 Closure of the Reynolds stress equation in the

spectral space

The description of turbulence in the spectral space dispenses with the necessity for
closing the dissipation tensor because this equation can be treated in the exact manner
in the spectral space.The pressure velocity correlation can be directly obtained by solving
the Poisson equations that are directly expressed in terms of spectral tensor Φij and
triple correlations Tij.k. Hence, only the third order correlations have to be specified. The
information contained in the spectral equation enables to describe the interactions between
the different scales and thus far accounts for the non-local processes in turbulence. The
non-local processes are mainly associated with the third order correlations so that a full
spectral treatment can retain these information. However, since the one-point equations
are the final goal of this study, a local treatment can be considered still as a useful
approximation, leading to a much simpler model in the spectral space (Cambon (1982),
Besnard et al. (1992) and Steinkamp et al. (1995)). A local closure of the third order
moments will, of course, conceal a part of the non-local interactions between the scales.
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However, it enables still to introduce several scales. Taking this advantage of a spectral
description of turbulence and incorporating the scale information in the one-point closure
is basically the aim of this study.

The technique chosen here follows the work of Laporta (1995). It enables to dispense
with the definition of a split spectrum. Multiple time scale turbulence models which
use a decomposition of the spectrum, as described by Schiestel (1983), lead to a large
number of equations, in fact separate equation sets corresponding to each spectrum slice.
Particularly at the second moment closure level, this approach generates a formidable
number of equations which are unsuitable for practical computations. Even more serious
problem is the number of empirical coefficients which increases progressively with the
number of spectrum slices considered. Here, we try to identify and incorporate into one-
point model the basic information from a very simple spectral approach.

2.7 Spherical integration

The triple correlations are linked to triadic interactions of the wave numbers. In order
to reduce the dimensions involved we adopt the classical method which is based on the
integration of the equations over shells of radius equal to the norm of the wave number.
This operation does not allow anymore to account for the anisotropy of the directions of
the wave number. However this information is also totally inaccessible to the one-point
approach.

Introducing such integration leads to unknown quantities in almost every term of the
Reynolds stress transport equation, terms that, therefore, need to be closed.

Using the standard notation of the spherically integrated tensor is :

ϕij =
∫

A
Φij dA (2.44)

the exact equation for ϕij can now be written as :

ϕij,t + V k ϕij,k = ν ϕij,kk − 2 ν
[

1

4
ϕij,kk + k2 ϕij

]

unsteadiness convection viscous diffusion viscous dissipation

+ V m,n

∫

∂

∂kn

[

km Φij

]

linear spectral transfer

− V j,k ϕik − V i,k ϕkj

production by mean velocity gradients (first order terms)

+ 2 V n,m

∫

kn

k2

[

ki Φmj + kj Φim

]

rapid pressure strain term (first order term)

+
1

2

[
∫

(

Ti.jm + Tim.j

)]

,m
+ I

∫

km

[

Ti.jm − Tim.j

]
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inhomogeneous turbulent diffusion spectral turbulent diffusion

+ I
∫

km kn kl

k2

[

δil Tmn.j − δjl Ti.mn

]

contribution to the spectral cascade by triple correlations arising from

pressure-velocity correlations (zero order terms)

+
∫

[

km kn kl kp

k4
− 1

2

km kn

k2
δlp −

km kl

k2
δnp

] [

δil Tmn.j + δjl Ti.mn

]

,p

triple correlations effect arising from pressure-velocity correlations

(first order terms)

+
∫

[

− I

4

kl

k2
δnp δmq −

I

2

kn

k2
δlp δmq +

I

2

km kn kp

k4
δql + I

kp km kl

k4
δmq

+
I

4

(

δpq − 4
kp kq

k2

)

km kn kl

k2

] [

δil Tmn.j − δjl Ti.mn

]

,pq

triple correlations effect arising from pressure-velocity correlations

(second order terms)

+
∫

I

2
δnl V n,pm

[

δil Φmj − δjl Φim

]

|p

production by mean velocity gradients (second order terms)

−
∫

I
kn kl

k2
V n,pm

[

δil Φmj − δjl Φim

]

|p

terms arising from pressure-velocity correlations

(first part of the second order terms)

+
∫

[

− 2 I
kl kn kp

k4
+ I

kn

k2
δpl + I

kl

k2
δpn

] (

V n,m

[

δil Φmj − δjl Φim

])

,p

terms arising from pressure-velocity correlations

(end of the second order terms)

The aim of the derivation that follows is to close the above equation in a form which
will lead to the one-point formulation. Two approaches can be seen at this level. The first
one consist in closing the unknown terms in function of spherically integrated quantities
(Besnard et al., 1992) and then choosing similar expressions as practiced usually in one-
point closures. The other approach consist in closing the third order correlations with
a spectral model. This leads to a systematic closure provided the expressions can be
integrated analytically. It also ensures that each term is closed at the same level. However
such derivations are much more sophisticated than the previous ones (Cambon, 1982).

2.8 The spectral closure

The spectral model adopted for further consideration is the one proposed by Clark
and Zemach (1995). As a first approximation each contribution coming from the second
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order expansion is neglected. The exact equation can, therefore, be written as :

ϕij,t + V k ϕij,k = ν ϕij,kk − 2 ν
[

1

4
ϕij,kk + k2 ϕij

]

unsteadiness convection viscous diffusion viscous dissipation

+ V m,n

∫ ∂

∂kn

[

km Φij

]

linear spectral transfer

− V j,k ϕik − V i,k ϕkj

production by mean velocity gradients (first order terms)

+ 2 V n,m

∫

kn

k2

[

ki Φmj + kj Φim

]

rapid pressure strain term (first order term)

+
1

2

[
∫

(

Ti.jm + Tim.j

)]

,m
+ I

∫

km

[

Ti.jm − Tim.j

]

inhomogeneous turbulent diffusion spectral turbulent diffusion

+ I
∫

km kn kl

k2

[

δil Tmn.j − δjl Ti.mn

]

contribution to the spectral cascade by triple correlations arising

from pressure-velocity correlations (zero order terms).

+
∫

[

km kn kl kp

k4
− 1

2

km kn

k2
δlp −

km kl

k2
δnp

] [

δil Tmn.j + δjl Ti.mn

]

,p

triple correlations effect arising from pressure-velocity correlations

(first order terms)

In this equation only the unsteady term, the advection in physical space, the production
by mean velocity gradients and the viscous processes do not require any closure.

2.8.1 Production

As in every second moment closure, these mechanisms are treated exactly and, there-
fore, do not need any modeling.

2.8.2 Dissipation

In contrast to the treatment in physical space, the spectral description of turbulence
allows to describe exactly the viscous dissipation process. It does not require any closure
assumption.
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2.8.3 Redistribution by the pressure-strain correlations

The rapid term

The only remaining term arising from the pressure-velocity correlation and involving
the double correlations is the redistribution term corresponding to the first part of the
rapid term. It can be written as :

φR
ij = 2 V n,m

∫

kn

k2

[

ki Φmj + kj Φim

]

(2.47)

Introducing the fourth order tensor

Xijpq =
∫

kp kq

k2
Φij (2.48)

this term can be rewritten as :

φR
ij = 2 V m,n

[

Ximnj + Xmjni

]

(2.49)

Every classical treatment of this term assumes that Xijpq can be developed as an isotropic
functional which only depends on the deviatoric of the Reynolds stresses tensor, which
represents the stress anisotropy, defined by :

bij =
1

2K
Rij −

1

3
δij (2.50)

The complete form of this functional can be found using the Cayley-Hamilton theorem
and involves a priori fifteen unknowns. The corresponding form to that closure in the
spherical space can be easily found using the same definition of the anisotropy tensor for
ϕij, that can be denoted as (Cambon, 1982) :

hij =
1

2ϕ
ϕij −

1

3
δij (2.51)

where ϕ is the trace of ϕij and, therefore, identical to the spectrum of kinetic energy
denoted by E, so that

ϕ = E (2.52)

The functional can then be written as :
1

2 E
Xijpq = C1 δij δpq + C2 (δip δjq + δjp δiq)

+ C3 δij hpq + C4 hij δpq

+ C5 (δip hjq + δjp hiq + hip δjq + hjp δiq)

+ C6 δij h2
.pq + C7 h2

.ij δpq

+ C8 (δip h2
.jq + δjp h2

.iq + h2
.ip δjq + h2

.jp δiq)

+ C9 hij h.pq + C10 (hip hjq + hjp hiq)

+ C11 hij h2
.pq + C12 h2

.ij hpq

+ C13 (hip h2
.jq + hjp h2

.iq + h2
.ip hjq + h2

.jp hiq)

+ C14 h2
.ij h2

.pq + C15 (h2
.ip h2

.jq + h2
.jp h2

.iq) (2.53)
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where h2
.ij means hik hkj. Following the same approach as used within the one-point des-

cription of the turbulence, the coefficients of this functionals are scalars that might depend
on the invariants of the anisotropy tensor IIh = −h2

.nn/2 and IIIh = h3
.nn/3. Thus, with

V m,n decomposed into the deformation tensor Smn and the rate of rotation tensor Wmn,
the rapid pressure-strain term can be written as :

1

2 E
φR

ij = β1 hij

+ β2 [h2
.ij + 2/3 IIh δij ]

+ β3 Sij

+ β4 [hik Skj + hjk Sik − 2/3 hmnSmn δij ]

+ β5 [h2
.ik Skj + h2

.jk Sik − 2/3 h2
.mnSmn δij ]

+ β6 [hik Wjk + hjk Wik]

+ β7 [h2
.ik Wjk + h2

.jk Wik]

+ β8 [hik Wkp h2
.pj + h2

.ik Wpk hjp] (2.54)

The relations between the coefficients as well as the constraints are given in Appendix F.
The model chosen here is the linear one with respect to the anisotropy tensor so that the
expression for Xijpq reduces to :

1

2 E
Xijpq = C1 δij δpq + C2 (δip δjq + δjp δiq)

+ C3 δij hpq + C4 hij δpq

+ C5 (δip hjq + δjp hiq + hip δjq + hjp δiq) (2.55)

The application of the incompressibility and normalization constraints respectively yields
the following relationship between the coefficients :

C1 + 4 C2 = 0 (2.56a)

C3 + C4 + 5 C5 = 0 (2.56b)

and

3 C1 + 2 C2 =
1

3
(2.57a)

3 C4 + 4 C5 = 1 (2.57b)

The above equations can be rearranged to yield all coefficients in terms of only one, which
remains to be determined :

C1 =
2

15
(2.58a)

C2 = − 1

30
(2.58b)

C3 = −11

3
C5 −

1

3
(2.58c)

C4 = −4

3
C5 +

1

3
(2.58d)
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These relations were obtained in the physical space by Launder et al. (1975). The expres-
sion for the pressure-strain term now reduces to

1

2 E
φR

ij = β3 Sij

+ β4 [hik Skj + hjk Sik − 2/3 hmnSmn δij ]

+ β6 [hik Wjk + hjk Wik] (2.59)

with

β3 =
2

5
(2.60a)

β4 = −6 C5 (2.60b)

β6 =
14

3
(C5 +

2

7
) (2.60c)

Besnard et al. (1992) retained this model also within the spectral approach and the same
expression were also obtained by Jeandel et al. (1978). The free coefficient used in the
physical model of Launder et al. (1975) is

C5 = − 8

55
(2.61)

and this is also the choice made in the spectral space.

The slow term

The other terms arising from the pressure-velocity correlations and involving triple
correlations can be identified as the so called slow part of the pressure strain in the physical
space. To follow again the same route to closure as in the one-point methodology, all these
contributions, which constitute the last two lines of the transport equation, can be closed
again by a trace free functional depending only on the anisotropy tensor bij . The complete
functional determined by the Cayley-Hamilton theorem is quadratic and can be written
as :

1

(k3/2 E3/2)
φS

ij = βS
1 hij + βS

2 (h2
.ij +

2

3
IIh δij) (2.62)

Here we retain only the first linear part corresponding to the simple linear return to
isotropy hypothesis similar to Rotta (1951) model. The value of the coefficient is taken
from the proposal of Besnard et al. (1992) :

βS
1 = −2.89 (2.63a)

βS
2 = 0 (2.63b)

The value of βS
1 is slightly smaller than the corresponding coefficient in the slow term

associated with the the Launder et al. (1975) slow term in the physical space, where it is
generally adopted to be βS

1 = −3.0.
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2.8.4 Linear spectral transfer

The pure spectral convection term can be closed with the same hypothesis as the one
chosen for the pressure-strain term since it can also be expressed in terms of the fourth
order tensor Xijpq. The linear spectral transfer is defined as :

TL
ij = V m,n

∫

∂

∂kn

[

km Φij

]

(2.64)

which can be rewritten as :

TL
ij = V m,n

∫

kmkn

k

∂Φij

∂k

= V m,n
∂.

∂k

∫

k
kmkn

k2
Φij

= V m,n
∂.

∂k

[

k Xijmn

]

(2.65)

Using the linear closure discussed earlier (similar to Launder et al. (1975)) the term can
be written as :

TL
ij =

∂.

∂k

[

k 2 E
(

2 C2 Sij

+ C3 Smnhmn δij

+ C5 [hik V j,k + hik V k,j + hjk V i,k + hjk V k,i]
)]

(2.66)

This expression was chosen by Besnard et al. (1992) and is also the closure obtained by
Jeandel et al. (1978) with their own integration.

2.8.5 Turbulent diffusion

The approaches of Besnard et al. (1992) and Jeandel et al. (1978) differ mainly in the
treatment on the terms which do not involve the mean velocity gradient. This difference
is especially noticeable in the treatment of the turbulent diffusion terms. As already
mentioned, for the sake of simplicity, we adopted here the approach of Besnard et al.
(1992).

Inhomogeneous transport

The inhomogeneous turbulent transport term is closed using the same assumptions as
in the one-point modelling. The turbulent transport is, therefore, represented by the local
gradients of the variable in question. The simplest assumption (similar to that of Davidov
(1961)) leads to :

du
ij = CD

[

νT δmn ϕij,m

]

,n
(2.67)
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with
νT =

∫

k−3/2 E1/2 dk (2.68)

The diffusion coefficient is supposed to be constant and it is proposed here to take the
value CD = 0.1.

Non linear transfer

The spectral transfer represented by the triple correlation can be written as :

−I
∫

km [Ti.jm − Tim.j ] (2.69)

The physical transfer of energy between the scales can be modelled by a combination
of diffusion-like and wave-like mechanism as proposed by Leith (1967). This closure is
used for the entire non-linear spectral process, a part of which arises from the pressure
gradient-velocity correlation through the Poisson equations :

I
∫

kmkn

k2
[ki Tmn.j − kj Ti.mn] (2.70)

The closure of those two term then can be written as :

TNL
ij = −c1

∂.

∂k

(

k5/2 E1/2 ϕij

)

+ c2
∂.

∂k

(

k7/2 E1/2 ∂ϕij

∂k

)

(2.71)

The coefficients chosen by Leith (1967) are supposed to satisfy the Kolmogorov’s cascade
law for an isotropic homogeneous turbulence, and are respectively (Clark and Zemach,
1995)

c1 = 0.297 (2.72a)

c2 = 0.148 (2.72b)

It is noted that choosing c2 = 0 leads to the flux expression of Kovasznay (1948).

2.8.6 Synthesis

To summarize, the spectral model of ϕij,t adopted here is given by the following model
equation :

ϕij,t + V k ϕij,k = ν ϕij,kk − 2 ν
[

1

4
ϕij,kk + k2 ϕij

]

unsteadiness convection viscous diffusion viscous dissipation

+
∂.

∂k

[

k 2 E
(

2 C2 Sij

+ C3 Smnhmn δij

+ C5 [hik V j,k + hik V k,j + hjk V i,k + hjk V k,i]
)]
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linear spectral transfer

− V j,k ϕik − V i,k ϕkj

production by mean velocity gradients (first order terms)

+ β3 Sij

+ β4 [hik Skj + hjk Sik − 2/3 hmnSmn δij ]

+ β6 [hik Wjk + hjk Wik]

rapid pressure strain term (first order term)

+ CD

[

νT δmn ϕij,m

]

,n

inhomogeneous turbulent diffusion

− βS
1 k3/2 E3/2 hij

slow term

− c1
∂.

∂k

(

k5/2 E1/2 ϕij

)

+ c2
∂.

∂k

(

k7/2 E1/2 ∂ϕij

∂k

)

non linear spectral transfer

where the coefficients are supposed to be constant. The turbulent viscosity is closed by

νT =
∫

k−3/2 E1/2 dk (2.74)

and

hij =
1

2ϕ
ϕij −

1

3
δij (2.75a)

ϕ = E (2.75b)

This is the simplest expression that can be derived with adopted assumptions.
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Chapter 3

Derivation of a multiple-scale model

3.1 Closure on the spherically integrated spectrum

tensor

Instead of considering the closure for the the spherically integrated spectral tensor
function ϕij(k), it is convenient to introduce a simplified model of this variable to make
the closure easier. Based on dimensional analysis, one of the possibility would be to define
a model in the form :

ϕij(k) = K L gij(k L) (3.1)

where K is the kinetic energy, L is the length scale of energy-containing eddies and gij a
tensorial shape function. However, such a model introduces another tensor, gij which also
needs to be modelled. For practical purposes, and in order to enable analytical integration
which would recover the main variables in the Rij − ε closure framework, i.e. Rij or K
and ε, it is more convenient to adopt even simpler model for ϕij(k), with a scalar shape
function, e.g.

ϕij(k) = Rij L g(k L) (3.2)

This was the route adopted by (Schiestel, 1993), who proposed the following spectrum
tensor approximation :

ϕij(k) = f(k) E(k)
Rij

K
+ (1 − f(k))

2

3
E(k) δij (3.3)

with the kinetic energy spectrum defined as shown in figure below : Hence, the energy
transfer down the spectrum is denoted by ε(1), whereas the dissipation ratio is directly
defined by ε(2) = ε. The function f(k), to be defined later, is introduced in order to model
a diminution of anisotropy with a decrease in turbulence scales (increase in wave number).

The continuity of the energy spectrum at the intersection of the two curves at k = kL,
yields the relation between α and β :

α = β ε(1) 2/3 k
−17/3
L (3.4)
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E(k)

α k

k k

- 5/3

k
L η

4

β ε (1) 2/3 k

Figure 3.1 – Schematic representation of a high-Reynolds scalar kinetic energy spectrum.

The production region of the kinetic energy spectrum is limited by the large scale wave
number, defined in terms of the length scale of the energy containing eddies :

kL =
1

L
=

ε(1)

K3/2
(3.5)

whereas the viscous cut-off is located at the Kolmogorov length scale :

kη = ε(1)−1/2
(

ε(2)

ν

)3/4

(3.5a)

The turbulent kinetic energy is defined by :

K =
∫ +∞

0
E(k) dk (3.6a)

so that the analytical integration leads to :

K =
1

5
β ε(1) 2/3 k

−2/3
L +

3

2
β ε(1) 2/3 k

−2/3
L

[

1 −
(

kL

kη

)2/3]

(3.6b)

In the high-Reynolds number limit (kL/kη)
2/3 goes to zero so that the kinetic energy can

be approximated as :
K ∼ ε(1) 2/3 k

−2/3
L (3.6c)

The turbulent Reynolds number is defined in terms of the kinetic energy, the viscosity
and the dissipation rate :

Rt =
K2

νε(2)
(3.7)
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k k k
L

- 2/3

η

f(k)

1

k/k
L

)(

Figure 3.2 – Schematic damping of the anisotropy of small scales.

The shape function f(k) should take into account the decrease of the anisotropic
character of the small scales. Various shapes can be considered and in the present work
we use the simple form shown in figure below :

The dissipation of the kinetic energy is defined as :

ε =
∫ +∞

0
2 ν

(

k2 +
1

4

∂2

∂X2
n

)

E(k) dk (3.8a)

and can be decomposed into homogeneous and inhomogeneous contributions (where Xn

are the coordinates at the midpoint in the physical space) :

εh =
∫ +∞

0
2 ν k2 E(k) dk (3.8b)

εi =
∫ +∞

0
2 ν

1

4

∂2

∂X2
n

E(k) dk (3.8c)

Their integration leads respectively to :

εh ∼ 2 ν ε(1) 2/3 k4/3
η (3.8d)

εi ∼ ν
∂2K

∂X2
n

(3.8e)

The inhomogeneous contribution εi can be directly computed from the kinetic energy so
that the problem of obtaining the dissipation rate is reduced to the evaluation of the
homogeneous part εh. this quantity will be identified with the dissipation itself in the
following sections.
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3.2 Choice of the variables

From the definitions introduced above it is now possible to define various variables
that can serve for closing the one-point model equations by analytically integrating the
following basic integral :

I(m) =
∫ +∞

0
km ϕij dk (3.9)

By choosing the parameter m, desired quantity can be recovered. For the Reynolds stress
and homogeneous dissipation rate tensor this is obvious from their definition, i.e. for
m = 0

Rij =
∫ +∞

0
ϕij dk (3.10a)

and for m = 2

εh
ij = 2 ν

∫ +∞

0
k2 ϕij dk (3.11a)

It is interesting to note that the integral converges when m > −5, the latter limit
emerges from the adopted k4 law in the vicinity of k = 0.

Another interesting quantity emerges for m = −1 which can be interpreted as a
product of the kinetic energy and the length scale tensor :

∫ +∞

0
k−1 ϕij dk ∼ K Λij (3.12a)

A further simplification can be made to eliminate the tensorial length scale (Donaldson
and Sandri, 1982) by

Λij = L
Rij

K
(3.13a)

or, in a more general form :

Λij = L [
2

3
δij + σ(

Rij

k
− 2

3
δij)] (3.14a)

where σ is a parameter to be specified, accounting for scale anisotropy. Here L = K3/2/ε(1)

defines the integral length scale that can be assumed to be close to the scale of the energy
containing eddies. Hence, this expression leads in an indirect manner to the definition of
the spectral energy transfer rate ε(1), which, in turn, can be used to define the length scale
L.

The above three cases are obtained for specific values of m (0, 2 and -1). We can write,
however, a general form of the expression for I(m) by integrating the product kmϕij over
the whole spectrum :

∫ +∞

0
km ϕij dk =

β

(m + 5)

Rij

K
ε(1) 2/3 k(m−2/3)

η

(

kL

kη

)(m−2/3)

(3.15)

+
β

(m − 4/3)

Rij

K
ε(1) 2/3 k(m−2/3)

η

(

kL

kη

)2/3 [

1 −
(

kL

kη

)(m−4/3)]
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+
β

(m − 4/3)

2

3
δij ε(1) 2/3 k(m−2/3)

η

[

(m − 4/3)

(m − 2/3)

−
(

kL

kη

)2/3

+
2

3

1

(m − 2/3)

(

kL

kη

)(m−2/3)]

which is valid for all values of m greater than −5, and different from 2/3 and 4/3 (see
appendix G). The above three values of m separate different intervals in which the above
integral expressions for I(m) reduces to specific forms. Of a particular interest are the two
cases : the first one corresponds to the interval of −5 < m < 2/3 and the second one to
the interval 4/3 < m, i.e. :

∫ +∞

0
km ϕij dk ∼ ε(1) 2/3 k

(m−2/3)
L

Rij

K
(3.16a)

when − 5 < m < 2/3

and
∫ +∞

0
km ϕij dk ∼ ε(1) 2/3 k(m−2/3)

η

[

fε(m)

Rij

K
+ (1 − fε(m))

2

3
δij

]

(3.16b)

when 4/3 < m

where fε(m) =
(

kL

kη

)2/3

In order to simplify the notations, the above two expressions are rewritten in an abbre-
viated form :

∫ +∞

0
km ϕij dk ∼ ε(1) 2/3 k

(m−2/3)
L T

(m)
ij (3.17a)

when − 5 < m < 2/3

and
∫ +∞

0
km ϕij dk ∼ ε(1) 2/3 k(m−2/3)

η T
(m)
ij (3.17b)

when 4/3 < m

Note that Tm
ij has different meanings in the two ranges of m considered.

From these expressions a set of three variables, introduced earlier, can be easily be
extracted,

∫ +∞

0
ϕij dk ∼ Rij (3.18a)

∫ +∞

0
k−1 ϕij dk ∼ K3/2

ε(1)
Rij (3.18b)

∫ +∞

0
ν k2 ϕij dk ∼ ε(2)

[

fε(2)

Rij

K
+ (1 − fε(2))

2

3
δij

]

(3.18c)

where fε(2) = R
−1/2
t

(

ε(1)

ε(2)

)
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The last two variables show the closures for the length scale tensor Λij and for the dis-
sipation tensor εij. Their transport equation can be derived from the spherical spectral
closure.

3.3 Derivation of the equations

3.3.1 The transport equation for the variable ε(1) 2/3 k
(m−2/3)
L T

(m)
ij

As shown above, this variable corresponds to the interval where −5 < m < 2/3. The
integral I(m) can be used to derive the equations for the Reynolds stress tensor Rij and
for the length scale tensor through the variable K3/2/ε(1) Rij .

Unsteady and convective terms

Their integration is straightforward as is comes from the very same assumption as for
the choice of the variables themselves :

d

dt

∫ +∞

0
km ϕij dk ∼ d

dt

[

ε(1) 2/3 k
(m−2/3)
L T

(m)
ij

]

(3.19)

when − 5 < m < 2/3

Viscous diffusion term

The viscous diffusion term is defined as :

dν
ij =

∫ +∞

0
ν km ϕij,nn dk (3.20)

so that its integration is also straightforward :

dν
ij = ν

[

ε(1) 2/3 k
(m−2/3)
L T

(m)
ij

]

,nn
(3.21)

Viscous dissipation term

The homogeneous part of the viscous dissipation process is written as :

εh
ij =

∫ +∞

0
−2 ν k(m+2) ϕij dk (3.22)

Its form is the same as the variable itself, but with a different power. This allows to
evaluate this terms in the same manner as the the variable itself. The form of the term
varies depending whether −5 < m + 2 < 2/3 or 4/3 < m + 2. The integration leads to :

∫ +∞

0
−2 ν k(m+2) ϕij dk ∼ −2 ν ε(1) 2/3 k

(m+4/3)
L

Rij

K
(3.23a)
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when − 7 < m < −4/3

∫ +∞

0
−2 ν k(m+2) ϕij dk ∼ −2 ν ε(1) 2/3 k(m+4/3)

η

2

3
δij (3.23b)

when − 4/3 < m < −2/3

∫ +∞

0
−2 ν k(m+2) ϕij dk ∼ − 2 ν ε(1) 2/3 k(m+4/3)

η

[

fε(m+2)

Rij

K
+ (1 − fε(m+2))

2

3
δij

]

(3.23c)

when − 2/3 < m

where fε(m+2) =
(

kL

kη

)2/3

The first expression is outside the range available here, −5 < m < 2/3. It can be noted
that for m = 0, the integration leads to the exact dissipation tensor.

Linear spectral transfer

The linear spectral transfer is represented by :

TL
ij =

∫ +∞

0
km V p,q

∂

∂k

[

k Xijpq

]

dk (3.24)

where the fourth order tensor is a linear functional in terms of the deviatoric part of ϕij. It
should be noted that this integral gives no contribution in the physical space when m = 0.
The integration is then to be performed for m different from 0. The adopted closure of
the linear spectral transfer can be written as :

TL
ij =

∫ +∞

0
km ∂.

∂k

[

k 2 E
(

2 c2 Sij

+ c3 Smnhmn δij

+ c5 [hik V j,k + hik V k,j + hjk V i,k + hjk V k,i]
)]

(3.25)

Its integration requires, therefore, the evaluation of the following integrals :

J ′
ij =

∫ +∞

0
km ∂

∂k

[

k 2 ϕ hij

]

dk (3.26a)

J ′ =
∫ +∞

0
km ∂

∂k

[

k 2 ϕ
]

dk (3.26b)

They can be written as

J ′
ij = −

∫ +∞

0
(m + 1) km 2 ϕ hij dk (3.27a)

J ′ = −
∫ +∞

0
(m + 1) km 2 ϕ dk (3.27b)
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which, in turn, involve the following integrals :

Jij =
∫ +∞

0
km 2 ϕ hij dk (3.28a)

J = −
∫ +∞

0
km 2 ϕ dk (3.28b)

that can be rewritten as :

Jij = bij

∫ +∞

0
km 2 E f dk (3.29a)

J =
∫ +∞

0
km 2 E dk (3.29b)

In the case, when m < 2/3, they can be approximated by the leading term of the integrals

Jij ∼ bij ε(1) (2/3) kL
(m−2/3) (3.30a)

J ∼ ε(1) (2/3) kL
(m−2/3) (3.30b)

The expression for the linear transfer term becomes then :

TL
ij ∼ ε(1) (2/3) kL

(m−2/3)
(

2 c
(m)
2 Sij (3.31)

+ c
(m)
3 bpqV p,q δij

+ c
(m)
5 [bin V j,n + bjn V i,n + bin V n,j + bjn V n,i]

)

when m 6= 0, and

TL
ij = 0 (3.32)

when m = 0.

Production

The production by mean velocity gradient term is defined by :

Pij =
∫ +∞

0
km

[

− ϕnj V i,n − ϕin V j,n

]

dk (3.33)

and therefore can be evaluated as :

Pij ∼ − ε(1) 2/3 k
(m−2/3)
L

[

T
(m)
ik V j,k + T

(m)
jk V i,k

]

(3.34)
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Rapid term

The expression for the rapid term is closed as :

ΦR
ij =

∫ +∞

0
km 2 ϕ

[

β3 Sij (3.35)

+ β4 (hin Sjn + hjn Sin − 2

3
hpnSpn δij)

+ β6 (Win hnj − hin Wnj)
]

dk

In order to integrate this expression, the following integrals are needed

Jij =
∫ +∞

0
km 2 ϕ hij dk (3.36a)

J = −
∫ +∞

0
km 2 ϕ dk (3.36b)

These are the same integrals as the one presented in the previous paragraph. Consequently
the same type of terms are obtained for the linear transfer term and for the rapid term ;
the latter can be written as :

ΦR
ij ∼ ε(1) 2/3 k

(m−2/3)
L

[

β
(m)
3 Sij (3.37)

+ β
(m)
4 (bin Sjn + bjn Sin − 2

3
bpnSpn δij)

+ β
(m)
6 (Win bnj − bin Wnj)

]

Inhomogeneous turbulent diffusion

The inhomogeneous turbulent diffusion term is closed by the following model :

du
ij =

∫ +∞

0
CD

[

νT ν(3/4 m−1/2) kmϕij,n

]

,n
(3.38)

where the turbulent viscosity is defined by

νT =
∫ +∞

0

√
k E

k2
dk (3.39)

Its integration leads to

νT = −1

2
β1/2 ε(1) 1/3

[

3

2
k−4/3

η − 17

6
k
−4/3
L

]

(3.40)

that can be rewritten as

νT = β1/2 ε(1) 1/3 k
−4/3
l

[

17

12
− 3

4

(

kL

kη

)4/3]

(3.41)
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and, for

kL =
ε(1)

K3/2
(3.42)

the turbulent viscosity can be expressed as :

νT = β1/2 K2

ε(1)

[

17

12
− 3

4

(

kL

kη

)4/3]

(3.43)

The ratio of the large scales and the Kolmogorov scale is a function of the turbulent
Reynolds number

kL

kη

= R
−3/4
t

(

ε(1)

ε(2)

)3/2

(3.44)

and, therefore, can be neglected for high Reynolds number approximation. The turbulent
diffusive transport can then be written as :

du
ij ∼ C

(m)
D

[

K2

ε(1)

(

ε(1) 2/3 k
(m−2/3)
L T

(m)
ij

)

,n

]

,n
(3.45)

The slow term

The slow term is defined by

ΦS
ij =

∫ +∞

0
−k(m+3/2) CM 2 ϕ3/2 hij dk (3.46)

which can be rewritten as :

ΦS
ij = −2 CM bij

∫ +∞

0
k(m+3/2) ϕ3/2 f dk (3.47)

In the case of m < 2/3, this integral can be approximated by :

ΦS
ij ∼ −β

S(m)
1 bij ε(1) km

L (3.48)

The nonlinear spectral transfer

The nonlinear spectral transfer term is here defined by

TNL
ij =

∫ +∞

0
km

[

− c1
∂

∂k

(

k5/2 ϕ1/2 ϕij

)

+ c2
∂

∂k

(

k7/2 ϕ1/2 ∂ϕij

∂k

)]

dk (3.49)

This term again does not, by definition, give any contribution in the physical space when
m = 0 and its integration is given for the other values within the −5 < m < 2/3 interval.
The major contribution is

TNL
ij ∼ c

(m)
1 ε(1) km

L

Rij

K
(3.50)
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Synthesis

We can now summarize the integration of the source term in the transport equation
for the variable ε(1) 2/3 k

(m−2/3)
L T

(m)
ij in the interval −5 < m < 2/3. Depending on the value

of m, four different expressions can be distinguished, corresponding to the four ranges or
values of m.

When −5 < m < −4/3,

d

dt

[

ε(1) 2/3 k
(m−2/3)
L T

(m)
ij

]

= − 2 ν ε(1) 2/3 k(m+4/3)
η

2

3
δij

+ ε(1) (2/3) kL
(m−2/3)

(

2 c
(m)
2 Sij

+ c
(m)
3 bpqV p,q δij

+ c
(m)
5 [bin V j,n + bjn V i,n + bin V n,j + bjn V n,i]

)

− ε(1) 2/3 k
(m−2/3)
L

[

T
(m)
ik V j,k + T

(m)
jk V i,k

]

+ ε(1) 2/3 k
(m−2/3)
L

[

β
(m)
3 Sij

+ β
(m)
4 (bin Sjn + bjn Sin − 2

3
bpnSpn δij)

+ β
(m)
6 (Win bnj − bin Wnj)

]

−β
S(m)
1 ε(1) km

L bij

+ c
(m)
1 ε(1) km

L

Rij

K

+
[(

ν δpq + C
(m)
D

K2

ε(1)
δpq

) (

ε(1) 2/3 k
(m−2/3)
L T

(m)
ij

)

,p

]

,q

When −4/3 < m < −2/3,

d

dt

[

ε(1) 2/3 k
(m−2/3)
L T

(m)
ij

]

= − 2 ν ε(1) 2/3 k(m+4/3)
η

2

3
δij

+ ε(1) (2/3) kL
(m−2/3)

(

2 c
(m)
2 Sij

+ c
(m)
3 bpqV p,q δij

+ c
(m)
5 [bin V j,n + bjn V i,n + bin V n,j + bjn V n,i]

)

− ε(1) 2/3 k
(m−2/3)
L

[

T
(m)
ik V j,k + T

(m)
jk V i,k

]

+ ε(1) 2/3 k
(m−2/3)
L

[

β
(m)
3 Sij
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+ β
(m)
4 (bin Sjn + bjn Sin − 2

3
bpnSpn δij)

+ β
(m)
6 (Win bnj − bin Wnj)

]

−β
S(m)
1 ε(1) km

L bij

+ c
(m)
1 ε(1) km

L

Rij

K

+
[(

ν δpq + C
(m)
D

K2

ε(1)
δpq

) (

ε(1) 2/3 k
(m−2/3)
L T

(m)
ij

)

,p

]

,q

When −2/3 < m and m 6= 0,

d

dt

[

ε(1) 2/3 k
(m−2/3)
L T

(m)
ij

]

= − 2 ν ε(1) 2/3 k(m+4/3)
η

[

fε(m+2)

Rij

K
+ (1 − fε(m+2))

2

3
δij

]

+ ε(1) (2/3) kL
(m−2/3)

(

2 c
(m)
2 Sij

+ c
(m)
3 bpqV p,q δij

+ c
(m)
5 [bin V j,n + bjn V i,n + bin V n,j + bjn V n,i]

)

− ε(1) 2/3 k
(m−2/3)
L

[

T
(m)
ik V j,k + T

(m)
jk V i,k

]

+ ε(1) 2/3 k
(m−2/3)
L

[

β
(m)
3 Sij

+ β
(m)
4 (bin Sjn + bjn Sin − 2

3
bpnSpn δij)

+ β
(m)
6 (Win bnj − bin Wnj)

]

−β
S(m)
1 ε(1) km

L bij

+ c
(m)
1 ε(1) km

L

Rij

K

+
[(

ν δpq + C
(m)
D

K2

ε(1)
δpq

) (

ε(1) 2/3 k
(m−2/3)
L T

(m)
ij

)

,p

]

,q

where

fε(m+2) =
(

kL

kη

)2/3

When m = 0,

d

dt

[

ε(1) 2/3 k
(m−2/3)
L T

(m)
ij

]

= − 2 ν ε(1) 2/3 k(m+4/3)
η

[

fε(m+2)

Rij

K
+ (1 − fε(m+2))

2

3
δij

]

− ε(1) 2/3 k
(m−2/3)
L

[

T
(m)
ik V j,k + T

(m)
jk V i,k

]

52
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+ ε(1) 2/3 k
(m−2/3)
L

[

β
(m)
3 Sij

+ β
(m)
4 (bin Sjn + bjn Sin − 2

3
bpnSpn δij)

+ β
(m)
6 (Win bnj − bin Wnj)

]

−β
S(m)
1 ε(1) km

L bij

+
[(

ν δpq + C
(m)
D

K2

ε(1)
δpq

) (

ε(1) 2/3 k
(m−2/3)
L T

(m)
ij

)

,p

]

,q

where

fε(m+2) =
(

kL

kη

)2/3

3.3.2 Transport equation for the variable ε(1) 2/3 k(m−2/3)
η T

(m)
ij

We consider now the integration of I(m) in the interval 4/3 < m, which leads to the
derivation of the transport equation for the dissipation, when m = 2. For this purpose, as
pointed out in the appendix G, it is convenient to express the Kolmogorov scale in terms
of viscosity so that

ε(1) 2/3 k(m−2/3)
η = ν− (3/4 m−1/2) ε(2) (3/4 m−1/2) ε(1) (1−m/2) (3.55)

so that the we can focus on the integration of the equation for the variable

ε(2) (3/4 m−1/2) ε(1) (1−m/2) T
(m)
ij (3.56)

which corresponds to the integration of

∫ +∞

0
ν(3/4 m−1/2) km ϕij dk (3.57)

instead of
∫ +∞

0
km ϕij dk (3.58)

We consider again the separately each term in the equation.

Unsteady and convective terms

This integration is again straightforward :

d

dt

[

ν(3/4 m−1/2)
∫ +∞

0
km ϕij dk

]

∼ d

dt

[

ε(2) (3/4 m−1/2) ε(1) (1−m/2) T
(m)
ij

]

(3.59)

when 4/3 < m
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Viscous diffusion term

The viscous diffusion term is written as :

dν
ij =

∫ +∞

0
ν

[

ν(3/4 m−1/2) km ϕij,nn

]

dk (3.60)

=
∫ +∞

0
ν(3/4 m+1/2) km ϕij dk

so that

dν
ij = ν

[

ε(2) (3/4 m−1/2) ε(1) (1−m/2) T
(m)
ij

]

,nn
(3.61)

Viscous dissipation term

The homogeneous part of the viscous dissipation process is here defined as :

εh
ij =

∫ +∞

0
−2 ν k2

[

ν(3/4 m−1/2) km ϕij

]

dk (3.62)

=
∫ +∞

0
−2 ν(3/4 m+1/2) k(m+2) ϕij dk

The evaluation of the principal term of this integral is done here for the case where
4/3 < m. This is rather straightforward since the term can be treated as the variable
itself. Expressing the molecular viscosity and the Kolmogorov length scale in terms of the
turbulent Reynolds number and the transfer rates leads to :

εh
ij ∼ R

1/2
t ε(2) (3/4 m+3/2) ε(1) (−m/2) K−1 T

(m+2)
ij (3.63)

where

T
(m+2)
ij =

[

fε(m+2)

Rij

K
+ (1 − fε(m+2))

2

3
δij

]

(3.64a)

and

fε(m+2) = R
−1/2
t

ε(1)

ε(2)
(3.64b)

It should be noted that the dissipation is here expressed in terms of a positive exponent of
the turbulent Reynolds number. This form of the homogeneous dissipation contribution
can a priori lead to an infinite value when the turbulent Reynolds number is high, what
is in contradiction to the physical process of the dissipation. However the process of the
dissipation is counterbalanced by the transfer term and, together with it, it will lead to a
closed finite valued model. This is shown below after the derivation of the expression for
the non linear transfer itself.
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The linear spectral transfer term

This term is defined by

TL
ij =

∫ +∞

0
ν(3/4 m−1/2) km V p,q

∂

∂k

[

k Xijpq

]

dk (3.65)

Its integration involves the evaluation of integrals such as

J ′
ij =

∫ +∞

0
km ∂

∂k

[

k 2 ϕ hij

]

dk (3.66a)

J ′ =
∫ +∞

0
km ∂

∂k

[

k 2 ϕ
]

dk (3.66b)

which, again, can be expressed in terms of

Jij =
∫ +∞

0
km 2 ϕ hij dk (3.67a)

J =
∫ +∞

0
km 2 ϕ dk (3.67b)

For 4/3 < m the above two integrals can be approximated by

Jij ∼ bij ε(1) (2/3) kL
2/3 kη

(m−4/3) (3.68a)

J ∼ ε(1) (2/3) kη
(m−2/3) (3.68b)

The linear spectral transfer can then be written as

TL
ij ∼ ε(1)(1−m/2) ε(2)(3/4m−1/2) K−1

(

2 c
(m)
2 Sij (3.69)

+ c
(m)
3 fε(m) bpqV p,q δij

+ c
(m)
5 fε(m) [bin V j,n + bjn V i,n + bin V n,j + bjn V n,i]

)

where

fε(m) =
(

kl

kη

)2/3

Production terms

The integration of the production terms consists in the evaluation of

Pij =
∫ +∞

0
ν(3/4 m−1/2) km

[

− ϕnj V i,n − ϕin V j,n

]

dk (3.70)

yielding simply :

Pij ∼ − ε(2) (3/4 m−1/2) ε(1) (1−m/2)
[

T
(m)
ik V j,k + T

(m)
jk V i,k

]

(3.71)

or,

Pij ∼ − ε(2) (3/4 m−1/2) ε(1) (1−m/2) (3.72)
[

(1 − fε(m))
2

3

(

V i,j + V j,i

)

+ fε(m)

(

Rnj V i,n + Rin V j,n

)]
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The rapid term

By definition the rapid term contribution is :

ΦR
ij =

∫ +∞

0
ν(3/4 m−1/2) km 2 ϕ

[

β3 Sij (3.73)

+ β4 (hin Sjn + hjn Sin − 2

3
hpnSpn δij)

+ β6 (Win hnj − hin Wnj)
]

dk

Its integration involves the following integrals :

Jij =
∫ +∞

0
km 2 ϕ hij dk (3.74a)

J =
∫ +∞

0
km 2 ϕ dk (3.74b)

As long as 4/3 < m, they can be approximated by :

Jij ∼ bij ε(1) (2/3) kL
2/3 kη

(m−4/3) (3.75a)

J ∼ ε(1) (2/3) kη
(m−2/3) (3.75b)

Therefore, the rapid term can be written as

ΦR
ij ∼ ε(1)(1−m/2) ε(2)(3/4m−1/2)

[

β
(m)
3 Sij (3.76)

+ β
(m)
4 fε(m) (bin Sjn + bjn Sin − 2

3
bpnSpn δij)

+ β
(m)
6 fε(m) (Win bnj − bin Wnj)

]

with again

fε(m) =
(

kl

kη

)2/3

where the scales have been expressed in a more convenient way.

Turbulent diffusion term

The turbulent diffusion term is closed by the following model :

du
ij =

∫ +∞

0
CD

[

νT ν(3/4 m−1/2) kmϕij,n

]

,n
(3.77)

where the turbulent viscosity is defined by

νT =
∫ +∞

0

√
k E

k2
dk (3.78)
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Its integration leads to

νT = −1

2
β1/2 ε(1) 1/3

[

3

2
k−4/3

η − 17

6
k
−4/3
L

]

(3.79)

This integral can be approximated by

νT ∼ β1/2 K2

ε(1)
(3.80)

If the diffusion coefficient CD is assumed to be independent of the wave number, the
diffusion term can rewritten as :

du
ij = CD

[
∫ +∞

0
νT

(

ν(3/4 m−1/2) kmϕij

)

,n

]

,n
(3.81)

For 4/3 < m, this integral can be approximated by

du
ij ∼ C

(m)
D

[

K2

ε(1)

(

ε(2) (3/4 m−1/2) T
(m)
ij

)

,n

]

,n
(3.82)

The simplicity of the expression for the diffusion term, compared to that in one-point
Reynolds stress model, is due to the scalar character of the turbulent eddy viscosity
adopted in the spectral diffusion term.

The slow term

The slow term is defined by

ΦS
ij =

∫ +∞

0
−ν(3/4 m−1/2) k(m+3/2) CM 2 ϕ3/2 hij dk (3.83)

which can be rewritten as :

ΦS
ij = −2 CM bij

∫ +∞

0
ν(3/4 m−1/2) k(m+3/2) ϕ3/2 f dk (3.84)

In the case of 4/3 < m this integral can be approximated as :

ΦS
ij ∼ −β

S(m)
1 bij ν(3/4 m−1/2) ε(1) k

2/3
L k(m−2/3)

η (3.85)

that can be rewritten as

ΦS
ij ∼ −β

S(m)
1 ε(2) (3/4 m−1/2) ε(1) (−1/2 m+2) K−1 bij (3.86)
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The nonlinear spectral transfer

The nonlinear spectral transfer term is here defined by

TNL
ij =

∫ +∞

0
ν(3/4 m−1/2) km

[

− c1
∂

∂k

(

k5/2 ϕ1/2 ϕij

)

+ c2
∂

∂k

(

k7/2 ϕ1/2 ∂ϕij

∂k

)]

dk (3.87)

The major contribution for m > 4/3 is here

TNL
ij ∼ ν(3/4 m−1/2) ε(1) km

η

[(

kL

kη

)2/3 Rij

K
+

(

1 −
(

kL

kη

)2/3) 2

3
δij

]

(3.88)

which can be rewritten as :

TNL
ij ∼ ν(3/4 m−1/2) ε(1) km

η T
(m)
ij (3.89)

where

T
(m)
ij =

[

fε(m)

Rij

K
+

(

1 − fε(m)

)

2

3
δij

]

and

fε(m) =
(

kL

kη

)2/3

Expressing the viscosity in terms of the Reynolds number yields :

TNL
ij ∼ R

1/2
t K−1 ε(1−1/2 m) ε(2) (3/4 m+1/2) T

(m)
ij (3.90)

This term involves again a positive exponent of the turbulent Reynolds number. This is
expected to be balanced by the dissipation action. Rewriting the term in terms of the
dissipation, as T

(m)
ij = T

(m+2)
ij , leads to :

TNL
ij ∼ R

1/2
t K−1 ε(1)

ε(2)
ε(−1/2 m) ε(2) (3/4 m+3/2) T

(m+2)
ij (3.91)

Hence, writing these terms together yields

TNL
ij − εh

ij ∼ c1(m) R
1/2
t K−1

(

1 − ε(1)

ε(2)

)

ε(−1/2 m) ε(2) (3/4 m+3/2) T
(m+2)
ij (3.92)

It is seen now that the right hand side has a finite value, as long as

R
1/2
t

(

1 − ε(1)

ε(2)

)

is always finite. This means that the transfer of energy by self stretching of the vortex
filaments and the dissipation by viscous effect balance each other. When the turbulent
Reynolds number tends to be infinite, the turbulence evolves to an equilibrium state,
where ε(1) = ε(2). Hence, although the Reynolds number can be very large, the group
(1−ε(1)/ε(2)) is expected to approach zero in the same time, resulting in a bounded value.
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It should be recognized that the presence of this term can be inconvenient for prac-
tical prediction of complex non-equilibrium flows. For non-equilibrium flows at very high
turbulent Reynolds number Rt where ε1 and ε2 may still be different, a delicate imbalance
between these two quantities needs to be predicted from the model equations to keep this
term finite, yet sufficiently small. This issue and an alternative form of modelling the term
in question will be discussed later in this report.

Synthesis

The transport equation for the quantity ν(3/4 m−1/2) ε(1) 2/3 k(m−2/3)
η T

(m)
ij for 4/3 < m

can be summarized as :

d

dt

[

ε(2) (3/4 m−1/2) ε(1) (1−m/2) T
(m)
ij

]

=

−c1(m) R
1/2
t

(

1 − ε(1)

ε(2)

)

ε(2) (3/4 m+3/2) ε(1) (−m/2) K−1 T
(m+2)
ij

+ ε(1)(1−m/2) ε(2)(3/4m−1/2)
(

2 c
(m)
2 Sij

+ c
(m)
3 fε(m) bpqV p,q δij

+ c
(m)
5 fε(m) [bin V j,n + bjn V i,n + bin V n,j + bjn V n,i]

)

− ε(2) (3/4 m−1/2) ε(1) (1−m/2)

(

(1 − fε(m))
2

3
[V i,j + V j,i] + fε(m) [Rnj V i,n + Rin V j,n]

)

+ ε(1)(1−m/2) ε(2)(3/4m−1/2)
(

β
(m)
3 Sij

+ β
(m)
4 fε(m) [bin Sjn + bjn Sin − 2

3
bpnSpn δij ]

+ β
(m)
6 fε(m) [Win bnj − bin Wnj]

)

−β
S(m)
1 ε(2) (3/4 m−1/2) ε(1) (−1/2 m+2) K−1 bij

+
[(

ν δpq + C
(m)
D

K2

ε(1)
δpq

) (

ε(2) (3/4 m−1/2) ε(1) (1−m/2) T
(m)
ij

)

,p

]

,q

3.3.3 Summary of the derived transport equations

We can now summarize the outcome of the above analysis and the resulting three
transport equations obtained for three specific values of the parameter m :

Reynolds stress equation (m = 0)

d

dt

[

ε(1) 2/3 k
−2/3
L T

(0)
ij

]

= − 2 ν ε(1) 2/3 k4/3
η

[

fε(2)

Rij

K
+ (1 − fε(2))

2

3
δij

]
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− ε(1) 2/3 k
−2/3
L

[

T
(0)
ik V j,k + T

(0)
jk V i,k

]

+ ε(1) 2/3 k
−2/3
L

[

β
(0)
3 Sij

+ β
(0)
4 (bin Sjn + bjn Sin − 2

3
bpnSpn δij)

+ β
(0)
6 (Win bnj − bin Wnj)

]

−β
S(0)
1 ε(1) bij

+
[(

ν δpq + C
(0)
D

K2

ε(1)
δpq

) (

ε(1) 2/3 k
−2/3
L T

(0)
ij

)

,p

]

,q

where

T
(0)
ij =

Rij

K

T
(2)
ij = fε(2)

Rij

K
+ (1 − fε(2))

2

3
δij

fε(2) =
(

kL

kη

)2/3

Knowing that

kL =
ε(1)

K3/2

ν ε(1) 2/3 k4/3
η = ε(2)

the equation becomes :

d

dt

[

Rij

]

= − ε(2)
[

fε(2)

Rij

K
+ (1 − fε(2))

2

3
δij

]

−
[

Rik V j,k + Rjk V i,k

]

+ K
[

β
(0)
3 Sij

+ β
(0)
4 (bin Sjn + bjn Sin − 2

3
bpnSpn δij)

+ β
(0)
6 (Win bnj − bin Wnj)

]

−β
S(0)
1 ε(1) bij

+
[(

ν δpq +
C

(0)
K

σ
(0)
K

K2

ε(1)
δpq

) (

Rij

)

,p

]

,q

It should be noted that the model for the homogeneous part of the dissipation tensor is :

εh
ij = ε(2)

[

fε(2)

Rij

K
+ (1 − fε(2))

2

3
δij

]

(3.98)
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where the damping function is defined in terms of the turbulent Reynolds number :

fε(2) = R
−1/2
t

(

ε(1)

ε(2)

)

For high Reynolds numbers this expression reduces to the isotropic model

εh
ij =

2

3
ε(2) δij (3.99)

The large scale equation (m = −1)

As noted earlier, the length scale tensor is defined by the following model :

K Λij =
K3/2

ε(1)
Rij (3.100)

and its anisotropy tensor λij =
Λij

2L
− 1

3
δij ( where L = K3/2/ε(1)) is directly related to the

stress anisotropy, i.e.
λij = bij (3.101)

The transport equation for the large scale variable is :

d

dt

[

ε(1) 2/3 k
−5/3
L T

(−1)
ij

]

= − 2 ν ε(1) 2/3 k1/3
η

2

3
δij

+ ε(1) (2/3) kL
−5/3

(

2 c
(−1)
2 Sij

+ c
(−1)
3 bpqV p,q δij

+ c
(−1)
5 [bin V j,n + bjn V i,n + bin V n,j + bjn V n,i]

)

− ε(1) 2/3 k
−5/3
L

[

T
(−1)
ik V j,k + T

(−1)
jk V i,k

]

+ ε(1) 2/3 k
−5/3
L

[

β
(−1)
3 Sij

+ β
(−1)
4 (bin Sjn + bjn Sin − 2

3
bpnSpn δij)

+ β
(−1)
6 (Win bnj − bin Wnj)

]

−β
S(−1)
1 ε(1) k−1

L bij

+ c
(−1)
1 ε(1) k−1

L

Rij

K

+
[(

ν δpq + C
(−1)
D

K2

ε(1)
δpq

) (

ε(1) 2/3 k
−5/3
L T

(−1)
ij

)

,p

]

,q

where

T
(−1)
ij =

Rij

K
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Knowing that

kL =
ε(1)

K3/2

ν ε(1) 2/3 k4/3
η = ε(2)

the equation can be rewritten as :

d

dt

[

K Λij

]

= − 2
(

ε(1)

ε(2)

)−1/2

K3/2 R
−3/4
t

2

3
δij

+
K5/2

ε(1)

(

2 c
(−1)
2 Sij

+ c
(−1)
3 λpqV p,q δij

+ c
(−1)
5 [λin V j,n + λjn V i,n + λin V n,j + λjn V n,i]

)

−K
[

Λik V j,k + Λjk V i,k

]

+
K5/2

ε(1)

[

β
(−1)
3 Sij

+ β
(−1)
4 (λin Sjn + λjn Sin − 2

3
λpnSpn δij)

+ β
(−1)
6 (Win λnj − λin Wnj)

]

−β
S(−1)
1 K3/2 λij

+ c
(−1)
1 ε(1) Λij

+
[(

ν δpq + C
(−1)
D

K2

ε(1)
δpq

) (

K Λij

)

,p

]

,q

Taking the trace of this expression leads to the following scalar length scale equation :

d

dt

[

K5/2

ε(1)

]

= −C
(1)
KL1

K3/2

ε(1)
Rpq V p,q

−C
(1)
KL2

K3/2

−C
(1)
KL3

(

ε(1)

ε(2)

)−1/2

K3/2 R
−3/4
t

+
[(

ν δpq +
C

(1)
KL

σ
(1)
KL

K2

ε(1)
δpq

) (

K5/2

ε(1)

)

,p

]

,q

The small scale equation

Recalling that the homogeneous dissipation rate tensor is defined as :

εh
ij = ε(2)

[

fε(2)

Rij

K
+ (1 − fε(2))

2

3
δij

]

(3.107)
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where

fε(2) = R
−1/2
t

(

ε(1)

ε(2)

)

Again its anisotropy tensor can be directly expressed in terms of the Reynolds’ stress
anisotropy tensor, as :

eh
ij = fε(2) bij (3.108)

The transport equation for the small-scale variable is :

d

dt

[

ε(2) T
(2)
ij

]

= − c
(2)
1 R

1/2
t

(

1 − ε(1)

ε(2)

)

ε(2) 3

ε(1)
K−1 T

(4)
ij

+ ε(2)
(

2 c
(2)
2 Sij

+ c
(2)
3 fε(2) bpqV p,q δij

+ c
(2)
5 fε(2) [bin V j,n + bjn V i,n + bin V n,j + bjn V n,i]

)

− ε(2)
(

(1 − fε(2))
2

3
[V i,j + V j,i] + fε(2) [Rnj V i,n + Rin V j,n]

)

+ ε(2)
(

β
(2)
3 Sij

+ β
(2)
4 fε(2) [bin Sjn + bjn Sin − 2

3
bpnSpn δij ]

+ β
(2)
6 fε(2) [Win bnj − bin Wnj]

)

−β
S(2)
1 ε(2) ε(1) K−1 bij

+
[(

ν δpq + C
(2)
D

K2

ε(1)
δpq

) (

ε(2) T
(2)
ij

)

,p

]

,q

Substituting

T
(4)
ij = fε(2)

Rij

K
+ (1 − fε(2))

2

3
δij

T
(2)
ij = fε(2)

Rij

K
+ (1 − fε(2))

2

3
δij

fε(2) =
(

kL

kη

)2/3

the equation can be rewritten as :

d

dt

[

εh
ij

]

= c
(2)
1 R

1/2
t

ε(2)

K

(

1 − ε(2)

ε(1)

)

εh
ij

+ ε(2)
(

2 c
(2)
2 Sij

+ c
(2)
3 eh

pqV p,q δij
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+ c
(2)
5 [eh

in V j,n + eh
jn V i,n + eh

in V n,j + eh
jn V n,i]

)

−
[

εh
ik V j,k + εh

jk V i,k

]

+ ε(2)
(

β
(2)
3 Sij

+ β
(2)
4 [eh

in Sjn + eh
jn Sin − 2

3
eh

pnSpn δij ]

+ β
(2)
6 [Win eh

nj − eh
in Wnj]

)

−β
S(2)
1 ε(2) ε(1) K−1 bij

+
[(

ν δpq + C
(2)
D

K2

ε(1)
δpq

) (

εh
ij

)

,p

]

,q

The transport equation of the scalar homogeneous dissipation rate is the trace of the
former equation :

d

dt

[

ε(2)
]

= −C(2)
ε1

ε(2) eh
pq V p,q

−C(2)
ε2

R
1/2
t

ε(2) 2

K

(

1 − ε(2)

ε(1)

)

+
[(

ν δpq + C
(2)
D

K2

ε(1)
δpq

) (

ε(2)
)

,p

]

,q

that can again be rewritten as :

d

dt

[

ε(2)
]

= −C(2)
ε1

R
−1/2
t ε(1) K−1 Rpq V p,q

−C(2)
ε2

R
1/2
t

ε(2) 2

K

(

1 − ε(2)

ε(1)

)

+
[(

ν δpq +
C(2)

ε

σ
(2)
ε

K2

ε(1)
δpq

) (

ε(2)
)

,p

]

,q

3.3.4 Comments

The variables adopted here are basically the Reynolds stress tensor Rij , the charac-
teristic length scale of the energy containing eddies L from which the length scale tensor
Λij is obtained, and the dissipation tensor εh

ij. Some comments, summarizing major as-
sumptions used in deriving the equation and their interpretation are given below.

Homogeneous and nonhomogeneous contribution to dissipation

It can be noted that, as a first approximation, the homogeneous part of the dissipation
tensor has been identified as the dissipation tensor, and therefore the parts including a
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viscous dissipation-like term has been neglected in the equations. According to the study
of the low-Reynolds number fully developed channel flow of Jovanovic et al. (1992), this
term may be of importance for treating the near-wall region and satisfying the wall limits
of the dissipation rate tensor. Such an approach was also proposed by Shima (1995) and
? (?), though the performances of such modifications have not been tested in detail. This
splitting of the dissipation into a homogeneous and nonhomogeneous part can be later
reintegrated into the previous equations.

Dissipation rate tensor

The expression for the dissipation rate tensor arising from the spectral hypothesis has
here the same form as the algebraic expression of Hanjalić and Launder (1976)

εij = (1 − f (2)
ε )

2

3
ε(2) δij + f (2)

ε ε(2) Rij

K
(3.114)

where the damping function also depends on the turbulent Reynolds number, though in
a somewhat different manner :

f (2)
ε =

1

1 + Rt/10
(3.115)

In the present study the closure is formulated using only the homogeneous part :

εh
ij = (1 − f (2)

ε )
2

3
ε(2) δij + f (2)

ε ε(2) Rij

K
(3.116)

where the damping function in terms of turbulent Reynolds number, is defined by :

f (2)
ε = R

−1/2
t

(

ε(1)

ε(2)

)

(3.117)

Transport equation of the dissipation rate tensor

The transport equation for the homogeneous dissipation rate tensor can now be written
in the following form :

d

dt

[

εh
ij

]

= c
(2)
1 R

1/2
t

ε(2)

K

(

1 − ε(2)

ε(1)

)

εh
ij

−
[

εh
ik V j,k + εh

jk V i,k

]

+ ε(2)
(

(β
(2)
3 + 2 c

(2)
2 ) Sij

+ (β
(2)
4 + 2 c

(2)
5 ) [eh

in Sjn + eh
jn Sin − 2

3
eh

pnSpn δij]

+ β
(2)
6 [Win eh

nj − eh
in Wnj ]
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+ (c
(2)
3 +

1

3
c
(2)
5 ) eh

pnSpn δij

)

−β
S(2)
1 R

1/2
t

ε(2) 2

K
eh

ij

+
[(

ν δpq + C
(2)
D

K2

ε(1)
δpq

) (

εh
ij

)

,p

]

,q

This form resembles the equation obtained recently by Speziale and Gatski (1997)
using a functional analysis, which for homogeneous turbulence reads :

d

dt

[

εij

]

=
ε(2)

K

(

− Cε1

Rmn V m,n

ε(2)
− Cε2

)

2

3
ε(2) δij

−
[

εik V j,k + εjk V i,k

]

+ ε(2)
(

β3 Sij

+ β4 [ein Sjn + ejn Sin − 2

3
epnSpn δij ]

+ β6 [Win enj − ein Wnj ]

+ cR epnSpn δij

)

−βS
1

ε(2) 2

K
eij

where

Cε1 = 1.0 Cε2 = 1.83

β3 =
16

15
β4 =

(30 α + 20)

11
β6 = −(14 α − 20)

11
cR = −(42 α − 16)

33
α = 0.6

βS
1 = 5.80

or, by inserting the values of α = 0.6 :

Cε1 = 1.00 Cε2 = 1.83

β3 = 1.067 β4 = 3.454 β6 = 1.054 cR = −0.278

βS
1 = 5.800

It can be noted that the coefficient in the return to isotropy term here is constant,
whereas in the equation derived from the spectral model a dependency on the turbulent
Reynolds number appears naturally. This term can be rewritten in terms of the Kolmo-
gorov time scale defined as :

T =

√

ν

ε(2)
= R

−1/2
t

K

ε(2)
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Therefore, it follows that the Kolmogorov time scale is the characteristic time of the return
to isotropy of the dissipative motion, i.e. :

β
S(2)
1 R

1/2
t

ε(2)

K
eh

ij = β
S(2)
1

1

T
eh

ij

As noted by Speziale and Gatski (1997), this would suggest that at relatively high
turbulent Reynolds number in a near-homogeneous flow the dissipative structure evolves
rapidly towards an isotropic state, although recent experiments and DNS indicate that
small scales anisotropies can persist and can not be disregarded. They therefore suggested
that a most suitable characteristic time scale should be a combined scale based on both
the Kolmogorov time scale and the energy-containing turbulence time scale, a proposition
already introduced by Durbin (1993), though in a context of near-wall modifications, who
suggested

T = max
[

K

ε
, CK

√

ν

ε

]

where CK ≈ 6 as chosen by Durbin (1993). The same hybrid time scale T can be used in
the return to isotropy term in the model equation derived here for εh

ij.

The second remark concerns the way in which the nonequilibrium is taken into account.
The balance between the production by non-linear vortex stretching and the viscous
destruction mechanism is in the Speziale and Gatski (1997) model represented in the
classical way, used in almost every K − ε or Rij − ε closures. The difference between
these two terms represents the total source which governs the dissipation equation at
high-Reynolds number in an homogeneous flow

Sε
ij =

ε(2)

K

(

− Cε1

Rmn V m,n

ε(2)
− Cε2

)

2

3
ε(2) δij (3.122)

whereas in the present formulation the total source in the limit of high Reynolds numbers
is given by :

Sε
ij = c

(2)
1 R

1/2
t

ε(2)

K

(

1 − ε(2)

ε(1)

)

εh
ij (3.123)

In order to explain this difference, we will consider the form of the model in the
equilibrium limit. In the case when a homogeneous turbulence reaches an equilibrium
state, the rate at which the small scales are dissipated into heat is the same as the rate
at which the kinetic energy is transferred through the spectrum from larger to smaller
eddies. This is the Kolmogorov (1941) hypothesis, based also on the assumption that the
turbulence Reynolds number is high. Therefore, in such a situation, both of the following
conditions are expected to be satisfied :

ε(1) = ε(2) (3.124a)

Rt → ∞ (3.124b)
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From the Reynolds stress equation one can derive the kinetic energy equation by taking
the trace :

d

dt

[

K
]

= − ε(2)

−Rpq V p,q

+
[(

ν δpq +
CK

σK

K2

ε(1)
δpq

) (

K
)

,p

]

,q

The length scale equation is recalled again

d

dt

[

K5/2

ε(1)

]

= −C
(1)
KL1

K3/2

ε(1)
Rpq V p,q

−C
(1)
KL2

K3/2

−C
(1)
KL3

(

ε(1)

ε(2)

)−1/2

K3/2 R
−3/4
t

+
[(

ν δpq +
C

(1)
KL

σ
(1)
KL

K2

ε(1)
δpq

) (

K5/2

ε(1)

)

,p

]

,q

When the flow is homogeneous, the diffusion and the convection of the turbulent quantities
can be neglected so that

dε(1)

dt
=

5

2

ε(1)

K

dK

dt
− ε(1) 2

K5/2

d

dt

(

K5/2

ε(1)

)

(3.127)

The ε(1) equation reduces in the case of a homogeneous flow to :

dε(1)

dt
=

(

C
(1)
KL1

− 5

2

)

ε(1)

K
Rmn V m,n

− 5

2

ε(1) ε(2)

K

+ C
(1)
KL2

ε(1) 2

K

+ C
(1)
KL3

ε(1) 2

K

(

ε(1)

ε(2)

)−1/2

R
−3/4
t

The homogeneous approximation of the equation for the viscous dissipation rate is :

dε(2)

dt
= −C(2)

ε1
R

−1/2
t ε(1) K−1 Rpq V p,q

−C(2)
ε2

R
1/2
t

ε(2) 2

K

(

1 − ε(2)

ε(1)

)
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Then, in the limit of an equilibrium state, this equation becomes

dε(2)

dt
=

(

C
(1)
KL1

− 5

2

)

ε(2)

K
Rmn V m,n

+
(

C
(1)
KL2

− 5

2

)

ε(2) 2

K

where ε(1) = ε(2) and the turbulent Reynolds number is very large. Hence, the comparison
between the two equations yields

lim
ε(1) → ε(2)

[

R
1/2
t

ε(2) 2

K

(

1 − ε(2)

ε(1)

)]

=
(

C
(1)
KL1

− 5

2

)

ε(2)

K
Rmn V m,n

+
(

C
(1)
KL2

− 5

2

)

ε(2) 2

K

This suggest that the vortex stretching and the viscous dissipation mechanisms depend on
the production of kinetic energy by the mean velocity gradients in the limit of the equili-
brium assumption. This is not unrealistic, for this is precisely the major consequence of the
assumption for the spectrum equilibrium. This also gives a link between the coefficients
in the classical K − ε and Rij − ε closure for the equilibrium assumption.

An equation for the dissipation rate tensor for inhomogeneous turbulence has been
proposed by Tagawa et al. (1991). Their equation is also derived from functional expan-
sion, but includes an approximate expression for the diffusive terms. It was aimed at
improving the boundary layer and channel flow predictions. The derivation of that equa-
tion was directly inspired by the classical form of Launder et al. (1975) for the Reynolds
stress equation. A better basis for comparison for inhomogeneous flow is the more recent
proposal by Oberlack (1997). This equation has been derived from two-point correlations
and extended to inhomogeneous flows.

d

dt

[

εij

]

=
ε(2)

K

(

− Cε1

Rmn V m,n

ε(2)
− Cε2

)

2

3
ε(2) δij

−
[

εik V j,k + εjk V i,k

]

+ ε(2)
(

β3 Sij

+ β4 [ein Sjn + ejn Sin − 2

3
epnSpn δij ]

+ β6 [Win enj − ein Wnj]

+ cR epnSpn δij

)

−βS
1

ε(2) 2

K
eij

+
[(

ν δpq +
C(2)

ε

σ
(2)
ε

K

ε(1)
Rpq

) (

ε
(2)
ij

)

,p

]

,q
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where

Cε1 = 2.5 Cε2 = 1.92

β3 =
4

15
− 2 a0 +

64

15
a1 β4 =

8

5
− 32

5
a1 β6 =

4

5
+

112

15
a1 cR =

2

45

1

a0

(15 a0 + 4 + 14 a1)

a0 = 0.05 a1 = 0.00

βS
1 = (2 cε

R + 2 Cε2)
ε(2)

K
− 4

15

1

a0
(4 + 14 a1) emnSmn + 10 bmnSmn

cε
R = 0.8

which yield approximately :

Cε1 = 2.5 Cε2 = 1.92

β3 = 0.167 β4 = 1.600 β6 = 0.800 cR = 4.222

βS
1 = 5.440

ε(2)

K
− 21.333 emnSmn + 10.000 bmnSmn

The equation for the length scale tensor

Following the same pattern as for the dissipation rate equation, the tensorial length
scale equation can be rewritten as :

d

dt

[

K Λij

]

= − 2
(

ε(1)

ε(2)

)−1/2

K3/2 R
−3/4
t

2

3
δij

−K
[

Λik V j,k + Λjk V i,k

]

+
K5/2

ε(1)

(

(β
(−1)
3 + 2 c

(−1)
2 ) Sij

+ (β
(−1)
4 + 2 c

(−1)
5 ) [λin Sjn + λjn Sin − 2

3
λpnSpn δij ]

+ β
(−1)
6 [Win λnj − λin Wnj ]

+ (c
(−1)
3 +

1

3
c
(−1)
5 ) λpnSpn δij

)

−β
S(−1)
1 K3/2λij

+ c
(−1)
1 ε(1) Λij

+
[(

ν δpq + C
(−1)
D

K2

ε(1)
δpq

) (

K Λij

)

,p

]

,q

Using the definition of the large scale parameter, which is proportional to the trace of the
length scale tensor Λij, it has been set that

Λ = L (3.136)
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Eliminating the ε(1) contribution from the previous equation leads to

d

dt

[

K Λij

]

= − 2
(

ε(1)

ε(2)

)−1/2

K3/2 R
−3/4
t

2

3
δij

−K
[

Λik V j,k + Λjk V i,k

]

+ K Λ
(

(β
(−1)
3 + 2 c

(−1)
2 ) Sij

+ (β
(−1)
4 + 2 c

(−1)
5 ) [λin Sjn + λjn Sin − 2

3
λpnSpn δij ]

+ β
(−1)
6 [Win λnj − λin Wnj]

+ (c
(−1)
3 +

1

3
c
(−1)
5 ) λpnSpn δij

)

−β
S(−1)
1 K3/2 λij

+ c
(−1)
1

K3/2

Λ
Λij

+
[(

ν δpq + C
(−1)
D (K1/2 Λ) δpq

) (

K Λij

)

,p

]

,q

This closure shows some similarity with the expression proposed by Donaldson and Sandri
(1981) where

d

dt

[

K Λij

]

= −K
[

Λik V j,k + Λjk V i,k

]

−β
S(−1)
1 K3/2 λij

+ c
(−1)
1

K3/2

Λ
Λij

+
[(

ν δpq + C
(−1)
D (K1/2 Λ) δpq

) (

K Λij

)

,p

]

,q

with

β
S(−1)
1 = 1.25 (3.139a)

c−1
1 = −1.45 (3.139b)

These authors also proposed from their derivation an expression for the diffusive transport
which is of the same kind as the one here, but they neglect this term when considering
the homogeneous approximation of the equation, so that the diffusive coefficient remained
undetermined.
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Appendix A

Governing equations for one-point
statistical closure

This appendix contains details and notations of the governing equations for an incom-
pressible flow used in the one-point statistical closure.

A.1 Statistical description of the motion

In the Eulerian description of the fluid motion the dynamical variables are expressed
as functions depending on space and time. The flow is supposed to be incompressible and
the conservation of mass and momentum for an infinitesimal control volume is governed
by the following equations :

ui,i = 0 (A.1)

dui

dt
= −1

ρ
σij,j + fi (A.2)

where fi designs volume forces applied on the fluid and ui is the velocity component in
the ith direction. The index notations are adopted with the convention of summation on
repeated indices except when especially mentioned. The material derivative is defined as :

d.

dt
=

∂.

∂t
+ uk

∂.

∂xk

For a Newtonian fluid, the stress tensor σij can be written as :

σij = −p δij + 2µ (ui,j + uj,i) (A.3)

where p is the static pressure, µ is the dynamic viscosity and ρ is the density of the fluid
(here µ and ρ are assumed constant). δij is the Kronecker symbol. The Newtonian fluid
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hypothesis leads to the Navier-Stokes equations which, for an incompressible fluid, are :

ui,i = 0 (A.4)

dui

dt
= −1

ρ
p,i + ν ui,jj + fi (A.5)

where ν = µ/ρ is the kinematic viscosity of the fluid.

A.1.1 Reynolds averaged equations

The instantaneous turbulent motion is assumed to be fully described by the Navier-
Stokes equations that can, in principle, be solved numerically (Direct Numerical Simula-
tions). However, the presence of eddy structures of a wide range of sizes and characteris-
tic frequencies makes direct numerical simulation of the flow in complex geometries and
at higher Reynolds numbers still inaccessible to the currently available computers. For
the applications of practical interest, it is therefore still necessary to follow a statistical
approach by considering a form of the Navier-Stokes equation modified by an average
operation. The non-linearity of the convective terms of these equations leads to unknown
correlations between turbulent fluctuations, resulting in an open system of equations. The
closure of this system is achieved with the help of turbulence models that give algebraic
or differential equations to simulate the behaviour of the turbulent correlations.

A.1.2 The mean equations

The application of the Reynolds averaging to the Navier-Stokes equations leads to the
following transport equations for the mean velocity components :

V i,i = 0 (A.6)

d V i

dt
= −1

ρ
P ,i −

[

u′
iu

′
j

]

,j
+ ν V i,jj + F i (A.7)

where the fluctuating quantities are denoted by prime and the mean ones are overlined.
These equations differ from the instantaneous equations by the presence of the double
correlations (second moments) of the fluctuating velocities on the left hand side. These
correlations are interpreted as turbulent or Reynolds stress tensor Rij, half trace of which
defines the kinetic energy K. It should also be noted that the material derivative of the
mean flow now can be written as :

d.

dt
=

∂.

∂t
+ V k

∂.

∂xk

(A.8)
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A.1.3 Equations for fluctuating motion

Subtracting the governing equation for the mean motion from the equation for the
instantaneous flow yields the transport equation of the fluctuating motion :

u′
i,i = 0 (A.9)

du′
i

dt
= −1

ρ
p′,i − u′

jV i,j − (u′
iu

′
j − u′

iu
′
j),j

+ ν u′
i,jj + f ′

i (A.10)

In the following text the prime notations for fluctuating quantities ′ will be omitted for
more clarity. The above equation can be also written using an operator, i.e. :

ui,t + Li(u) = 0 (A.11)

A.2 Transport equation for one-point statistic quan-

tities

A.2.1 Governing equation for the second moment

The transport equations for the Reynolds stress tensor can be obtained from the
evolution equation for the fluctuating velocity and, for an incompressible flow, it can be
written as :

dRij

dt
= Pij + Gij + φij − εij + dp

ij + du
ij + dν

ij (A.12)

where Pij, Gij, φij , dp
ij, du

ij et dν
ij represent respectively the production by the mean

velocity gradients, the production by the body forces, the redistribution, the transport
by fluctuating pressure and by fluctuating velocity, and the diffusion by the molecular
viscosity. These terms are defined as :

Pij = −RikV j,k − RjkV i,k (A.13a)

Gij = (fiuj + fjui) (A.13b)

εij = 2 ν ui,kuj,k (A.13c)

φij =
1

ρ
p(ui,j + uj,i) (A.13d)

dp
ij = −1

ρ
[pui δjk + puj δik],k (A.13e)

du
ij = − [uiujuk],k (A.13f)

dν
ij = ν [uiuj],kk (A.13g)

The εij tensor is known as the rate of dissipation tensor, even if it does not exactly
represent this action. If the deformation (rate-of-strain) tensor of the fluctuating flow is
written as :

sij =
1

2
(ui,j + uj,i)
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the exact dissipation rate tensor is :

εr
ij = ν [ui,ksjk + uj,ksik] (A.14)

For incompressible flows εr
ij can be expressed as a function of εij :

εr
ij = εij + ν [uisjk + ujsik],k (A.15)

In this case, if the correlations between the fluctuating velocity and the fluctuating rate of
strain are supposed to be independent of their spatial location, both tensors are rigorously
identical. This is the case when statistical quantities are invariant to the spatial transla-
tion (homogeneous turbulence), or at high Reynolds number when the large-scale motion
represented by velocity fluctuations are expected to be uncorrelated with the small scale
motion represented by the fluctuating velocity derivatives, due to a large separation of
scales in the wave number or frequency domain.

The organization of different terms in the equation is, of course, not unique. The
notation adopted here is convenient since it shows explicitly the influence of the viscous
diffusion term. The classical decomposition of the original term involving the fluctuating
pressure into the pressure-strain and the pressure transport terms is also adopted :

Πij = φij + dp
ij (A.16)

where Πij is the velocity–pressure-gradient correlation tensor defined as :

Πij = −1

ρ
[uip,j + ujp,i] (A.17)

It should be noted that the transport terms are usually denoted as triple order tensor :

T u
ijk,k = du

ij (A.18a)

T p
ijk,k = dp

ij (A.18b)

These splitting can also be applied to the two-point equation as adopted in this report,
see below.

A.2.2 Governing equation for the dissipation rate tensor

The transport equation for the dissipation rate tensor can also be derived from the
evolution equation for the fluctuating velocity. Following the same organization of the
source term leads to :

dεij

dt
= P ε1

ij + P ε2
ij + P ε3

ij + P ε4
ij + Gε

ij − Eε
ij + φε

ij + dεu
ij + dεp

ij + dεν
ij (A.19)
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where the production term may be decomposed into four contributions :

P ε1
ij = −2 ν (ui,muk,m V j,k + uj,muk,m V i,k) (A.20a)

P ε2
ij = −2 ν (ui,muj,k + uj,mui,k) V k,m (A.20b)

P ε3
ij = −2 ν (ukui,m V j,mk + ukuj,m V i,mk) (A.20c)

P ε4
ij = −2 ν (ui,kuj,muk,m + uj,kui,muk,m) (A.20d)

The first two terms, P ε1
ij and P ε2

ij represents the production by the mean velocity gradients,
the third term is the production due to inhomogeneity of the mean velocity gradients (by
the mean vorticity gradients), and the last term represents the production by the self
stretching of fluctuating vortex filaments (interactions between eddies of different scales).
The explicit effect of body forces is defined by the Gε

ij tensor :

Gε
ij = 2 ν [fi,kuj,k + fj,kui,k] (A.21)

The rate of the viscous destruction of the dissipation tensor can be written as :

Eε
ij = 4 ν2 ui,kmuj,km (A.22)

The redistribution tensor is :

φε
ij = 2 ν

1

ρ
p,m(ui,jm + uj,im) (A.23)

and the three transport contributions, by the turbulent motion, by the fluctuating pressure
and by the viscosity can respectively be written as :

dεu
ij = −2 ν (uk ui,muj,m),k (A.24a)

dεp
ij = −2 ν

1

ρ
[p,m(ui,mδjk + uj,mδik)],k (A.24b)

dεν
ij = 2ν2 (ui,muj,m),kk (A.24c)

A.2.3 Governing equation for the kinetic energy

Taking the trace of the Reynolds stress transport equation leads to the evolution
equation for the kinetic energy :

dK

dt
= P + G − ε + duK + dpK + dνK (A.25)

with the corresponding interpretation of each terms as in the equation for Rij . P denotes
the production by the mean motion, G the explicit effect of the body forces, ε the dis-
sipation rate and duK , dpK and dνK the transport terms respectively by the fluctuating

77



APPENDIX A. GOVERNING EQUATIONS FOR ONE-POINT STATISTICAL

CLOSURE

velocity, the fluctuating pressure and the viscous diffusion.

P = −Rmn V m,n (A.26a)

G = uifi (A.26b)

ε = ν ui,jui,j (A.26c)

duK = −1

2
(ununuk),k (A.26d)

dpK = −1

ρ
unp,n (A.26e)

dνK = νK,jj (A.26f)

There is no contribution of the pressure-strain term as this redistribution tensor has a
zero trace for incompressible turbulence.

A.2.4 Governing equation for the energy dissipation rate

Taking the trace of the dissipation rate tensor transport equation also leads to the
evolution equation for the energy dissipation rate :

dε

dt
= P ε + Gε − Eε + φε + dεu + dεp + dεν (A.27)

Here P ε can be decomposed into four terms with different physical meanings, as outlined
earlier

P ε = P ε1 + P ε2 + P ε3 + P ε4

where :

P ε1 = −2 ν ui,muj,m V i,j (A.28a)

P ε2 = −2 ν um,ium,j V i,j (A.28b)

P ε3 = −2 ν ujui,m V i,jm (A.28c)

P ε4 = −2 ν ui,jui,muj,m (A.28d)

The source due to body forces is expressed as :

Gε = 2 ν ui,jfi,j (A.29)

whereas the viscous destruction can be written as :

Eε = 2 ν2 ui,jmui,jm (A.30)

The pressure correlation term is trace-free, but the diffusion terms reduces to :

dεu = −ν (umui,jui,j),m (A.31a)

dεp = 2 ν
1

ρ
(p,ium,i),m (A.31b)

dεν = ν ε,mm (A.31c)

with the same interpretation as those for the dissipation rate tensor.
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Appendix B

Governing equations for the
two-point statistical closure

B.1 Two - point description with centered variables

The principal rules associated with the variable transformation used in the derivation
of the two-point closures in the main text are summarized in this Appendix.

B.1.1 Rules of the centered transformation

The points M ′ and M ′′ are taken respectively at the coordinates (x′, t) and (x′′, t).
The transformation then is given by :

x′
k = Xk −

1

2
rk (B.1a)

x′′
k = Xk +

1

2
rk (B.1b)

where X is the location of the midpoint between M ′ and M ′′ and r describes the distance
between M ′ and M ′′ defined as

Xk =
1

2
(x′

k + x′′
k) (B.2a)

rk = (x′′
k − x′

k) (B.2b)

The Jacobian matrix

The derivation of the Jacobian matrix associated with the transformation is :

∂

∂x′
k

=
1

2

∂

∂Xk
− ∂

∂rk
(B.3a)

∂

∂x′′
k

=
1

2

∂

∂Xk
+

∂

∂rk
(B.3b)
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Notations

In order to simplify the expressions, the following notations are adopted for any de-
pendent variables φ :

∂φ

∂x′
k

= φ,k′ (B.4a)

∂φ

∂x′′
k

= φ,k′′ (B.4b)

and

∂φ

∂Xk

= φ,k (B.5a)

∂φ

∂rk
= φ|k (B.5b)

Property of the derivatives

It should be pointed out that any quantity evaluated at M ′ does not depend on x′′

and vice-versa, hence

φ′
,k′′ = 0 (B.6a)

φ′′
,k′ = 0 (B.6b)

For example,

φ′
,k′′ =

∂φ(x′)

∂x′′
k

=
∂x′

p

∂x′′
k

[

∂φ

∂x′
p

]

(x′)

Because, x′ and x′′ are considered as independent variables, it follows that

φ′
,k′′ = 0

This implies that any correlation between two derivatives of fluctuating quantities at
points M ′ and M ′′ can be written as higher order multiple derivative of the corresponding
two-point quantity, as long as the derivatives are in an Euclidean space. This is the case,
for example, with the two-point dissipation rate tensor, where :

u′
i,k′u′′

j,k′′ = [u′
iu

′′
j ],k′k′′

Using this property, we can now derive higher oder derivatives of the flow quantities in
the transformed coordinates . The principal ones are given in the next section.
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Expressions for derivatives

Second order derivatives :

∂2.

∂x′
m∂x′

n

=
1

4
.,mn − 1

2
[.,m|n + .|m,n] + .|mn (B.8a)

∂2.

∂x′′
m∂x′′

n

=
1

4
.,mn +

1

2
[.,m|n + .|m,n] + .|mn (B.8b)

∂2.

∂x′
m∂x′′

n

=
1

4
.,mn +

1

2
[.,m|n − .|m,n] − .|mn (B.8c)

and in the contracted form

∂2.

∂x′
k
2 =

1

4
.,kk − .,k|k + .|kk (B.9a)

∂2.

∂x′′
k
2 =

1

4
.,kk + .,k|k + .|kk (B.9b)

∂2.

∂x′
k∂x′′

k

=
1

4
.,kk − .|kk (B.9c)

Third order derivatives :

∂3.

∂x′
n∂x′

m∂x′′
k

=
1

8
.,nmk +

1

4
[.,kn|m + .,km|n] +

1

2
.,k|nm (B.10a)

+
1

4
.,nm|k −

1

2
[.,n|km + .,m|kn] + .|nmk

∂3.

∂x′′
n∂x′′

m∂x′
k

=
1

8
.,nmk −

1

4
[.,kn|m + .,km|n] +

1

2
.,k|nm (B.10b)

− 1

4
.,nm|k −

1

2
[.,n|km + .,m|kn] − .|nmk

and, after contraction of m and k in the contracted form

∂3.

∂x′
n∂x′

k∂x′′
k

=
1

8
.,nkk + .|nkk −

1

4
.,kk|n −

1

2
.,n|kk (B.11a)

∂3.

∂x′′
n∂x′

k∂x′′
k

=
1

8
.,nkk − .|nkk +

1

4
.,kk|n −

1

2
.,n|kk (B.11b)
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Fourth order derivatives

∂4.

∂x′
n∂x′

n∂x′
k∂x′′

k

=
1

16
.,nnkk +

1

4
[.,kk|nn − .|kk,nn] − .|kknn (B.12a)

− 1

4
.,kkn|n + .|kkn,n

∂4.

∂x′′
n∂x′′

n∂x′
k∂x′′

k

=
1

16
.,nnkk +

1

4
[.,kk|nn − .|kk,nn] − .|kknn (B.12b)

+
1

4
.,kkn|n − .|kkn,n

Incompressibility constraint

The incompressibility condition allows to write some relations between the derivative
with respect to X and to r.

Continuity and fluctuations

1

2
u′

i,i − u′
i|i = 0 (B.13a)

1

2
u′′

i,i + u′′
i|i = 0 (B.13b)

Continuity and double correlations

The two-point second order tensor is defined as :

Ri.j = u′
iu

′′
j (B.14)

so that the incompressible relations can be written as :

1

2
Ri.j,i − Ri.j|i = 0 (B.15a)

1

2
Ri.j,j + Ri.j|j = 0 (B.15b)

Continuity and triple correlations

The two-points triple correlations tensors are defined as :

T u
ik.j = −u′

iu
′
ku

′′
j (B.16a)

T u
i.jk = −u′

iu
′′
ju

′′
k (B.16b)
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which satisfy the following constraints :

1

2
T u

ik.j,j + T u
ik.j|j = 0 (B.17a)

1

2
T u

i.jk,i − T u
i.jk|i = 0 (B.17b)

Continuity and pressure-velocity correlations

1

2
(p′′u′

i),i − (p′′u′
i)|i = 0 (B.18a)

1

2
(p′u′′

j ),j + (p′u′′
j )|j = 0 (B.18b)

These relations are used to evaluate the pressure-velocity transport equation.

Mean quantities

In two-point equations the mean velocity components are evaluated at two distinct
points, but they remain the one-point quantities. The expressions for their gradients
or their second order derivative can therefore be simplified. Of course, they satisfy all
kinematic properties introduced earlier in this Appendix. It should be pointed out that in
the transformed coordinates system there is no need to write any derivative of the mean
flow with respect to r as they can be explicitly written as function of the derivative with
respect to X.

Gradients

Gradients of the mean velocity can be transformed as :

V
′
k,n′ =

1

2
V

′
k,n − V

′
k|n (B.19a)

V
′′
k,n′′ =

1

2
V

′′
k,n + V

′′
k|n (B.19b)

Since these are one-point quantities, it follows also that :

V
′
k,n′′ = 0 (B.20a)

V
′′
k,n′ = 0 (B.20b)

Those relations can be written in the transformed variables system, so that :

0 =
1

2
V

′
k,n + V

′
k|n (B.21a)

0 =
1

2
V

′′
k,n − V

′′
k|n (B.21b)
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Therefore :

V
′
k|n = −1

2
V

′
k,n (B.22a)

V
′′
k|n =

1

2
V

′′
k,n (B.22b)

and

V
′
k,n′ = V

′
k,n (B.23a)

V
′′
k,n′′ = V

′′
k,n (B.23b)

These relations can be applied to the mean velocity derivatives of any order.

Second derivative

It is interesting to note that the above relations lead to :

V
′
k|nn =

1

4
V

′
k,nn (B.24a)

V
′′
k|nn =

1

4
V

′′
k,nn (B.24b)

These expressions are especially useful for showing explicitly the departure of the
two-point equations from the corresponding one-point expressions.

B.1.2 Transport equations

Evolution equation for the two-point second order tensor

Convective terms

The transformation of the convective terms in the transformed system is straightfor-
ward :

Ci′.j′′ =
1

2
[V

′
k + V

′′
k] Ri.j,k + [V

′′
k − V

′
k] Ri.j|k (B.25)

Since Ri.j is the two-point analogue of the one-point Reynolds stress tensor, the above
expression can be split in two contributions

Ci′.j′′ = Ci.j + C ..
i.j (B.26)

where

Ci.j =
1

2
[V

′
k + V

′′
k] Ri.j,k (B.27a)

C ..
i.j = [V

′′
k − V

′
k] Ri.j|k (B.27b)
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The second tensor, C ..
i.j, becomes zero when the distance between the two points is reduced

to zero. This is a two-point contribution which does not affect the one-point convection
tensor, but only its partition between the two points. That is why this contribution is
denoted by two dots in the exponent. It should be noted here that the first tensor remains
a two point tensor as long as r does not go to zero. The derivation of the different terms
in the one point limit will be explained later.

The two-point material derivative is :

d.

dt
=

∂.

∂t
+

1

2
[V

′
k + V

′′
k]

∂.

∂Xk
(B.28)

Production terms

The production terms do not need any transformation and they show clearly to two-
point contribution. The mean velocity gradients can, however, be transformed so that the
terms reduce to :

Pi′.j′′ = −Ri.k V
′′
j,k − Rk.j V

′
i,k (B.29)

Body force term

As long as the only body force of interest in this study is the Coriolis force, its two-
point tensor can be written as :

Gi′.j′′ = Gi.j (B.30)

= −2 Ωk [εkmi Rm.j + εkmj Ri.m]

The Coriolis force is indeed linear with respect to the velocity.

Triple velocity correlation tensor

The triple velocity correlation contribution may be written as :

du
i′.j′′ = T u

i.jk,k′′ + T u
ik.j,k′ (B.31)

so that its transformed expression is :

du
i′.j′′ =

1

2
[T u

i.jk,k + T u
ik.j,k] + [T u

i.jk|k − T u
ik.j|k] (B.32)

Just as the convective terms, this expression can be split in order to exhibit the part
which vanish in the one-point limit.

du
i′.j′′ = du

i.j + du..
i.j (B.33)

with

du
i.j =

1

2
[T u

i.jk,k + T u
ik.j,k] (B.34a)

du..
i.j = [T u

i.jk|k − T u
ik.j|k] (B.34b)
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Pressure-velocity tensor

The correlations between the velocity and the gradient of fluctuating pressure lead to
the following term :

Πi′.j′′ = −1

ρ
(u′

ip
′′
,j′′ + u′′

jp
′
,i′) (B.35)

to which the variables transformation can be also applied. It is interesting to point out
that the classical decomposition into a pressure-strain tensor and a pressure diffusion term
does not seem to be relevant in the two-point context at least for this tensor. The term
can be rewritten as :

Πi′.j′′ = −1

ρ
[(u′

ip
′′),j′′ + (u′′

jp
′),i′] (B.36)

without any further assumption because of the following property :

u′
i,j′′ = 0 (B.37a)

u′′
i,j′ = 0 (B.37b)

It is, therefore, more interesting to transform the above expression for the pressure-velocity
tensor, so that :

Πi′.j′′ = −1

2

1

ρ
[(u′

ip
′′),j + (u′′

jp
′),i] −

1

ρ
[(u′

ip
′′)|j − (u′′

jp
′)|i] (B.38)

This time the second part of the expression goes to zero in the one-point limit. Neverthe-
less, this expression is of interest to simplifying the overall contribution of the transport
terms in the source equation. These terms can be expressed as :

Πi′.j′′ =
1

2
[T p

i.jk,k + T p
ik.j,k] + [T p

i.jk|k − T p
ik.j|k] (B.39)

with

T p
i.jk = −1

ρ
u′

ip
′′ δjk (B.40a)

T p
ik.j = −1

ρ
u′′

jp
′ δik (B.40b)

These contributions can be grouped with the terms representing the transport by fluc-
tuating velocity so that

du
i′.j′′ + Πi′.j′′ =

1

2
[T t

i.jk + T t
ik.j],k + [T t

i.jk − T t
ik.j]|k (B.41)

with

T t
i.jk = −u′

iu
′′
ju

′′
k −

1

ρ
u′

ip
′′ δjk (B.42a)

T t
ik.j = −u′

iu
′
ku

′′
j −

1

ρ
u′′

jp
′ δik (B.42b)
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Viscosity contribution

The viscous term can be written directly in the two-point form as :

dν
i′.j′′ = ν [(u′

iu
′′
j ),k′k′ + (u′

iu
′′
j ),k′′k′′] (B.43)

The evaluation of the second order derivative leads to the following transformed expres-
sions :

dν
i′.j′′ = ν [

1

2
Ri.j,kk + 2 Ri.j|kk] (B.44)

This term can be written in the form which exhibits the viscous diffusion :

dν
i′.j′′ = ν Ri.j,kk + ν [−1

2
Ri.j,kk + 2 Ri.j|kk] (B.45)

The first term obviously corresponds to the two-point viscous diffusion contribution, whe-
reas the last part is the two-point expression for the dissipation tensor.

The two-point dissipation tensor is defined as :

εi.j = 2 ν u′
i,k′u′′

j,k′′ (B.46)

Applying the rules introduced earlier, the cross-derivatives with respect to M ′ and M ′′

can be expressed as :

ε̆i.j =
1

4
Ri.j,kk − Ri.j|kk (B.47)

where

ε̆i.j =
1

2 ν
εi.j (B.48)

is a normalized form of the two point dissipation rate tensor.

Summary and remarks

The transformed equation for the two-point second-order correlation tensor can now
be summarized :

dRi.j

dt
= −Ri.k V

′′
j,k − Rk.j V

′
i,k (B.49)

− 2 Ωk [εkmi Rm.j + εkmj Ri.m]

+
1

2
[T t

i.jk + T t
ik.j],k

+ [T t
i.jk − T t

ik.j]|k

+ ν Ri.j,kk

− 2 ν [
1

4
Ri.j,kk − Ri.j|kk]

− [V
′′
k − V

′
k] Ri.j|k
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Remarks :

The transport equation for the two-point second order tensor differs from the one point
equation by two features.

First, the only unknowns terms in the two-point second-moment equation are
the triple correlations tensor as long as the pressure-velocity correlation can be obtained
by means of the Poisson equation derived from the Reynolds stress transport.

The second feature is the presence of terms that vanish in the one-point limit.
These terms only influence the partition of the two-point correlation in the two-point
context. They then can be seen as typical inhomogeneous two-point transfer terms.

Evolution equation for the two-point dissipation tensor

As seen in the previous section the two-point dissipation tensor is defined by :

εi.j = 2 ν u′
i,k′u′′

j,k′′ (B.50)

For convenience, we also eliminated viscosity by introducing the normalized quantity

ε̆i.j =
1

2 ν
εi.j (B.51)

The transport equation for the two-point dissipation tensor may now be written as :

ε̆i.j,t + V
′
n ε̆i.j,n′ + V

′′
n ε̆i.j,n′′ = −[u′

n,k′u′′
j,k′′ V

′
i,n′ + u′′

n,k′′u′
i,k′ V

′′
j,n′′] (B.52)

− [u′
i,n′u′′

j,k′′ V
′
n,k′ + u′′

j,n′′u′
i,k′ V

′′
n,k′′]

− [u′
nu

′′
j,k′′ V

′
i,n′k′ + u′′

nu′
i,k′ V

′
j,n′′k′′]

− [u′
i,n′u′

n,k′u′′
j,k′′ + u′′

j,n′′u′′
n,k′′u′

i,k′]

+ [f ′
i,n′u′′

j,k′′ + f ′′
j,n′′u′

i,k′]

− [u′
nu

′
i,n′k′u′′

j,k′′ + u′′
nu

′′
j,n′′k′′u′

i,k′]

− 1

ρ
[p′,i′k′u′′

j,k′′ + u′
i,k′p′′,j′′k′′ ]

+ ν [(u′
i,k′u′′

j,k′′),n′n′ + (u′′
j,k′′u′

i,k′)n′′n′′ ]

Several contributions of the source term can be grouped into a tensor similar to the one
adopted in the one-point description.

Cε
i′.j′′ = V

′
n ε̆i.j,n′ + V

′′
n ε̆i.j,n′′ (B.53a)

P ε1
i′.j′′ = −ε̆i.k V

′′
j,k′′ − ε̆k.j V

′
i,k′ (B.53b)

P ε2
i′.j′′ = −[u′

i,n′u′′
j,k′′ V

′
n,k′ + u′′

j,n′′u′
i,k′ V

′′
n,k′′] (B.53c)

P ε3
i′.j′′ = −[u′

nu
′′
j,k′′ V

′
i,n′k′ + u′′

nu
′
i,k′ V

′
j,n′′k′′] (B.53d)

P ε4
i′.j′′ = −[u′

i,n′u′
n,k′u′′

j,k′′ + u′′
j,n′′u′′

n,k′′u′
i,k′] (B.53e)
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Gε
i′.j′′ = [f ′

i,n′u′′
j,k′′ + f ′′

j,n′′u′
i,k′] (B.53f)

dεu
i′.j′′ = −[u′

nu′
i,n′k′u′′

j,k′′ + u′′
nu′′

j,n′′k′′u′
i,k′] (B.53g)

Πε
i′.j′′ = −1

ρ
[p′,i′k′u′′

j,k′′ + u′
i,k′p′′,j′′k′′] (B.53h)

dεν
i′.j′′ = ν [ε̆i.j,n′n′ + ε̆i.j,n′′n′′ ] (B.53i)

The transport equation can be transformed into the new coordinate system in the same
way as the previous Reynolds stress equation. We consider again term by term.

Convective terms

The transformed convective term yields the same definition of the material derivative :

Cε
i′.j′′ =

1

2
[V

′
k + V

′′
k] ε̆i,j,k + [V

′′
k − V

′
k] ε̆i,j|k (B.54)

The same splitting is also applicable :

Cε
i′.j′′ = Cε

i.j + Cε..
i.j (B.55)

where

Cε
i.j =

1

2
[V

′
k + V

′′
k] ε̆i.j,k (B.56a)

Cε..
i.j = [V

′′
k − V

′
k] ε̆i.j|k (B.56b)

In the one-point limit the second term vanishes.

Production terms

The production terms are usually split into four contributions as in the one-point
description and these notations are also chosen here. Each term is treated separately.

The P ε1
i′.j′′ term

As in the equation for the two-point Reynolds stress tensor, this contribution clearly
shows the way the term reduces to the one point limit. However it is interesting to write
its expression in the form which shows the explicit contribution of the Reynolds stress
tensor itself :

P ε1
i′.j′′ =

1

4
[−Rn.j,kk V

′
i,n′ − Ri.n,kk V

′′
j,n′′] (B.57)

− [−Rn.j|kk V
′
i,n′ − Ri.n|kk V

′′
j,n′′]

When the mean velocity gradient is also transformed, this expression is simplified to :

P ε1
i′.j′′ =

1

4
[−Rn.j,kk V

′
i,n − Ri.n,kk V

′′
j,n] (B.58)

− [−Rn.j|kk V
′
i,n − Ri.n|kk V

′′
j,n]
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The P ε2
i′.j′′ term

The evaluation of the cross-derivative with respect to both variables leads to the
following terms :

P ε2
i′.j′′ =

1

4
[−Ri.j,nk V

′
n,k′ − Ri.j,kn V

′′
n,k′′] (B.59)

− [−Ri.j|nk V
′
n,k′ − Ri.j|kn V

′′
n,k′′]

+
1

2
[Ri.j,n|k − Ri.j,k|n] (V

′′
n,k′′ − V

′
n,k′)

or again :

P ε2
i′.j′′ =

1

4
[−Ri.j,nk V

′
n,k − Ri.j,kn V

′′
n,k] (B.60)

− [−Ri.j|nk V
′
n,k − Ri.j|kn V

′′
n,k]

+
1

2
[Ri.j,n|k − Ri.j,k|n] (V

′′
n,k − V

′
n,k)

The P ε3
i′.j′′ term

This term can be rewritten as :

P ε3
i′.j′′ = −[(u′

nu
′′
j ),k′′ V

′
i,n′k′ + (u′′

nu
′
i),k′ V

′
j,n′′k′′] (B.61)

so that the transformation leads directly to :

P ε3
i′.j′′ =

1

2
[−Rn.j,k V

′
i,n′k′ − Ri.n,k V

′′
j,n′′k′′] (B.62)

− [−Ri.n|k V
′′
j,n′′k′′ + Rn.j|k V

′
i,n′k′] (B.63)

and, after the mean velocity gradients are also transformed :

P ε3
i′.j′′ =

1

2
[−Rn.j,k V

′
i,nk − Ri.n,k V

′′
j,nk] (B.64)

− [−Ri.n|k V
′′
j,nk + Rn.j|k V

′
i,nk] (B.65)

The P ε4
i′.j′′ term

This term is expressed in the form which mimics the splitting used in the one-point
context even though this form is not very convenient for the two-point framework :

P ε4
i′.j′′ = −[u′

i,n′u′
n,k′u′′

j,k′′ + u′′
j,n′′u′′

n,k′′u′
i,k′] (B.66)

or,

P ε4
i′.j′′ = −[(u′

iu
′
n),k′n′u′′

j,k′′ + (u′′
ju

′′
n),n′′k′′u′

i,k′] (B.67)

+ [(u′
nu

′
i,k′n′)u′′

j,k′′ + (u′′
nu

′′
j,n′′k′′)u′

i,k′]
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The latter expression can be conveniently joint with the turbulent transport term. The
sum of the two term reduces to :

P ε4
i′.j′′ + dεu

i′.j′′ = −[(u′
iu

′
n),k′n′u′′

j,k′′ + (u′′
ju

′′
n),n′′k′′u′

i,k′] (B.68)

which can be rewritten as :

P ε4
i′.j′′ + dεu

i′.j′′ = −[(u′
iu

′
nu

′′
j ),k′k′′n′ + (u′

iu
′′
ju

′′
n),k′k′′n′′] (B.69)

Body force term

If we confine our attention to only Coriolis force, the expression of this term is straight-
forward and need not be further elaborated.

Triple velocity correlation tensor

This tensor is grouped with the production by selfstretching of turbulent vortex fila-
ment, as described above. The sum of these two contributions can be expressed in terms
of the two-point triple correlation tensor as :

P ε4
i′.j′′ + dεu

i′.j′′ = [T u
in.j,k′k′′n′ + T u

i.jn,k′k′′n′′ ] (B.70)

Using the transformation of the triple derivative leads to :

P ε4
i′.j′′ + dεu

i′.j′′ =
1

4
[
1

2
(T u

i.jn + T u
in.j),nkk + (T u

i.jn − T u
in.j)|n,kk] (B.71)

− [
1

2
(T u

i.jn + T u
in.j),n|kk + (T u

i.jn − T u
in.j)|nkk]

Pressure-velocity tensor

The same kind of expression can be applied to the pressure-velocity term :

Πε
i′.j′′ = −1

ρ
[(p′u′′

j ),i′k′k′′ + (u′
ip

′′),j′′k′k′′] (B.72)

Applying the transformation leads to :

Πε
i′.j′′ =

1

ρ

1

4
[−1

2
(p′u′′

j δin + p′′u′
i δjn),nkk − (p′′u′

i δjn − p′u′′
j δin)|n,kk] (B.73)

− 1

ρ
[−1

2
(p′u′′

j δin + p′′u′
i δjn),n|kk − (p′′u′

i δjn − p′u′′
j δin)|nkk]

It is clear that the transport terms may be lumped together with the third order velocity
correlation tensor in the same way as in the Reynolds stress equation. Denoting the joint
terms as

T t
in.j = −u′

iu
′
nu

′′
j −

1

ρ
p′u′′

j δin (B.74a)

T t
i.jn = −u′

iu
′′
nu

′′
j −

1

ρ
p′′u′

i δjn (B.74b)
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we can now express the sum of the following three terms :

P ε4
i′.j′′ + dεu

i′.j′′ + Πε
i′.j′′ =

1

4
[
1

2
(T t

i.jn + T t
in.j),nkk + (T t

i.jn − T t
in.j)|n,kk] (B.75)

− [
1

2
(T t

i.jn + T t
in.j),n|kk + (T t

i.jn − T t
in.j)|nkk]

Viscous terms

The viscous effect appears in the equation within the following term :

dεν
i′.j′′ = ν [ε̆i.j,n′n′ + ε̆i.j,n′′n′′ ] (B.76)

that can be directly transformed as :

dεν
i′.j′′ = ν [

1

2
ε̆i.j,nn + 2 ε̆i.j|nn] (B.77)

Once again, this term can be split into :

dεν
i′.j′′ = ν ε̆i.j,nn + ν [−1

2
ε̆i.j,nn + 2 ε̆i.j|nn] (B.78)

which displays clearly the two constituents, the viscous diffusion term, defined by

dεν
i.j = ν ε̆i.j,nn (B.79)

and the viscous destruction term

Eε
i.j = 2 ν [

1

4
ε̆i.j,nn − ε̆i.j|nn] (B.80)

The total viscous term can also be rewritten as a function of the two-point Reynolds stress
tensor :

dεν
i.j − Eε

i.j = ν [
1

8
Ri.j,kknn − 2 Ri.j|kknn] (B.81)

Summary and remarks

The entire equation can now be written taking into account the respective contribution
of each part after the term splitting as :

1

4

[

Ri.j,kk,t +
1

2
[V

′
k + V

′′
k] Ri.j,nnk

]

(B.82)

−
[

Ri.j|kk,t + 1
2
[V

′
k + V

′′
k] Ri.j|nn,k

]

=
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1

4

[

− (V
′′
k − V

′
k) Ri.j,nn|k

]

−
[

−(V
′′
k − V

′
k) Ri.j|nnk

]

+
1

4

[

− Rn.j,kk V
′
i,n − Ri.n,kk V

′′
j,n

]

−
[

−Rn.j|kk V
′
i,n − Ri.n|kk V

′′
j,n

]

+
1

4

[

− Ri.j,nk V
′
n,k − Ri.j,kn V

′′
n,k

]

−
[

−Ri.j|nk V
′
n,k − Ri.j|kn V

′′
n,k

]

+
1

4

[

− 2 (V
′′
k − V

′
k),n Ri.j|k,n

]

−
[

−1
2
(V

′′
k − V

′
k),n Ri.j,k|n

]

+
1

4

[

2 [−Rn.j,k V
′
i,nk − Ri.n,k V

′′
j,nk

]

−
[

−Ri.n|k V
′′
j,nk + Rn.j|k V

′
i,nk

]

+
1

4

[

1

2
(T t

i.jn + T t
in.j),nkk + (T t

i.jn − T t
in.j)|n,kk

]

−
[

1
2
(T t

i.jn + T t
in.j),n|kk + (T t

i.jn − T t
in.j)|nkk

]

+
1

4

[

− 2 ν ε̆i.j,nn + ν Ri.j,kknn

]

−
[

−2 ν ε̆i.j|nn + ν Ri.j,kk|nn

]

+
1

4

[

− 1

2
(V

′
k + V

′′
k),nn Ri.j,k

]

−
[

−1
8
(V

′
k + V

′′
k),nn Ri.j,k

]
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+
1

4

[

− Ri.k V
′′
j,knn − Rk.j V

′
i,knn

]

−
[

−1
4
Ri.k V

′′
j,knn − 1

4
Rk.j V

′
i,knn

]

+
1

4

[

− (V
′′
k − V

′
k),nn Ri.j|k

]

−
[

−1
4
(V

′′
k − V

′
k),nn Ri.j|k

]

The boxes indicate the contributions of the transport equation for Ri.j|nn to the transport
equation for the dissipation tensor. The last free terms (below the line) exist also in the
transport equation for Ri.j,kk : they complete the equation so that their contribution need
not be taken into account in the ε̆i.j equation. However the following equation is always
satisfied :

dε̆i.j

dt
=

1

4

dRi.j,kk

dt
− dRi.j|kk

dt
(B.83)

where the material derivative is again

d.

dt
=

∂.

∂t
+

1

2
[V

′
k + V

′′
k]

∂.

∂Xk
(B.84)

as previously defined. The development of each of these contributions can be found in the
next section.

Remarks

It should be pointed out that the splitting here adopted ensures a clear separa-
tion between the action of the viscous destruction and the viscous diffusion in the equation
for ε̆i.j. Both physical processes are also clearly displayed in each, the Ri.j,kk and Ri.j|kk

transport equations. The definition of the viscous diffusion of the dissipation tensor are
recalled again :

dεν
i.j = ν ε̆i.j,nn (B.85)

The transformation allows to rewrite this in terms of the two-point Reynolds stress tensor
as :

dεν
i.j = ν [

1

4
Ri.j,kk − Ri.j|kk],nn (B.86)

or,

dεν
i.j =

1

4
[ν Ri.j,kknn] − [ν Ri.j|kk,nn] (B.87)

where the first term on the right hand side is the viscous diffusion of Ri.j,kk, whereas the
second term is the viscous diffusion of Ri.j|kk.
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The destruction term can also be decomposed as :

Eε
i.j = 2 ν [

1

4
ε̆i.j,nn − ε̆i.j|nn] (B.88)

which can further be written as :

Eε
i.j =

1

4
[2 ν ε̆i.j,nn] − [2 ν ε̆i.j|nn] (B.89)

displaying clearly the viscous dissipation of Ri.j,kk and Ri.j|kk respectively.
It is also interesting to lump the viscous contributions in the Ri.j|kk equation :

−2 ν ε̆i.j|nn + ν Ri.j,kk|nn (B.90)

which again can be rewritten in terms of Ri.j only :

−2 ν [
1

4
Ri.j,kk − Ri.j|kk]|nn + ν Ri.j|nn,kk (B.91)

or, after rearrangement,
1

2
ν Ri.j|nn,kk + 2 ν Ri.j|kknn (B.92)

The above transformation brings in a substantial simplification, which comes from the fact
that one part of the dissipation tensor has the same mathematical form as the viscous
diffusion operator. It should be kept in mind, however, that this does not mean that the
viscous diffusion coefficient of Ri.j|kk is one half of ν, since 2 ν Ri.j|kknn does not represent
the entire viscous dissipation process. This issue will be further discussed in the context
of the one-point limit.

B.1.3 Evolution equation for each part of the dissipation tensor
using the centered transformation

This section presents the transport equation for Ri.j|nn and Ri.j,nn derived from the
transport equation for the two-point Reynolds stress tensor. Using the centered transfor-
mation, this equation can be written as :

dRi.j

dt
= −Ri.k V

′′
j,k − Rk.j V

′
i,k (B.93)

− 2 Ωk [εkmi Rm.j + εkmj Ri.m]

+
1

2
[T t

i.jk + T t
ik.j],k

+ [T t
i.jk − T t

ik.j]|k

+ ν Ri.j,kk

− 2 ν [
1

4
Ri.j,kk − Ri.j|kk]

− [V
′′
k − V

′
k] Ri.j|k
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with
d.

dt
=

∂.

∂t
+

1

2
[V

′
k + V

′′
k]

∂.

∂Xk

Homogeneous part

The double derivation leads to :

∂Ri.j|nn

∂t
+

1

2
[V

′
k + V

′′
k] Ri.j|nn,k (B.94)

+
1

2
[V

′
k + V

′′
k]|nn Ri.j,k + [V

′
k + V

′′
k]|n Ri.j|n,k = −Ri.k|nn V

′′
j,k − Rk.j|nn V

′
i,k

− Ri.k V
′′
j,k|nn − Rk.j V

′
i,k|nn

− 2 Ri.k|n V
′′
j,k|n − 2 Rk.j|n V

′
i,k|n

− 2 Ωk [εkmi Rm.j|nn + εkmj Ri.m|nn]

+
1

2
[T t

i.jk + T t
ik.j],k|nn

+ [T t
i.jk − T t

ik.j]|knn

+ ν Ri.j|nn,kk

− 2 ν [
1

4
Ri.j|nn,kk − Ri.j|kknn]

− [V
′′
k − V

′
k] Ri.j|knn

− [V
′′
k − V

′
k]|nn Ri.j|k

− 2 [V
′′
k − V

′
k]|n Ri.j|kn

The first line represents the material two-point derivative in the centered transformation.
The last two terms on the left hand side are additive terms originating from the second
derivation. They need to be modified before any further interpretation. The first three
lines of the right hand side come from the production term. The very first one can be seen
as the production of Ri.j|nn by the mean velocity gradient. The two other are inhomoge-
neous productions. The Coriolis terms is expressed assuming the constant rotation rate.
The terms in the fifth and sixth lines on the right hand side represent the transport of
Ri.j|nn and need no further elaboration. The viscous terms is also clear. The seventh line
represents the diffusion process whereas the eight one is the viscous destruction of Ri.j|nn.
The last three lines come from the two-point contribution of the convective term.

The equation involves derivatives of the mean velocity components with respect to r,
that can be expressed in terms of derivatives with respect to X. With this transformation
the equation can be rewritten as :

dRi.j|nn

dt
= −1

8
[V

′
k + V

′′
k],nn Ri.j,k −

1

2
[V

′′
k − V

′
k],n Ri.j|n,k (B.95)

− Ri.k|nn V
′′
j,k − Rk.j|nn V

′
i,k
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− 1

4
Ri.k V

′′
j,knn − 1

4
Rk.j V

′
i,knn

− [Ri.k|n V
′′
j,kn − Rk.j|n V

′
i,kn]

− 2 Ωk [εkmi Rm.j|nn + εkmj Ri.m|nn]

+
1

2
[T t

i.jk + T t
ik.j],k|nn

+ [T t
i.jk − T t

ik.j]|knn

+ ν Ri.j|nn,kk

− 2 ν ε̆i.j|nn

− [V
′′
k − V

′
k] Ri.j|knn

− 1

4
[V

′′
k − V

′
k],nn Ri.j|k

− [V
′′
k + V

′
k],n Ri.j|kn

The contribution of the convective terms, previously on the left hand side of the equation,
are put here on the right hand side. The first of these terms remains in the one-point limit
and can be seen as an inhomogeneous contribution. It does not appear in the ε̆i.j equation
because that term also exists in the transport equation for Ri.j,kk. The second term is a
typical two-point term that vanishes in the one-point limit. A similar term exists in the
equation for Ri.j,kk, but comes from the derivation of the two-point convective term instead
of the derivation of the material derivative here. The third term is the production of Ri.j|nn

by the mean velocity gradients. The next term is an inhomogeneous production whose
contribution is not seen in the equation of ε̆i.j because it vanishes with the corresponding
term of the Ri.j,kk equation, also coming from the production contribution. The next term
is also an inhomogeneous production that forms a part of the inhomogeneous production
of ε̆i.j and the contribution of which is not zero in the one-point limit. The fourth next
term remains unchanged as compared to the previous equation. The three contributions
from the inhomogeneous convective part can be better understood using this transformed
expression. The first one vanishes in the one-point limit represents the inhomogeneous
convection term of Ri.j|kk. The second one also disappears in the one-point limit ; its
contribution is taken into account in the ε̆i.j equation since the corresponding term also
exists in the Ri.j,kk equation that conceals its contribution. The very last term is actually
a part of the second production term in the ε̆i.j. Its contribution does not vanish in the
one-point limit.

Inhomogeneous part

The double derivation of the Reynolds stress equation with respect to X leads directly
to :

dRi.j,nn

dt
= −1

2
[V

′
k + V

′′
k],nn Ri.j,k − [V

′
k + V

′′
k],n Ri.j,nk (B.96)

− Ri.k,nn V
′′
j,k − Rk.j,nn V

′
i,k
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− Ri.k V
′′
j,knn − Rk.j V

′
i,knn

− 2 Ri.k,n V
′′
j,kn − 2 Rk.j,n V

′
i,kn

− 2 Ωk [εkmi Rm.j,nn + εkmj Ri.m,nn]

+
1

2
[T t

i.jk + T t
ik.j],knn

+ [T t
i.jk − T t

ik.j]|k,nn

+ ν Ri.j,nnkk

− 2 ν [
1

4
Ri.j,nnkk − Ri.j|kk,nn]

− [V
′′
k − V

′
k] Ri.j|k,nn

− [V
′′
k − V

′
k],nn Ri.j|k

− 2 [V
′′
k − V

′
k],n Ri.j|k,n

where, as earlier, the first two lines of the right hand side represent the contributions of
the second derivative of the convective term. In contrast to the equation for Ri.j|nn, there
is no need to transform this equation. The interpretation of each term is similar. The
expressions for the complementary terms to form the ε̆i.j transport equation can easily be
derived, since

ε̆i.j =
1

4
Ri.j|nn − Ri.j,nn

B.2 Two - point description with decentered variables

The principal rules associated with the decentered variable transformation are sum-
marized in this Appendix. It is illustrated that the centered transformation chosen in this
report leads to much more clear expressions for the two-points tensors as the derivative
with respect to the reference location and to the distance between the two points are more
easily separated.

B.2.1 Rules of the decentered transformation

The points M ′ and M ′′ are taken respectively at the coordinates (x′, t) and (x′′, t).
The decentered transformation is defined by :

x′
k = Xk (B.97a)

x′′
k = Xk + rk (B.97b)

where X is the location of the first point M ′ and r describes the distance between M ′

and M ′′. These position vectors can be written as :

Xk = x′
k (B.98a)

rk = (x′′
k − x′

k) (B.98b)
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The Jacobian matrix

The Jacobian matrix, associated with the transformation, follows directly from the
definition of the position vectors :

∂

∂x′
k

=
∂

∂Xk

− ∂

∂rk

(B.99a)

∂

∂x′′
k

=
∂

∂rk

(B.99b)

Notations

The same notations as those used in the centered transformation are adopted here for
any dependent variable φ :

∂φ

∂x′
k

= φ,k′ (B.100a)

∂φ

∂x′′
k

= φ,k′′ (B.100b)

Hence,

∂φ

∂Xk
= φ,k (B.101a)

∂φ

∂rk

= φ|k (B.101b)

Property of the derivatives

Any quantities evaluated on M ′ still does not depend on x′′ and vice-versa.

φ′
,k′′ = 0 (B.102a)

φ′′
,k′ = 0 (B.102b)

Expressions for the derivatives

Second order derivatives

∂2.

∂x′
m∂x′

n

= .,mn − [.,m|n + .|m,n] + .|mn (B.103a)

∂2.

∂x′′
m∂x′′

n

= .|mn (B.103b)

∂2.

∂x′
m∂x′′

n

= .,n|m − .|mn (B.103c)
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or, in the contracted form

∂2.

∂x′
k
2 = .,kk − 2 .,k|k + .|kk (B.104a)

∂2.

∂x′′
k
2 = .|kk (B.104b)

∂2.

∂x′
k∂x′′

k

= .,k|k − .|kk (B.104c)

Third order derivatives

∂3.

∂x′
n∂x′

m∂x′′
k

= .,nm|k − [.,n|mk + .,m|nk] + .|nmk (B.105a)

∂3.

∂x′′
n∂x′′

m∂x′
k

= .,k|nm − .|nmk (B.105b)

and

∂3.

∂x′
n∂x′

k∂x′′
k

= .,nk|k − [.,n|kk + .,k|kn] + .|nkk (B.106a)

∂3.

∂x′′
n∂x′

k∂x′′
k

= .,k|kn − .|nkk (B.106b)

Fourth order derivatives

∂4.

∂x′
n∂x′

n∂x′
k∂x′′

k

= .,nnk|k − 2 .,nk|nk +,k|nnk (B.107a)

− .nn|kk + 2 .,n|nkk.|nnkk

∂4.

∂x′′
n∂x′′

n∂x′
k∂x′′

k

= .,k|knn − .|kknn (B.107b)

Incompressibility constraint

The incompressibility condition enables to derive some relations between the derivative
with respect to X and to r.

Continuity and fluctuations

u′
i,i − u′

i|i = 0 (B.108a)

u′′
i|i = 0 (B.108b)
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Continuity and double correlations

The two-point second order tensor is defined as :

Ri.j = u′
iu

′′
j (B.109)

so that the incompressible condition leads to :

Ri.j,i − Ri.j|i = 0 (B.110a)

Ri.j|j = 0 (B.110b)

Continuity and triple correlations

The two-point triple correlations tensors are defined as :

T u
ik.j = −u′

iu
′
ku

′′
j (B.111a)

T u
i.jk = −u′

iu
′′
ju

′′
k (B.111b)

leading to the following constraints :

T u
ik.j|j = 0 (B.112a)

T u
i.jk,i − T u

i.jk|i = 0 (B.112b)

Continuity and pressure-velocity correlations

(p′′u′
i),i − (p′′u′

i)|i = 0 (B.113a)

(p′u′′
j )|j = 0 (B.113b)

These relations are mainly used to evaluate the pressure-velocity transport terms.

Mean quantities

The derivatives of the mean velocity components with respect to X and r can also be
simplified.

Gradients

The gradients of the mean velocity can be transformed as :

V
′
k,n′ = V

′
k,n (B.114a)

V
′′
k,n′′ = V

′′
k,n (B.114b)

and

V
′
k|n = 0 (B.115a)

V
′′
k|n = V

′′
k,n (B.115b)

These relations can be applied to any order of the derivatives of the mean velocity.
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Second derivative

V
′
k,n′m′ = V

′
k,nm (B.116a)

V
′′
k,n′′m′′ = V

′′
k,nm (B.116b)

These expressions are especially useful to explicitly show the departure of the two-point
equations from the corresponding one-point equations.

It should be noted that the expressions for the operators seem to be much simpler with
the decentered transformation than with the centred one. The transformed equations are,
however, more difficult to interpret as shown in Appendix B.

B.2.2 Transport equations

Evolution equation for the two-point second order tensor

Convective terms

The transformation is straightforward :

Ci′.j′′ = [V
′
k] Ri,j,k + [V

′′
k − V

′
k] Ri,j|k (B.117)

This transformation leads to an expression that shows in an obvious manner the difference
from the one-point expression. The material derivative is :

d.

dt
=

∂.

∂t
+ [V

′
k]

∂.

∂Xk
(B.118)

Production terms

There is no difference between the productions term in the centered or decentered
variable system :

Pi′.j′′ = −Ri.k V
′′
j,k − Rk.j V

′
i,k (B.119)

Body force term

The same applies also to the Coriolis term : there is no difference in formulation
between the centered and decentered transformation.

Triple velocity correlation tensor

The triple velocity correlation term can be written as :

du
i′.j′′ = T u

i.jk,k′′ + T u
ik.j,k′ (B.120)

and the transformation yields :

du
i′.j′′ = [T u

ik.j,k] + [T u
i.jk|k − T u

ik.j|k] (B.121)

so that the departure from the one-point limit is again straightforward.
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Pressure-velocity tensor

The same form of the expression can be derived for the transformed pressure-velocity
tensor :

dp
i′.j′′ = [T p

ik.j,k] + [T p
i.jk|k − T p

ik.j|k] (B.122)

Hence, it is justified to write the transport term together again with the same notations :

T t
i.jk = −u′

iu
′′
ju

′′
k −

1

ρ
u′

ip
′′ δjk (B.123a)

T t
ik.j = −u′

iu
′
ku

′′
j −

1

ρ
u′′

jp
′ δik (B.123b)

Compared to the expressions obtained with the centered transformation the equation is
here written in a simpler form without any change in the physical interpretation of each
contribution to the source term.

Viscosity contribution

The difference between the two transformations appears in the expressions for the
viscous action and allows to choose one or the other expression depending on the relative
importance attributed to this term. The kinematic transformation rule already shows that
second derivative expressions in the original two point description include cross derivative
in the decentered variable system. Then the viscous term can be written as :

dν
i′.j′′ = ν [Ri.j,kk − 2 Ri.j,k|k + 2 Ri.j|kk] (B.124)

The two-point dissipation tensor is transformed as :

ε̆i.j = Ri.j|k,k − Ri.j|kk (B.125)

that allows to write the viscous contribution directly in the form :

dν
i′.j′′ = ν Ri.j,kk − 2 ν [Ri.j|k,k − Ri.j|kk] (B.126)

The viscous diffusion term is then clearly defined by :

dν
i.j = ν Ri.j,kk (B.127)

Summary and remarks

The synthesis of the above derivation yields the transport equation for the second-order
velocity correlation in decentered coordinate system :

dRi.j

dt
= −Ri.k V

′′
j,k − Rk.j V

′
i,k (B.128)

− 2 Ωk [εkmi Rm.j + εkmj Ri.m]
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+ T t
ik.j,k

+ [T t
i.jk − T t

ik.j]|k

+ ν Ri.j,kk

− 2 ν [Ri.j,k|k − Ri.j|kk]

− [V
′′
k − V

′
k] Ri.j|k

Remarks :

The two-point transport equation for the Reynolds stress tensor in decentered coor-
dinate system is simpler than the one obtained with the centered transformation and it
is closer in its outlook to its one-point limit. Moreover, the decentered transformation
allows the splitting of the viscous term into dissipation and viscous diffusion in a quite
straightforward manner. However, as seen below, the expression for the dissipation tensor
in decentered system does not separate clearly the pure homogeneous contribution from
the non-homogeneous one.

Evolution equation for the two-point dissipation tensor

The application of the decentered transformation to the two-point equation for the
dissipation tensor leads to similar results compared to its centered transformation as
obtained with the Reynolds stress transport.

Convective terms

The transformation of the convective term is straightforward :

Cε
i′.j′′ = Cε

i.j + Cε..
i.j (B.129)

where

Cε
i.j = [V

′
k] ε̆i.j,k (B.130a)

Cε..
i.j = [V

′′
k − V

′
k] ε̆i.j|k (B.130b)

Production terms

The P ε1
i′.j′′ term

Once the splitting of the transformed dissipation tensor is applied, the first production
term can be written as :

P ε1
i′.j′′ = [−Rn.j,k|k V

′
i,n − Ri.n,k|k V

′′
j,n] (B.131)

− [−Rn.j|kk V
′
i,n − Ri.n|kk V

′′
j,n]
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The P ε2
i′.j′′ term

The expression for this term is here apparently simpler, as compared to the centered
transformation :

P ε2
i′.j′′ = [−Ri.j,n|k V

′
n,k − Ri.j,k|n V

′′
n,k] (B.132)

− [−Ri.j|nk V
′
n,k − Ri.j|kn V

′′
n,k]

The P ε3
i′.j′′ term

This contribution to the production takes now an unusual form with the decentered
transformation, because it has an apparent asymmetric term as a consequence of the
kinematic transformation rules :

P ε3
i′.j′′ = −Ri.n,k V

′′
j,nk (B.133)

− [−Ri.n|k V
′′
j,nk + Rn.j|k V

′
i,nk] (B.134)

The P ε4
i′.j′′ term

This term is transformed together with the turbulent transport, exactly as done in the
centered transformation.

P ε4
i′.j′′ + dεu

i′.j′′ = −[(u′
iu

′
nu

′′
j ),k′k′′n′ + (u′

iu
′′
ju

′′
n),k′k′′n′′] (B.135)

Body force term

The transformation of this term is straightforward, if only the Coriolis force is consi-
dered :

Triple velocity correlation tensor

The transformation of the triple derivation gives the following expression for the tur-
bulent transport :

P ε4
i′.j′′ + dεu

i′.j′′ = [T u
in.j,n|k,k + T u

in.j|nkk − T u
in.j,n|kk − T u

in.j|nk,k] (B.136)

+ [T u
i.nj|nk,k − T u

i.nj|nkk]

Pressure-velocity tensor

The same transformation applies to the pressure-velocity tensor :

Πε
i′.j′′ = [T p

in.j,n|k,k + T p
in.j|nkk − T p

in.j,n|kk − T p
in.j|nk,k] (B.137)

+ [T p
i.nj|nk,k − T p

i.nj|nkk]
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The same grouping of terms applied earlier may be applied, leading to a further simplifi-
cation as follows :

Πε
i′.j′′ + P

ε4]
i′.j′′ + dεu

i′.j′′ = [T t
in.j,n + (T t

i.nj − T t
in.j)|n],k|k (B.138)

− [T t
in.j,n + (T t

i.nj − T t
in.j)|n]|kk

Viscosity contribution

The transformation of the viscous contribution dεν
i′.j′′ leads again to a mixed expression

where cross-derivative are present, but where the splitting into diffusion and dissipation
is obvious :

dεν
i′.j′′ = ν [ε̆i.j,nn − 2 ε̆i.j|n,n + 2 ε̆i.j|nn] (B.139)

with
dεν

i.j = ν ε̆i.j,nn (B.140)

and
Eε

i.j = 2 ν [ε̆i.j|n,n − ε̆i.j|nn] (B.141)

Summary and remarks

Exactly as in the case of the centered transformation, the transport equation for the
dissipation tensor can be seen as the sum of two transport equations :

dε̆i.j

dt
=

dRi.j,k|k

dt
− dRi.j|kk

dt
(B.142)

It should be pointed out, however, that the interpretation of this decomposition is less
easy. The transport equation for Ri.j|nn is, of course, not the same as for the centered
transformation, and this time the contributions of each part of the splitting to the entire
transport equation for the dissipation can be written as :

[

Ri.j,k|k,t + V
′
k Ri.j,n|n,k

]

(B.143)

−
[

Ri.j|kk,t + V
′
k Ri.j|nn,k

]

=

[

− (V
′′
k − V

′
k) Ri.j,n|nk

]

−
[

−(V
′′
k − V

′
k) Ri.j|nnk

]

+
[

− Rn.j,k|k V
′
i,n − Ri.n,k|k V

′′
j,n

]
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−
[

−Rn.j|kk V
′
i,n − Ri.n|kk V

′′
j,n

]

+
[

− Ri.j,n|k V
′
n,k − Ri.j,k|n V

′′
n,k

]

−
[

−2 Ri.j|nk V
′′
n,k + (V

′′
k,n − V

′
k,n) Ri.j|kn

]

+
[

− Ri.k V
′′
j,k|n

]

−
[

Ri.n|k V
′′
j,nk + Rn.j|k V

′
i,nk −2 Ri.n|k V

′′
j,nk

]

+
[

T t
in.j,n + (T t

i.jn − T t
in.j)|n

]

,k|k

−
[

T t
in.j,n + (T t

i.jn − T t
in.j)|n

]

|kk

+
[

− 2 ν ε̆i.j|k,k + ν Ri.j|n,n,kk

]

−
[

−2 ν ε̆i.j|kk + ν Ri.j|nn,kk

]

−
[

Ri.k V
′′
j,knn

]

−
[

−Ri.k V
′′
j,knn

]

−
[

Ri.j|k V
′′
k,nn

]

−
[

−Ri.j|k V
′′
k,nn

]

As in the notations adopted for the centered transformation, the terms that constitutes the
transport equation for Ri.j|nn are put into the boxes whereas the other ones come from the
equation for Ri.j|n,n. These equations contain also the additional terms the contribution
of which is not seen in the dissipation equation because their effects are compensated by
each other. It should be pointed out here that in the second and third production term,
the contribution that actually comes from the transport equation for Ri.j|n,n does involve
terms with Ri.j|pq.
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The viscous contributions are clearly separated. The splitting of the dissipation and
diffusion processes is here again straightforward, as it was in the centered transformation.
The viscous diffusion can be written as :

dεν
i.j = ν ε̆i.j,nn (B.144)

It can be further rewritten as

dεν
i.j = [ν Ri.j,k|k,nn] − [ν Ri.j|kk,nn] (B.145)

where the first term is the viscous diffusion of Ri.j,k|k and the second the viscous
diffusion of Ri.j|kk.

The treatment of the dissipation operator is very much alike, since the contributions
to Eε

i.j can be split into two dissipation processes, that of Ri.j,k|k and of Ri.j|kk :

Eε
i.j = [2 ν ε̆i.j,k|k] − [2 ν ε̆i.j|kk] (B.146)

The exploitation of this equation remains, however, less simple than the one obtained
with the centered transformation, since the interpretation of the Ri.j,k|k quantity and,
moreover, of its transport equation, is not straightforward within the one-point context.

It should be pointed out that the entire viscous contribution to the Ri.j|nn equation
can be written here as :

−2 ν ε̆i.j|kk + ν Ri.j|nn,kk (B.147)

or, again
−2 ν Ri.j|nnk,k + 2 ν Ri.j|kknn + ν Ri.j|nn,kk (B.148)

and that here no further simplification is possible, since none of the parts of the dissipation
process has the same form as the viscous diffusion operator.

B.2.3 Evolution equation for each part of the dissipation tensor
in the decentered transformation

This section presents the transport equations for Ri.j|nn and Ri.j,n|n obtained by the
derivation of the transport equation for the two-point Reynolds stress tensor. With the
decentered transformation, this equation can be written as :

dRi.j

dt
= −Ri.k V

′′
j,k − Rk.j V

′
i,k (B.149)

− 2 Ωk [εkmi Rm.j + εkmj Ri.m]

+ [T t
ik.j],k

+ [T t
i.jk − T t

ik.j]|k

+ ν Ri.j,kk

− 2 ν [Ri.j,k|k − Ri.j|kk]

− [V
′′
k − V

′
k] Ri.j|k
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where
d.

dt
=

∂.

∂t
+ V

′
k

∂.

∂Xk

Double derivative part

The double derivation leads to :

∂Ri.j|nn

∂t
+ V

′
k Ri.j|nn,k (B.150)

+V
′
k|nn Ri.j,k + 2 V

′
k|n Ri.j|n,k = −Ri.k|nn V

′′
j,k − Rk.j|nn V

′
i,k

− Ri.k V
′′
j,k|nn − Rk.j V

′
i,k|nn

− 2 Ri.k|n V
′′
j,k|n − 2 Rk.j|n V

′
i,k|n

− 2 Ωk [εkmi Rm.j|nn + εkmj Ri.m|nn]

+ [T t
ik.j],k|nn

+ [T t
i.jk − T t

ik.j]|knn

+ ν Ri.j|nn,kk

− 2 ν [Ri.j|nnk,k − Ri.j|kknn]

− [V
′′
k − V

′
k] Ri.j|knn

− [V
′′
k − V

′
k]|nn Ri.j|k

− 2 [V
′′
k − V

′
k]|n Ri.j|kn

The same interpretation of the terms as in the Appendix B can be given here. The mean
velocity gradients can again be modified in order to simplify the interpretation, yielding :

dRi.j|nn

dt
= −Ri.k|nn V

′′
j,k − Rk.j|nn V

′
i,k (B.151)

− Ri.k V
′′
j,knn

− 2 Ri.k|n V
′′
j,kn

− 2 Ωk [εkmi Rm.j|nn + εkmj Ri.m|nn]

+ [T t
ik.j],k|nn

+ [T t
i.jk − T t

ik.j]|knn

+ ν Ri.j|nn,kk

− 2 ν [Ri.j|nnk,k − Ri.j|kknn]

− [V
′′
k − V

′
k] Ri.j|knn

− V
′′
k,nn Ri.j|k

− 2 V
′′
k,n Ri.j|kn

They simplification comes from the fact that any derivative of V
′

with respect to r is
zero. This means that there are no additional terms originating from the derivation of
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the material derivative, and that the contributions from the non-homogeneous convective
terms are greatly simplified.

Cross derivative part

As a first step, the first derivative of the Reynolds stress transport equation with res-
pect to r can be written, using the transformed expressions of the mean velocity gradients,
as :

dRi.j|n

dt
= −Ri.k|n V

′′
j,k − Rk.j|n V

′
i,k (B.152)

− Ri.k V
′′
j,kn

− 2 Ωk [εkmi Rm.j|n + εkmj Ri.m|n]

+ [T t
ik.j],k|n

+ [T t
i.jk − T t

ik.j]|kn

+ ν Ri.j,kk|n

− 2 ν [Ri.j,k|kn − Ri.j|kkn]

− [V
′′
k − V

′
k] Ri.j|kn

− V
′′
k,n Ri.j|k

Applying then the cross derivation leads to :

dRi.j|n,n

dt
= −V

′
k,n Ri.j,k|n (B.153)

− Ri.k|n,n V
′′
j,k − Rk.j|n,n V

′
i,k

− Ri.k|n V
′′
j,kn − Rk.j|n V

′
i,kn

− Ri.k,n V
′′
j,kn

− Ri.k V
′′
j,knn

− 2 Ωk [εkmi Rm.j|n,n + εkmj Ri.m|n,n]

+ [T t
ik.j],k|n,n

+ [T t
i.jk − T t

ik.j]|kn,n

+ ν Ri.j,kkn|n

− 2 ν [Ri.j,nk|kn − Ri.j|kkn,n]

− [V
′′
k − V

′
k] Ri.j|kn,n

− [V
′′
k − V

′
k],n Ri.j|kn

− V
′′
k,nn Ri.j|k

− V
′′

k,n Ri.j|k,n

Those two equations enable to obtain again the transport equation for the dissipation
tensor described earlier in the decentered transformation system.
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Appendix C

Application of the Fourier transform

This Appendix presents the notations used for the Fourier transform of the two-point
equations and of the Poisson equation obtained by taking the divergence of the second
order tensor.

C.1 Basic notations

Φij(X, r) =
1

(2 π)3

∫

e−Ik.r Ri.j(x
′, x′′) dr (C.1)

The complex conjugate is denoted by a ∗, so that :

Φ∗
ij(X, k) = Φji(X,−k) (C.2)

The operations of gradient and multiplication by the coordinate transform is as fol-
lows :

TF[
∂.

∂ri
] = I ki (C.3a)

TF[ri] = I
∂.

∂ki
(C.3b)

Thus,

TF[
∂.

∂x′
i

] =
1

2

∂.

∂Xi
− I ki (C.4a)

TF[
∂.

∂x′′
i

] =
1

2

∂.

∂Xi
+ I ki (C.4b)

In a condensed notation, these derivations are denoted as follows :

∇∗
i =

1

2

∂.

∂Xi
− I ki (C.5a)

∇i =
1

2

∂.

∂Xi

+ I ki (C.5b)
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C.2 Expansion of the velocity components

In the physical space the Taylor expansion of the velocity components can be written
using the following operators :

V
′
i = exp(− 1

2
rn

∂.

∂Xn

) V i (C.6a)

V
′′
i = exp(

1

2
rn

∂.

∂Xn

) V i (C.6b)

Their transformed expression in the spectral space are written by means of the transformed
operators defined by :

Σ(X,−k) = exp(− I

2

∂V .

∂Xn

∂.

∂kn
) (C.7a)

Σ(X, k) = exp(
I

2

∂V .

∂Xn

∂.

∂kn
) (C.7b)

The second order expansion of the Σ operator lead to :

Σ(X, k) = 1 +
I

2

∂.

∂kn

∂V .

∂Xn

− 1

8

∂2.

∂kn∂km

∂2V .

∂Xn∂Xm

+ O(3) (C.8a)

Its conjugate form can then be written as :

Σ(X, k)∗ = 1 − I

2

∂.

∂kn

∂V .

∂Xn

− 1

8

∂2.

∂kn∂km

∂2V .

∂Xn∂Xm

+ O(3) (C.8b)

The superscript V is here introduced to remind that the derivation with respect to Xn

applies only to the mean velocity components. Hence, the expansion leads to the following
expressions :

2 Σ V n Φim = 2 V n Φim + I V n,l
∂Φim

∂kl

− 1

4
V n,pq

∂2Φim

∂kp∂kq

+ O(3) (C.9a)

2 Σ∗ V n Φmj = 2 V n Φmj − I V n,l
∂Φmj

∂kl
− 1

4
V n,pq

∂2Φmj

∂kp∂kq
+ O(3) (C.9b)

These expansions are to be used for the derivation of the pressure-velocity terms.

C.3 Expression for the pressure-velocity correlations

The pressure-velocity corelations can be obtained in terms of the spectral tensor and
the triple correlations through the derivation of the Poisson equations, obtained by taking
the divergence of the second order tensor equation. This equation can then be solved either
in the spectral space (Laporta, 1995) or in the physical space (Besnard et al., 1992). The
expression for the solutions is recalled in the following paragraphs.
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C.3.1 Expression in the physical space

The two-point evolution equation for the Reynolds stresses can be written as :

Ri.j,t + V
′
k Ri.j,k′ + V

′′
k Ri.j,k′′ = −Ri.k V

′′
j,k′′ − Rk.j V

′
i,k′ (C.10)

+T u
i.jk,k′′ + T u

ik.j,k′

−1

ρ
[u′

i p
′′
,j′′ + u′′

j p′
,i′

]

+ν [Ri.j,k′k′ + Ri.j,k′′k′′ ]

When the divergence is taken relative to the first point, the resulting Poisson equation
can be simplified to :

[2 V
′
i Rk.j − T u

ik.j]i′k′
= −1

ρ
u′′

jp
′
,i′i′

(C.11a)

and relative to the second point :

[2 V
′′
j Ri.k − T u

i.jk]j′′k′′
= −1

ρ
u′

ip
′′
,j′′j′′ (C.11b)

These Poisson equations can be solved in the physical space using Green functions and
then the spectral tensor of the pressure-velocity correlations is obtained by a Fourier
transform of the solution. This procedure has been used by Besnard et al. (1992). The
alternative procedure consists in solving the Poisson equation in the spectral space ; the
latter approach is usually followed when the turbulence is homogeneous. This solution is
more straightforward than the previous one, however it requires a careful treatment of
the transformation in order to simplify the calculations (Laporta, 1995). This procedure
is outlined first, and after that we recall the previous approach.

C.3.2 Solution of the Poisson equation in the spectral space

As for the Reynolds stress transport equation, it is more convenient to apply the
Fourier transform after the independent variables (x′, x′′) have been transformed into a
set of (X, r) variables. In this way we can better differentiate the local from non-local
contributions.

It appears here, however, that the centered transformation

Xk =
1

2
(x′

k + x′′
k) (C.12a)

rk = (x′′
k − x′

k) (C.12b)

is not simple. The double derivation involves all kinds of second derivatives with respect
to x and r.

∂2.

∂x′
m∂x′

n

=
1

4
.,mn − 1

2
[.,m|n + .|m,n] + .|mn (C.13a)

∂2.

∂x′′
m∂x′′

n

=
1

4
.,mn +

1

2
[.,m|n + .|m,n] + .|mn (C.13b)
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In contrast, the decentered transformation

Xk = x′
k (C.14a)

rk = (x′′
k − x′

k) (C.14b)

leads to a simple expression, because

∂2.

∂x′
m∂x′

n

= .,mn − [.,m|n + .|m,n] + .|mn (C.15a)

∂2.

∂x′′
m∂x′′

n

= .|mn (C.15b)

As the quantities are conjugate in the spectral space, it suffices to focus on one of them.
The decentered transformation allows to work with the second Poisson equation :

[2 V
′′
j Ri.k − T u

i.jk]j′′k′′
= −1

ρ
u′

ip
′′
,j′′j′′ (C.16a)

whose transformation with the decentered coordinates can be written as :

[2 V
′′
j Ri.k − T u

i.jk]|jk = −1

ρ
u′

ip
′′
|jj (C.16b)

It is noted that the formulation of boundary conditions associated with the partial diffe-
rential equations depends on the physical boundaries. In the spectral space the boundary
conditions are implicitly written in the equations through a suitable choice of the Fourier
transform. It has been assumed here that there is no wall so that the usual definition of
the Fourier transform can be applied. The transformation of the Poisson equation can
then be written as :

kj kk [2
˜

V
′′
j Φ̃ik − T̃ u

i.jk] = −k2 1

ρ
ˆu′
ip

′′ (C.16c)

where the .̃ denotes the decentered Fourier transform of the variables. Assuming that the
boundary conditions are zero at infinity, the solution to this equation can be written as

Π̃∗
i = [−1

ρ
˜u′
ip

′′]

=
kjkk

k2
[ 2

˜
V

′′
j Φ̃ik − T̃ u

i.jk] (C.17a)

and, using the decentered Taylor expansion operator,

Π̃∗
i =

kjkk

k2
[ 2 exp(I

∂.

∂km

∂V .

∂Xm

) V j Φ̃ik − T̃ u
i.jk] (C.18a)

This is the decentered quantity, linked to the centered one by the following transformation :

Π∗
i = exp(−I

2

∂.

∂km

∂.

∂Xm
) Π̃∗

i (C.19)
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so that the quantity wanted can be written as :

Π∗
i = exp(−I

2

∂.

∂km

∂.

∂Xm

) ]
[

kmkn

k2
2 exp(I

∂.

∂km

{ ∂V .

∂Xm

+
1

2

∂Φ.

∂Xm

}) V m Φin

]

− exp(−I

2

∂.

∂km

∂.

∂Xm

) ]
[

kmkn

k2
exp(

I

2

∂.

∂km

∂.

∂Xm

) Ti.nm

]

(C.20a)

Its conjugate form leads to the expression for Πj :

Πj = exp(
I

2

∂.

∂km

∂.

∂Xm
) ]

[

kmkn

k2
2 exp(−I

∂.

∂km
{ ∂V .

∂Xm
+

1

2

∂Φ.

∂Xm
}) V m Φnj

]

− exp(
I

2

∂.

∂km

∂.

∂Xm
) ]

[

kmkn

k2
exp(−I

2

∂.

∂km

∂.

∂Xm
) Tnm.j

]

(C.20b)

Various operators remain to be derived in order to get the expanded expressions of the
pressure-velocity terms.

C.3.3 Solution of the Poisson equation in the physical space

The two possible Poisson equations resulting from the divergence of the Reynolds
stress transport in the two-point physical description of the turbulence can be written
as :

[2 V
′
i Rk.j − T u

ik.j]i′k′
= −1

ρ
u′′

jp
′
,i′i′

(C.21a)

[2 V
′′
j Ri.k − T u

i.jk]j′′k′′
= −1

ρ
u′

ip
′′
,j′′j′′ (C.21b)

Using the Green theorem leads directly to their integration :

−1

ρ
u′′

jp
′(x′, x′′) = − 1

4 π

∫

G(y, x′′)
∂.

∂yi

∂.

∂yk
[ 2 V i(y) Rk.j(y, x′′) − T u

ik.j(y, x′′)] dy (C.22a)

−1

ρ
u′

ip
′′(x′, x′′) = − 1

4 π

∫

G(x′, y)
∂.

∂yj

∂.

∂yk

[ 2 V j(y) Ri.k(x
′, y) − T u

i.jk(x
′, y)] dy (C.22b)

where y is the current point of evaluation of the integrals and the surface integrals have
been neglected assuming the boundary conditions to be zero at the infinity. The treatment
of such integrals has already be discussed by Chou (1945). Assuming local homogeneity,
the Green function can take the following form :

G(x′, x′′) =
1

||x′ − x′′|| (C.23)

Again, it suffices to focus on only one of the pressure-velocity correlation. Following the
same approach as earlier, we focus our attention on the second equality. This can be
transformed into the Fourier space yielding (Besnard et al., 1992) :

Π∗
i (X, k) = −∇j(X, k)∇k(X, k) .

1

4 π

∫

Ĝ(X − y, k) [ 2 Σ(y, k)V j(y) Φik(y, k) − Ti.jk(y, k)] (C.24)
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The transformed Green function is :

−∇n ∇n Ĝ(X − y, k) = δ(X − y) (C.25)

The operator can then be written as :

Π∗
i (X, k) = −∇j ∇k G [ 2 ΣV j Φik − Ti.jk] (C.26)

and the Green function here is defined by the following inverse :

G =
[

−
(

1

2

∂.

∂Xn
+ I kn

)2]−1

(C.27)

It is then clear that the pressure-velocity correlations can be written as :

Π∗
i (X, k) = −∇m ∇n G [ 2 ΣV n Φim − Ti.mn] (C.28a)

Πj(X, k) = −∇∗
m ∇∗

n G∗ [ 2 Σ∗V n Φmj − Tmn.j ] (C.28b)

The Taylor expansion of these expressions remains to be done.

C.4 Expansion of the operators involved in the Pois-

son equations

The Green function is defined as :

G =
[

−
(

1

2

∂.

∂Xn

+ I kn

)2]−1

(C.29)

so that its expansion can be expressed as :

G =
1

k2

[

1 + I
kl

k2

∂.

∂Xl
+

1

4 k2

(

δls − 4
kl ks

k2

)

∂2.

∂Xl∂Xs

]

+ O(3) (C.30a)

and its conjugate form can be written as :

G∗ =
1

k2

[

1 − I
kl

k2

∂.

∂Xl
+

1

4 k2

(

δls − 4
kl ks

k2

)

∂2.

∂Xl∂Xs

]

+ O(3) (C.30b)

The grouping of the derivative operators leads to the following expression :

∇j ∇m ∇n = −I kj km kn (C.31a)

− 1

2

(

km kn
∂.

∂Xj

+ kj km
∂.

∂Xn

+ kj kn
∂.

∂Xm

)

+
1

4
I

(

kn
∂2.

∂Xj∂Xm

+ km
∂2.

∂Xj∂Xn

+ kj
∂2.

∂Xn∂Xm

)

+ O(3)
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and the conjugate form :

∇∗
i ∇∗

m ∇∗
n = I ki km kn (C.31b)

− 1

2

(

km kn
∂.

∂Xi

+ ki km
∂.

∂Xn

+ ki kn
∂.

∂Xm

)

− 1

4
I

(

kn
∂2.

∂Xi∂Xm
+ km

∂2.

∂Xi∂Xn
+ ki

∂2.

∂Xn∂Xm

)

+ O(3)

The combination of these expansions yields the following operators :

∇j ∇m ∇n G = −I kj
km kn

k2
(C.32a)

+
kj km kn kl

k4

∂.

∂Xl

− 1

2

(

km kn

k2

∂.

∂Xj
+

kj km

k2

∂.

∂Xn
+

kj kn

k2

∂.

∂Xm

)

+
I

4

1

k2

(

kn
∂2.

∂Xj∂Xm

+ km
∂2.

∂Xj∂Xn

+ kj
∂2.

∂Xn∂Xm

)

− I

2

kl

k2

(

km kn

k2

∂2.

∂Xj∂Xl
+

kj km

k2

∂2.

∂Xn∂Xl
+

kj kn

k2

∂2.

∂Xm∂Xl

)

− I

4

1

k4

(

δls − 4
kl ks

k2

)

kj km kn
∂2.

∂Xl∂Xs

+ O(3)

and their conjugate form :

∇∗
i ∇∗

m ∇∗
n G∗ = I ki

km kn

k2
(C.32b)

+
ki km kn kl

k4

∂.

∂Xl

− 1

2

(

km kn

k2

∂.

∂Xi

+
ki km

k2

∂.

∂Xn

+
ki kn

k2

∂.

∂Xm

)

− I

4

1

k2

(

kn
∂2.

∂Xi∂Xm

+ km
∂2.

∂Xi∂Xn

+ ki
∂2.

∂Xn∂Xm

)

+
I

2

kl

k2

(

km kn

k2

∂2.

∂Xi∂Xl
+

ki km

k2

∂2.

∂Xn∂Xl
+

ki kn

k2

∂2.

∂Xm∂Xl

)

+
I

4

1

k4

(

δls − 4
kl ks

k2

)

ki km kn
∂2.

∂Xl∂Xs

+ O(3)
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Appendix D

Two-point equations and one-point
equations

This appendix summarizes the physical interpretation of various terms in the two-point
second moment equation.

D.1 Reynolds stress equation

D.1.1 Expression in the one-point limit

The reduction of the two-point equations to the one-point limit is straightforward in
this case. The expression for the mean velocity has to be expanded with respect to the
distance r. As these are one point quantities, we get :

V
′
k = V k −

1

2
rn V k,n + O(r2) (D.1a)

V
′′
k = V k +

1

2
rn V k,n + O(r2) (D.1b)

Convective terms

The expansion of Ci.j and C ..
i.j can be written as :

Ci.j = V k Rij,k + O(r) (D.2a)

C ..
i.j = rn V k,n (Ri.j|k)0 + O(r2) (D.2b)

Production terms

The expansion of the production terms is also straightforward and leads to :

Pi.j = −Rik V j,k − Rjk V i,k + O(r) (D.3)
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Triple velocity correlation tensor

For the same reason the triple velocity correlations in the one-point limit are :

du
i.j = T u

ijk,k + O(r) (D.4a)

du..
i.j = O(r) (D.4b)

since

T u
ik.j|k − T u

i.jk|k = (u′
iu

′′
j )|k (u′′

k − u′
k) + u′

iu
′′
j (u′′

k − u′
k)|k (D.5)

Pressure-velocity tensor

By definition

T p
i.jk,k = −1

ρ
[p′′u′

i δjn],n (D.6a)

T p
ik.j,k = −1

ρ
[p′u′′

j δin],n (D.6b)

This notation comes from the fact that the derivative of a quantity in one of the two
points with respect to the other point does not need to be taken into account. This tensor
corresponds to the one point correlation between the fluctuating velocity and pressure
gradient, as follows from the expansion :

1

2
[T p

i.jk,k + T p
ik.j,k] = −1

2

1

ρ
[pui δjn + puj δin],n + O(r) (D.7a)

T p
i.jk|k − T p

ik.j|k = −1

2

1

ρ
[pui δjn + puj δin],n +

1

ρ
[p(ui,j + uj,i)] + O(r) (D.7b)

and it can be reduced to :

1

2
[T p

i.jk,k + T p
ik.j,k] =

1

2
dp

ij + O(r) (D.8a)

T p
i.jk|k − T p

ik.j|k =
1

2
dp

ij + φij + O(r) (D.8b)

The sum leads to :

1

2
[T p

i.jk,k + T p
ik.j,k] + T p

i.jk|k − T p
ik.j|k = dp

ij + φij + O(r) (D.9)

being
1

2
[T p

i.jk,k + T p
ik.j,k] + T p

i.jk|k − T p
ik.j|k = Φij + O(r) (D.10)
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Viscosity contribution

The viscous diffusion can be written as :

dν
i.j = ν Rij,kk + O(r) (D.11)

whereas the dissipation part may be written as :

ε̆i.j =
1

4
Rij,kk − (Ri.j|kk)0 + O(r) (D.12)

The one-point dissipation tensor can be interpreted as to be composed of an inhomoge-
neous term of the same mathematical form as the viscous diffusion process, and of an
homogeneous contribution which comes from the two-point description.

D.1.2 Remarks

There is no need to recall here the one-point equation for the Reynolds stress tensor.
The notations are described in Appendix A. It is, however, interesting to point out that
the difference of the derivatives with respect to r of the pressure transport term does not
entirely vanish in the one-point limit, but contributes to the pressure redistribution and
the pressure diffusion tensors.

The splitting of εi.j is the main reason why the centered transformation seems
to be the most appropriate description of the two-point processes.

D.2 Dissipation equation

D.2.1 Expression in the one-point limit

As for the two-point Reynolds stress tensor, the one-point equation for the dissipation
tensor is here also presented in terms of the one-point limit of its two-point value.

Convective terms

The development of the convective term is obvious and similar to the corresponding
development in the Ri.j equation.

Cε
i.j = V k ε̆ij,k + O(r) (D.13a)

Cε..
i.j = O(r) (D.13b)

Production terms

The P ε1
i′.j′′ term

This production term strictly corresponds to the one point P ε1
ij tensor.

P ε1
i′.j′′ = P ε1

ij + O(r) (D.14)
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Its expression in terms of the Reynolds stress tensor leads to :

P ε1
i′.j′′ =

1

4
[−Rnj,kk V i,n − Rin,kk V j,n] (D.15)

− [−(Rn.j|kk)0 V i,n − (Ri.n|kk)0 V j,n] + O(r)

where (.)0 denotes the limit of the two-point expression when r goes to zero.

The P ε2
i′.j′′ term

In this expression, the third two-point contribution entirely vanishes in the one-point
limit, so that the remaining terms are :

P ε2
i′.j′′ =

1

4
[−Rij,nk V n,k − Rij,kn V n,k] (D.16)

− [−(Ri.j|nk)0 V n,k − (Ri.j|kn)0 V n,k] + O(r)

The P ε3
i′.j′′ term

As compared with the previous production contribution, this inhomogeneous term
does not have a two-point counterpart and its limit is directly obtained :

P ε3
i′.j′′ =

1

2
[−Rnj,k V i,nk − R.n,k V j,nk] (D.17)

− [(Ri.n|k)0 V j,nk − (Rn.j|k)0 V i,nk] + O(r) (D.18)

It should, however, be pointed out that these two terms do not exactly correspond to the
expression for the inhomogeneous production of Rij,kk and (Ri.j|kk)0, respectively, as their
inhomogeneous production does include additional terms. Those terms are not typical
two-point contributions and they are present in the one-point expression. However, they
are identical in both equations and vanish in the equation for the dissipation tensor.

The P ε4
i′.j′′ term

This term is no longer treated separately from the turbulent transport term and the
fluctuating pressure transport term.

Triple velocity correlation tensor

This term is included in the transport term described below.

Pressure-velocity tensor

This is the last contribution to the transport term which can be written as :

dε
i′.j′′ = P ε4

i′.j′′ + dεu
i′.j′′ + Πε

i′.j′′ (D.19)
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or again :

dε
i′.j′′ =

1

4
[
1

2
(Ti.jn + Tin.j),nkk + (Ti.jn − Tin.j)|n,kk] (D.20)

− [
1

2
(Ti.jn + Tin.j),n|kk + (Ti.jn − Tin.j)|nkk]

with the same notations as for the Reynolds stress equation,

Ti.jk = −u′
iu

′′
ju

′′
k −

1

ρ
u′

ip
′′ δjk (D.21a)

Tik.j = −u′
iu

′
ku

′′
j −

1

ρ
u′′

jp
′ δik (D.21b)

Without further consideration, the simplest way is to keep the previous form, so that
in the one-point limit the transport term can be written as :

dε
i′.j′′ =

1

4
([

1

2
(Ti.jn + Tin.j),nkk + (Ti.jn − Tin.j)|n,kk])0 (D.22)

− ([
1

2
(Ti.jn + Tin.j),n|kk + (Ti.jn − Tin.j)|nkk])0

Viscosity contribution

The viscous contribution consist of the viscous diffusion and dissipation. When these
term are expressed in terms of the Reynolds stress tensor, the viscous term in the one-point
limit can be written as :

dεν
i.j − Eε

i.j = ν [
1

8
Rij,kknn − 2 (Ri.j|kknn)0] + O(r) (D.23)

with

dεν
i.j = ν ε̆ij,nn + O(r) (D.24a)

= ν [
1

4
Rij,kknn − (Ri.j|kk,nn)0] + O(r)

Eε
i.j = 2 ν [

1

16
Rij,kknn − 1

2
(Ri.j|kk,nn)0 + (Ri.j|kknn)0] + O(r) (D.24b)

D.2.2 Remarks

The one-point transport equation for the so-called homogeneous part of ε̆ij , defined
here by :

ε̆h
ij = ε̆ij −

1

4
Rij,kk (D.25)
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can be derived by taking the one-point limit of the two-point equation of Ri.j|kk :

d(Ri.j|nn)0

dt
= −1

4
V k,nn Rij,k (D.26)

− (Ri.k|nn)0 V j,k − (Rk.j|nn)0 V i,k

− 1

4
Rik V j,knn − 1

4
Rkj V i,knn

− [(Ri.k|n)0 V j,kn − (Rk.j|n)0 V i,kn]

− 2 Ωk [εkmi (Rm.j|nn)0 + εkmj (Ri.m|nn)0]

+
1

2
[([Ti.jk + Tik.j]|nn)0],k

+ ([Ti.jk − Tik.j]|knn)0

+ ν [(Ri.j|nn)0],kk

− 2 ν (ε̆i.j|nn)0

− 2 V k,n (Ri.j|kn)0

This equation can now be rewritten as :

dε̆h
ij

dt
=

1

4
V k,nn Rij,k (D.27)

− ε̆h
ik V j,k − ε̆h

kj V i,k

+
1

4
Rik V j,knn +

1

4
Rkj V i,knn

+ [(Ri.k|n)0 V j,kn − (Rk.j|n)0 V i,kn]

− 2 Ωk [εkmi ε̆
h
mj + εkmj ε̆h

im]

− 1

2
[([Ti.jk + Tik.j]|nn)0],k

− ([Ti.jk − Tik.j]|knn)0

+ ν [ε̆h
ij],kk

− 1

2
ν [ε̆k

ij],kk − 2 ν (Ri.j|nnkk)0

+ 2 V k,n (Ri.j|kn)0
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Appendix E

Spectral equations and the one-point
equations

In this Appendix we summarize the physical interpretation of various terms in the
spectral second moment equation. Once integrated over the wave number space, this
equation leads to the Reynolds stress equation in the physical space.

E.1 Reynolds stress equation

The transport equation for the second moment in the physical space can be written
as :

Rij,t + V k Rij,k = ν Rij,kk − 2 ν ui,kuj,k

unsteadiness convection viscous diffusion viscous dissipation

− V j,k Rik − V i,k Rkj

production by mean velocity gradients

+
1

ρ
p(ui,j + uj,i)

redistribution (pressure strain term)

+
[

T u
ijm + T p

ijm

]

,m

turbulent diffusion pressure diffusion

with

T u
ijk = −uiujuk (E.2a)

T p
ijk = − 1

ρ
p (ui δjk + ujδik) (E.2b)
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The transformed equation in the spectral space can be written as :

Φij,t +
1

2
[Σ + Σ∗] V k Φij,k = ν Φij,kk − 2 ν

[

1

4
Φij,kk + k2 Φij

]

unsteadiness convection viscous diffusion viscous dissipation

− [Σ − Σ∗] V k (I kk Φij)

convection in the spectral space

− [Σ V j ],k Φik − [Σ∗ V i],k Φkj

production by mean velocity gradients

+ ∇∗
i Πj + ∇j Π∗

i

pressure-velocity terms

+ ∇∗
m Tim.j + ∇m Ti.jm

turbulent diffusion

where ∇m is the gradient operator in the spectral space and ∇∗
m its conjugate defined

as :

∇m =
1

2
{.},m + I km (E.4a)

and Σ is the operator of the Taylor expansion applied on the velocity gradients, defined
as :

Σ = exp
(

1

2
{.}|n {.}

V
,n

)

(E.4b)

E.1.1 Expression in the one-point limit

Integration of the second order spectral correlations over the wave numbers yields
the Reynolds stress tensor at a point in the physical space. We consider now term by
term. The integration of the viscous term is straightforward. The identification of the
viscous diffusion is immediate and the expression for the viscous dissipation requires an
integration by parts :

∫

ν Φij,kk dk = ν Rij,kk (E.5)

and
∫

2 ν
[

1

4
Φij,kk + k2 Φij

]

dk = 2 ν
∫

Ri.j|nn e−I kr dr dk

= 2 ν
[

Ri.j|nn

]

r=0
(E.6)

The turbulent diffusion can be split into two terms. The first term representing the
first order spatial inhomogeneity :

∇∗
m Tim.j + ∇m Ti.jm =

1

2
[Tim.j + Ti.jm],m + I km [Tim.j − Ti.jm] (E.7)
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Here the first contribution acts as a diffusion term in the spectral space and corresponds
to the turbulent diffusion process in the physical space.

∫

1

2
[Tim.j + Ti.jm],m dk = [Timj ],m (E.8)

whereas the second contribution is a typical spectral term and represents the non linear
transfer process. Its integration over all the wave numbers brings no contribution to the
Reynolds stress equation.

∫

I km [Tim.j − Ti.jm] dk =
∫

I km [T u
im.j − T u

i.jm] e−I kr dr dk

=
∫

[T u
im.j − T u

i.jm]
|m

e−I kr dr dk

=
[

[T u
im.j − T u

i.jm]
|m

]

r=0

= 0 (E.9)

In the physical space the pressure terms are usually split into a redistributive and a
diffusive contribution, as described in the first equation. Following the same splitting as
the one used for the turbulent transport, the spectral pressure terms can be written as :

∇∗
i Πj + ∇j Π∗

i =
1

2
[Πj,i + Π∗

i,j] − I [ki Πj + kj Π∗
i ] (E.10)

The integration of the first part is again straightforward :

∫

1

2
[Πj,i + Π∗

i,j] dk =
1

ρ

∫

1

2
[p′u′′

j ,i
+ p′′u′

i,j] e
−I kr dr dk

=
1

ρ

1

2
[−(puj),i + (puj),i] dk (E.11)

whereas the remaining term can be integrated as :

∫

I [ki Πj + kj Π∗
i ] dk =

1

ρ

∫

I [ki p′u′′
j + kj p′′u′

i] e
−I kr dr dk

=
1

ρ
[−1

2
(puj),i + p uj,i −

1

2
(pui),j + p ui,j] (E.12)

Hence, the transport term by fluctuating pressure can be transformed as :

−1

ρ
[(puj),i + (pui),j] = TF−1[Πj,i + Π∗

i,j] (E.13)

and the redistribution tensor as :

1

ρ
p (ui,j + uj,i) = TF−1[−1

2
(Πj,i + Π∗

i,j) − I (ki Πj − kj Π∗
i )] (E.14)
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The remaining terms in the equation involve mean velocity gradients. In the spectral
equations these terms depend on the spectral derivative {.}|n. Therefore, their contribution
to the Reynolds stress equation vanishes as long as the order of the spectral derivative
is higher than two (according to the Ostrogradsky property, these terms are transformed
into surface integrals where all spectral terms go to zero, as noted by Laporta (1995) ).
Thus the only terms that need to be taken into account have at most spectral derivatives
of the first order. They can be written as :

ŜV
ij = −(∇k + ∇∗

k) V k Φij

+ (∇k + ∇∗
k) (V i Φkj + V j Φik)

+ kn (V n,p Φij|p)

+
1

2
kn (V i,p Φnj|p − V j,p Φin|p)

The non-zero integrations over the wave numbers result in the convection an production
of the Reynolds stress equation.

E.1.2 Remarks

The comparison with the two-point equations in the physical space is straightforward,
as it can be seen in the previous Appendix.
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Appendix F

Classical one point closure

This appendix recalls the derivation of the classical closure for the homogeneous
pressure-strain term using the fourth order tensor Xijpq.

The pressure-strain term is usually expressed as :

φR
ij = 2 (Smn + Wmn)

[

Ximnj + Xmjni

]

(F.1)

The classical closure for Xijpq is the following functional :

1

2ϕ
Xijpq = C1 δij δpq + C2 (δip δjq + δjp δiq)

+ C3 δij hpq + C4 hij δpq

+ C5 (δip hjq + δjp hiq + hip δjq + hjp δiq)

+ C6 δij h2
.pq + C7 h2

.ij δpq

+ C8 (δip h2
.jq + δjp h2

.iq + h2
.ip δjq + h2

.jp δiq)

+ C9 hij h.pq + C10 (hip hjq + hjp hiq)

+ C11 hij h2
.pq + C12 h2

.ij hpq

+ C13 (hip h2
.jq + hjp h2

.iq + h2
.ip hjq + h2

.jp hiq)

+ C14 h2
.ij h2

.pq + C15 (h2
.ip h2

.jq + h2
.jp h2

.iq) (F.2)

This expression satisfies all symmetry properties of the Xijpq tensor for an homogeneous
turbulent flow. They are, respectively

Xijpq = Xijqp (F.3a)

because of the second derivative permutation, and

Xijpq = Xjipq (F.3b)

because of the Hermitian character of the spectral tensor Φij in the case of an homogeneous
turbulence, that follows once the spherical integration is applied to a symmetric tensor.
Furthermore the fact that the flow is incompressible allows to impose :

Xnjnq = 0 (F.3c)
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which gives three relations between the coefficients :

C1 + 4 C2 − 2 IIh C8 + IIIh (C11 + C12 + 2 C13) = 0 (F.4a)

C3 + C4 + 5 C5 − IIh (C11 + C12 + 4 C13) + IIIh (C14 + C15) = 0 (F.4b)

C6 + C7 + 5 C8 + C9 + C10 − IIh (C14 + 3 C15) = 0 (F.4c)

Using the Cayley-Hamilton theorem to reduce the order of all tensor products (Spencer,
1971), the rapid term can be written as :

1

2ϕ
φR

ij = β1 hij

+ β2 [h2
.ij + 2/3 IIh δij]

+ β3 Sij

+ β4 [hik Skj + hjk Sik − 2/3 hmnSmn δij ]

+ β5 [h2
.ik Skj + h2

.jk Sik − 2/3 h2
.mnSmn δij ]

+ β6 [hik Wjk + hjk Wik]

+ β7 [h2
.ik Wjk + h2

.jk Wik]

+ β8 [hik Wkp h2
.pj + h2

.ik Wpk hjp] (F.5)

with

β1 = 4 {bS} (C9 + 2 C10) + 2 {b2S} (C11 + C12 + 4 C13)

β2 = 2 {bS} (C11 + C12 + 4 C13) + 4 {b2S} (C14 + 2 C15)

β3 = 4 (C1 + C2) − 4 IIh (C9 + C10) − 2 IIIh (C11 + C12 + 2 C13) − 4 II2
h (C14 + C15)

β4 = −6 C5 + 2 IIh (C11 + C12 + 4 C13) − 6IIIh (C14 + C15)

β5 = −6 (C8 + C9 + C10) − 2 IIh (C14 − C15)

β6 = 2 (−2 C4 − 5 C5 + IIh (C11 + C12 + 4 C13) − IIIh (C14 + C15))

β7 = 2 (−(2 C7 + C9 + C10 + 5 C8) + IIh (C14 + 3 C15))

β8 = 2 (C11 − C12)

where the notation {.} stands for the trace of the tensor to which it is applied.
The closure of the pressure-strain term through Xijpq allows to reduce the number of

the unknown coefficients because of the properties of Xijpq. This is, for instance interesting
to force the model to respect the fact that the spectral tensor is a contraction of the fourth
order tensor. This is the so-called normalization condition which can be written as

Xijnn = hij +
1

3
δij (F.7)

This is the only normalization condition to be satisfied as long as the model involves only
the hij anisotropy tensor. This condition brings three additional equations :

3 C1 + 2 C2 − 2 IIh C6 + 4 IIIh C13 =
1

3
(F.8a)

3 C4 + 4 C5 − 2 IIh (C11 + 2 C13) + 2 IIIh C15 = 1 (F.8b)

3 C7 + 4 C8 + 2 C10 − 2 IIh (C14 + C15) = 0 (F.8c)
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Using all those constraints allows to reduce the number of unknown coefficients to nine.
If they are chosen to be :

C5 C8 C9 C10 C11 C12 C13 C14 C15 (F.9)

then the solution of the system of constraints leads to the following relations :

C1 =
2

15
− 2 IIh (

5

3
C8 +

2

5
C9 +

2

15
C10) +

1

5
IIIh (C11 + C12 − 6 C13)

+
4

15
II2

h (C14 + 7 C15) (F.10a)

C2 = − 1

30
+ IIh (

4

3
C8 +

1

5
C9 +

1

15
C10) −

1

5
IIIh [

3

2
(C11 + C12) + C13]

− 1

15
II2

h (C14 + 7 C15) (F.10b)

C3 = −1

3
− 11

3
C5 + IIh (

1

3
C11 + C12 +

8

3
C13) − IIIh (C14 +

1

3
C15) (F.10c)

C4 =
1

3
− 4

3
C5 +

2

3
IIh (C11 + 2 C13) −

2

3
IIIh C15 (F.10d)

C6 = −11

3
C8 − C9 −

1

3
C10 +

1

3
IIh (C14 + 7 C15) (F.10e)

C7 = −4

3
C8 −

2

3
C10 +

2

3
IIh (C14 + C15) (F.10f)
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Appendix G

Choice of the multiple-scale variables

This appendix details the integration of the spherical variables and the approximations
used to evaluate the variables wanted.

G.1 Closures assumptions

Let us recalls the closure of the model of the spherically integrated second order tensor
(Schiestel, 1993) :

ϕij(k) = f(k) E(k)
Rij

K
+ (1 − f(k))

2

3
E(k) δij (G.1)

as well as the adopted approximation of the one-dimensional spectrum : and the damping
function associated with the assumed isotropy of the small structures :

G.2 Integration

The quantities to be integrated are defined as

I(m) =
∫ +∞

0
km ϕij dk (G.2)

where m > −5 in order to have a convergent integral. This integration can be rewritten
as :

I(m) =
∫ kL

0
km ϕij dk +

∫ kη

kL

km ϕij dk (G.3)

which leads to the definition of the two integrals applied on the low and the high wave
numbers regions of the spectrum :

I(m)<< =
∫ kL

0
km ϕij dk (G.4a)

I(m)>> =
∫ kη

kL

km ϕij dk (G.4b)
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E(k)

α k

k k

- 5/3

k
L η

4

β ε (1) 2/3 k

Figure G.1 – Schematical representation of a high-Reynolds kinetic energy spectrum.

k k k
L

- 2/3

η

f(k)

1

k/k
L

)(

Figure G.2 – Schematics of the damping of the anisotropy of small scales.
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G.2. INTEGRATION

G.2.1 Large scales contribution

According to the closures adopted, when the scales of the eddy structures are larger
than the integral longitudinal length scale, the spherical spectral tensor is defined by

ϕij(k) = E(k)
Rij

K
(G.5)

where
E(k) = α k4 (G.6)

so that the integral can be written as :

I(m)<< = α
Rij

K

∫ kL

0
k(m+4) dk (G.7)

Taking into account the continuity of the spectrum allows to express α in terms of β, so
that :

I(m)<< = β ε(1) 2/3 k
−17/3
L

Rij

K

∫ kL

0
k(m+4) dk (G.8)

The integration can, therefore, be performed for m > −5, which simplifies to

I(m)<< =
β

(m + 5)

Rij

K
ε(1) 2/3 k

(m−2/3)
L when m > −5 (G.9)

This expression enables us to see which values of m might be of interest. The energy-
containing length scale can indeed be rewritten in term of the kinetic energy and the
transfer rate through the spectrum, i.e. :

I(m)<< =
β

(m + 5)

Rij

K
ε(1) m K(−3/2 m+1) (G.10)

or, again :

I(m)<< =
β

(m + 5)
Rij ε(1) m K−3/2 m (G.11)

Therefore, when m = 0, this function yields the Reynolds stress tensor Rij . The derivation
of a variable where ε(1) is entirely separated from the kinetic energy, seems to be difficult.
However, taking into account the definition of the length scale, this integral reduces to
Rij L when m = −1. Finally, in order to treat the small scales, we can consider the
dissipation rate, which is recovered from the above general integral by taking m = 2.

G.2.2 Small scales contribution

The spherical tensor, introduced earlier

ϕij(k) = f(k) E(k)
Rij

K
+ (1 − f(k))

2

3
E(k) δij
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reflects the assumption that the information on the anisotropy of the turbulence comes
only from the Reynolds tensor, and that this anisotropic character decreases with an in-
crease in the wave number (smaller structures). This statement becomes more transparent
if the above spherical tensor is rewritten as :

ϕij(k) − 2

3
E(k) δij = f(k) E(k)

[

Rij

K
− 2

3
δij

]

The integration of the small scales contributions can then be split into two parts :

I(m)>>i =
∫ kη

kL

km 2

3
E(k) δij dk (G.12a)

I(m)>>a =
∫ kη

kL

km f(k) E(k)
[

Rij

K
− 2

3
δij

]

dk (G.12b)

Isotropic part

The expression for the isotropic part can be written as :

I(m)>>i =
2

3
δij β ε(1) 2/3

∫ kη

kL

k(m−5/3) dk (G.13)

For m different from 2
3

this expression can be written as :

I(m)>>i =
β

(m − 2/3)

2

3
δij ε(1) 2/3

[

k(m−2/3)
]kη

kL

(G.14)

or again

I(m)>>i =
β

(m − 2/3)

2

3
δij ε(1) 2/3 k(m−2/3)

η

[

1 −
(

kL

kη

)(m−2/3)]

(G.15)

When m < 2/3, the scales of the energy containing eddies are predominant so that this
integral can be approximated by

I(m)>>i ∼ − β

(m − 2/3)

2

3
δij ε(1) 2/3 k

(m−2/3)
L when m < 2/3 (G.16a)

whereas when m > 2/3, the small scales processes are dominant and

I(m)>>i ∼ β

(m − 2/3)

2

3
δij ε(1) 2/3 k(m−2/3)

η when 2/3 < m (G.16b)

Anisotropic part

The expression for the anisotropic part can be written as :

I(m)>>a =
[

Rij

K
− 2

3
δij

]

β ε(1) 2/3 k
2/3
L

∫ kη

kL

k(m−7/3) dk (G.17)
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When the exponent m differs from 4
3
, this expression can be written as :

I(m)>>a =
β

(m − 4/3)

[

Rij

K
− 2

3
δij

]

ε(1) 2/3 k
2/3
L

[

k(m−4/3)
]kη

kL

(G.18)

or again

I(m)>>a =
β

(m − 4/3)

[

Rij

K
− 2

3
δij

]

ε(1) 2/3 k(m−2/3)
η

(

kL

kη

)2/3 [

1 −
(

kL

kη

)(m−4/3)]

(G.19)

When m < 4/3, the energy containing scales are predominant so that this integral can be
approximated by

I(m)>>a ∼ − β

(m − 4/3)

[

Rij

K
− 2

3
δij

]

ε(1) 2/3 k
(m−2/3)
L when m < 4/3 (G.20a)

whereas, when m > 4/3, the small scales processes are dominant and

I(m)>>a ∼ β

(m − 4/3)

[

Rij

K
− 2

3
δij

]

ε(1) 2/3 k(m−2/3)
η

(

kL

kη

)2/3

when 4/3 < m (G.20b)

The decomposition into the isotropic and anisotropic part chosen here is based on
a physical interpretation, though a mathematical decomposition based on the polyno-
mial extension of the functional terms is also possible. It is interesting to note that the
anisotropic terms can be rewritten as :

I(m)>>a ∼ − β

(m − 4/3)

[

Rij

K
− 2

3
δij

]

ε(1) 2/3 k
2/3
L k

(m−4/3)
L when m < 4/3 (G.21a)

and

I(m)>>a ∼ β

(m − 4/3)

[

Rij

K
− 2

3
δij

]

ε(1) 2/3 k
2/3
L k(m−4/3)

η when 4/3 < m (G.21b)

which make the comparison with the isotropic part more obvious and display more clearly
the relevant scale associated to each of the parts.

G.2.3 Synthesis

To summarize, the whole integral I(m) can be written as
∫ +∞

0
km ϕij dk =

β

(m + 5)

Rij

K
ε(1) 2/3 k(m−2/3)

η

(

kL

kη

)(m−2/3)

(G.22)

+
β

(m − 2/3)

2

3
δij ε(1) 2/3 k(m−2/3)

η

[

1 −
(

kL

kη

)(m−2/3)]

+
β

(m − 4/3)

[

Rij

K
− 2

3
δij

]

ε(1) 2/3 k(m−2/3)
η

(

kL

kη

)2/3 [

1 −
(

kL

kη

)(m−4/3)]

whenever m > −5 and differs from 2
3

and from 4
3
.
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G.2.4 Approximations

As already seen, depending on the value of m, different forms of the integral I(m) are
obtained which enables to choose suitable dependent variables. The integration of the
large scale contribution points out at interesting values of m, m = 0, m = −1 and m = 2.
Therefore, within the domain of validity of m, only two intervals can be considered, the
one for −5 < m < 2/3 and the other for 4/3 < m. The simplifications involved in these
intervals are discussed in the following paragraphs.

Energy containing eddies and transfer contribution

The evaluation of each part of the integral when −5 < m < 2/3 has shown that each
of the contributions has the same scaling which is :

ε(1) 2/3 k
(m−2/3)
L (G.23)

Therefore, the integral must be evaluated using the entire wave number contribution. For
this purpose it is useful to write the integral as a functional expansion in terms of the
Reynolds stress :

∫ +∞

0
km ϕij dk = ε(1) 2/3 k

(m−2/3)
L

(

I
(m)
0

2

3
δij + I

(m)
1

Rij

K

)

(G.24)

where

I
(m)
0 =

(

− β

(m − 4/3)

−2/3

(m − 2/3)

) [

1 +
(m − 4/3)

2/3

(

kη

kL

)(m−2/3)

− (m − 2/3)

2/3

(

kη

kL

)(m−4/3)]

I
(m)
1 =

(

− β

(m − 4/3)

19/3

(m + 5)

) [

1 − (m + 5)

19/3

(

kη

kL

)(m−4/3)]

As a first approximation only the zero order term can be retained and the second integral
has a higher order scalar coefficient for m = 0 and m = −1, so that for these values, the
integral can be approximated by :

∫ +∞

0
km ϕij dk ∼ ε(1) 2/3 k

(m−2/3)
L

Rij

K
(G.26)

that is :
∫ +∞

0
ϕij dk ∼ Rij

and
∫ +∞

0
k−1 ϕij dk ∼ K3/2

ε(1)
Rij

This parameter yields in an indirect manner the spectral energy transfer rate ε(1), which
can be related to the length scale of the energy containing eddies L = K3/2/ε(1).
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The above result corresponds also to the simplified closure on the length scale tensor
defined by Donaldson and Sandri (1981),

Λij = L
Rij

K

which can be extended to account for both the isotropic and anisotropic contributions :

Λij = L
[

2

3
δij + σ

(

Rij

K
− 2

3
δij

)]

Finally, following the above arguments, we can generalize the interpretation of the latter
integral by writing

∫ +∞

0
k−1 ϕij dk ∼ Λij K

The tensorial closure is here written as a function of the physical Reynolds stress. This is
due to the spectral model of the spherical tensor.

Small scales contribution

In the case where 4/3 < m, the evaluation of various terms remains valid, though
each of the terms has a different scaling. Adopting the same splitting presented in the
preceding section, we can first group the terms in the following manner :

∫ +∞

0
km ϕij dk ∼ c

(m)>>
K

β

(m + 5)

Rij

K
ε(1) 2/3 k(m−2/3)

η

(

kL

kη

)(m−2/3)

(G.27)

+ c
(m)>>
εi

β

(m − 2/3)

2

3
δij ε(1) 2/3 k(m−2/3)

η

+ c(m)>>
εa

β

(m − 4/3)

[

Rij

K
− 2

3
δij

]

ε(1) 2/3 k(m−2/3)
η

(

kL

kη

)2/3

The first contribution can be neglected, so that the integral can be written as :

∫ +∞

0
km ϕij dk ∼ ε(1) 2/3 k(m−2/3)

η

[

fε(m)

Rij

K
+ (1 − fε(m))

2

3
δij

]

(G.28)

where

fε(m) =
(

kL

kη

)2/3

(G.29)

It is interesting to note that the ratio of the two length scales delimiting the spectrum
can be rewritten in terms of the turbulent Reynolds number

kL

kη
= R

−3/4
t

(

ε(1)

ε(2)

)3/2

(G.30)
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so that this function might be seen as a damping function expressed in terms of the
spectrum imbalance and the turbulent Reynolds number. The scale of this expression can
also be transformed using the molecular viscosity as :

ε(1) 2/3 k(m−2/3)
η = ν− (3/4 m−1/2) ε(2) (3/4 m−1/2) ε(1) (1−m/2) (G.31)

When m = 2, those parameters are reduced to

fε(2) = R
−1/2
t

(

ε(1)

ε(2)

)

(G.32)

and
ε(1) 2/3 k2/3

η = ν−1 ε(2) (G.33)

Hence, an expression for a suitable variable describing the small scales (ε(2)) can be deri-
ved :

∫ +∞

0
ν k2 ϕij dk ∼ ε(2)

[

fε(2)

Rij

K
+ (1 − fε(2))

2

3
δij

]

where fε(2) = R
−1/2
t

(

ε(1)

ε(2)

)

This gives an expression of the dissipation rate tensor very much like the standard ex-
pression used in one-point second order models. This is not surprising, since the spectral
model chosen also matches the same tensorial derivation.

Intermediate case

The intermediate case, where 2/3 < m < 4/3, is of no use in the choice of the variables.
This exponent appears, however, in the diffusive terms in the transport equations and, for
that reason, we give a brief outline of such a case. For this interval of m (0 < m−2/3 < 2/3)
and for high Reynolds numbers, the integral can be approximated by :

∫ +∞

0
km ϕij dk ∼ 2

3
δij ε(1) 2/3 k(m−2/3)

η (G.34)
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2(3), pp. 417–449.

Schiestel, R. (1987) Multiple time scale modeling of turbulent flows in one point
closures. Phys. Fluids, 30(3), pp. 722–731.

Schiestel, R. (1993) Modélisation et simulation des écoulements turbulents. Hermès.
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