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Existence of global strong solutions in critical spaces for

barotropic viscous fluids

Boris Haspot ∗, †

Abstract

This paper is dedicated to the study of viscous compressible barotropic fluids in
dimension N ≥ 2. We address the question of the global existence of strong solutions
for initial data close to a constant state having critical Besov regularity. First, this
article shows the recent results of [7] and [11] with a new proof. Our result relies on
a new a priori estimate for the velocity that we derive via the intermediary of the
effective velocity, which allows us to cancel out the coupling between the density and
the velocity as in [21]. Second we improve the results of [7] and [11] by adding as
in [7] some regularity on the initial data in low frequencies. In this case we obtain
global strong solutions for a class of large initial data which rely the results of D.
Hoff in [25, 28, 29] and those of [7, 11]. We conclude by generalizing these results for
general viscosity coefficients.

1 Introduction

The motion of a general barotropic compressible fluid is described by the following system:
∂tρ+ div(ρu) = 0,

∂t(ρu) + div(ρu⊗ u)− div(µ(ρ)D(u))−∇(λ(ρ)divu) +∇P (ρ) = ρf,

(ρ, u)/t=0 = (ρ0, u0).

(1.1)

Here u = u(t, x) ∈ RN stands for the velocity field and ρ = ρ(t, x) ∈ R+ is the density.
The pressure P is a suitable smooth function of ρ. We denote by λ and µ the two viscosity
coefficients of the fluid, which are assumed to satisfy µ > 0 and λ+ 2µ > 0 (in the sequel
to simplify the calculus we will assume the viscosity coefficients as constants). Such a
condition ensures ellipticity for the momentum equation and is satisfied in the physical
cases where λ + 2µ

N > 0. We supplement the problem with initial condition (ρ0, u0) and
an outer force f . Throughout the paper, we assume that the space variable x ∈ RN or
to the periodic box T Na with period ai, in the i-th direction. We restrict ourselves to the
case N ≥ 2.
The problem of existence of global solutions for Navier-Stokes equations was addressed
in one dimension for smooth enough data by Kazhikov and Shelukin in [33], and for
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discontinuous ones, but still with densities away from zero, by Serre in [40] and Hoff in
[23]. Those results have been generalized to higher dimension by Hoff in [26, 27]. The
existence and uniqueness of local classical solutions for (1.1) with smooth initial data such
that the density ρ0 is bounded and bounded away from zero has been stated by Nash in
[38]. Let us emphasize that no stability condition was required there. On the other hand,
for small smooth perturbations of a stable equilibrium with constant positive density,
global well-posedness has been proved in [36]. More precisely Matsumura and Nishida
in [36] obtained the existence of global strong solutions for three-dimensional polytropic
ideal fluids and no outer force with initial data chosen small in the following spaces
(ρ0 − 1, u0) ∈ H3 ×H3. Refined functional analysis has been used for the last decades,
ranging from Sobolev, Besov, Lorentz and Triebel spaces to describe the regularity and
long time behavior of solutions to the compressible model [41], [42], [25], [32].
Guided in our approach by numerous works dedicated to the incompressible Navier-Stokes
equation (see e.g [37]):

(NS)

{
∂tv + v · ∇v − µ∆v +∇Π = 0,

divv = 0,

we aim at solving (1.1) in the case where the data (ρ0, u0, f) have critical regularity.
By critical, we mean that we want to solve the system (1.1) in functional spaces with norm
invariant by the changes of scales which leave (1.1) invariant. In the case of barotropic
fluids, it is easy to see that the transformations:

(ρ(t, x), u(t, x)) −→ (ρ(l2t, lx), lu(l2t, lx)), l ∈ R, (1.2)

have that property, provided that the pressure term has been changed accordingly.

Definition 1.1 Let ρ̄ > 0. In the sequel we will note: q = ρ−ρ̄
ρ̄ .

The use of critical functional frameworks led to several new well-posedness results for
compressible fluids (see [13, 17, 19, 21]). In addition to have a norm invariant by (1.2),
appropriate functional spaces for solving (1.1) must provide a control on the L∞ norm
of the density (in order to avoid vacuum and loss of ellipticity). For that reason, we
restricted our study to the case where the initial data (ρ0, u0) and external force f are
in homogeneous Besov spaces such that, for some positive constant ρ̄:

q0 ∈ B
N
p

p,1, u0 ∈ B
N
p1
−1

p1,1
and f ∈ L1

loc(R+,∈ B
N
p1
−1

p1,1
)

with (p, p1) ∈ [1,+∞[ suitably chosen.
Recall that in [25, 24], D. Hoff stated the existence of global weak solutions with small
initial data including discontinuous initial data (namely q0 is small in L2 ∩L∞ and u0 is
small in L4 if N = 2 and small in L8 if N = 3). One of the major interest of the results
of Hoff is to exhibit some smoothing effects on the incompressible part of the velocity u
and on the so-called effective viscous flux F = (2µ+ λ)divu− P (ρ) + P (ρ̄) (see also the
work by D. Serre in [40]). This also plays a crucial role in the proof of P-L Lions for the
existence of global weak solution (see [34]). However if the results of Hoff are critical in
the sense of the scaling for the density, it is not the case for the initial velocity. In [28, 29],
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D. Hoff extends the previous results by considering simply slightly subcritical initial data
on the velocity whereas the initial density belongs always to L∞ (see also [30]). In [26],
D. Hoff shows a very interesting theorem of weak-strong uniqueness when P (ρ) = Kρ
with K > 0. To speak roughly, he shows that if (ρ, u), (ρ1, u1) satisfy a L∞ control
on the density combined with a Lipschitz control on the velocity then (ρ, u) = (ρ1, u1).
D. Hoff uses this result to show that the solutions of [28] are unique in two dimension.
In [22], we prove a new criterion of blow-up for compressible Navier-Stokes equations of
Prodi-Serrin type, where we show that the good unknown to control is the pressure term
and not the velocity as for incompressible Navier-Stokes equations. More precisely the
weak solutions of compressible Navier-Stokes equations turn out to be smooth as long as
the density remains bounded in L∞(L(N+1+ε)γ) with ε > 0 arbitrary small (a crucial part
of the proof is based on the notion of effective velocity which possesses some additional
properties of regularity compared with the classical velocity). Finally R. Danchin in [14]
shows for the first time a result of existence of global strong solution close to a stable
equilibrium in critical space for the scaling of the system. More precisely the initial data

are chosen as follows (q0, u0) ∈ (B
N
2

2,1 ∩ B
N
2
−1

2,1 ) × B
N
2
−1

2,1 . The main difficulty is to get
estimates on the linearized system given that the velocity and the density are coupled
via the pressure. What is crucial in this work is the smoothing effect on the velocity and
a L1 decay on ρ − ρ̄ (this plays a key role to control the pressure term). In this work,
R. Danchin uses some clever energy inequalities on the system in Fourier variable. This
explains in particular why the result is obtained in Besov space with a Lebesgue index
p = 2. In the same time of the redaction of this paper, Q. Chen et al in [11] and F.
Charve and R. Danchin in [7] improve the previous result by working in more general
Besov space.
The goal of this article is to make a connection between the articles of D. Hoff [25, 24,
28, 29], D. Hoff and M. Santos [30] and those of F. Charve and R. Danchin and Q. Chen
et al in [7] and [11]. In fact we extend the results [7] and [11] to the case where the
Lebesgue index of Besov spaces are not the same for the density and the velocity. To do
that, as in [21] we use the notion of effective velocity (also used by D. Hoff in [24], see the
variable uP in his work which is not exactly our effective velocity but more precisely the
velocity v that we will define in the sequel) in high frequencies so as to kill the relation of
coupling between the velocity and the pressure. This effective velocity enables us to get
as in R. Danchin in [14] a L1 decay on q in the high frequency regime. In low frequencies,
the first order terms predominate, so that (1.1) has to be treated by means of hyperbolic
energy methods (roughly q and the potential part of the velocity verify a wave equation).
This implies that we can treat the low regime only in spaces constructed on L2 as it is
classical that hyperbolic systems are ill-posed in general Lp spaces. So as in [11] and
[7], the system has to be handled differently in low and high frequencies. In short, we
will use the analysis of R. Danchin in [14] in low frequencies and the effective velocity
introduced in [21] in high frequencies.
To simplify the notation, we assume from now on that ρ̄ = 1. Hence as long as ρ does
not vanish, the equations for (q = ρ− 1,u) read:

∂tq + u · ∇q = −(1 + q)divu,

∂tu+ u · ∇u− 1

1 + q
Au+

∇P (1 + q)

1 + q
= f.

(1.3)

3



In the sequel we will note A = µ∆ + (λ+ µ)∇div.

Definition 1.2 Furthermore we will note B̃s1,s2
(p1,r1),(p2,r2) the Besov space where the be-

havior is Bs1
p1,r1 in low frequencies and Bs2

p2,r2 in high frequencies. If r1 = r2 we will

simplify the notation, and we will write B̃s1,s2
p1,p2,1

for B̃s1,s2
(p1,1),(p2,1) . For more details on the

definition of these spaces we refer to the definition 2.6.

One can now state our main result.

Theorem 1.1 Let P be a suitably smooth function of the density such that P
′
(1) > 0,

and 1 ≤ p1 ≤ p < +∞ with 1
p1
≤ 1

N + 1
p , 1

p + 1
p1
> 1

N , p < max(4, N) and 1
2 ≤

1
p + 1

p1
.

Assume that u0 ∈ B̃
N
2
−1, N

p1
−1

2,p1,1
, f ∈ L1(R+, B̃

N
2
−1, N

p1
−1

2,p1,1
) and q0 ∈ B̃

N
2
−1,N

p

2,p,1 . Then there
exists a constant ε0 such that if:

‖q0‖
B̃
N
2 −1,Np
2,p,1

+ ‖u0‖
B̃
N
2 −1, Np1

−1

2,p1,1

+ ‖f‖
L1(R+,B̃

N
2 −1, Np1

−1

2,p1,1
)
≤ ε0,

then there exists a global solution (q, u) for system (1.1) with 1 + q bounded away from
zero and,

q ∈ C̃(R+, B̃
N
2
−1,N

p

2,p,1 ) ∩ L1(R+, B̃
N
2

+1,N
p

2,p,1 ) and

u ∈ C̃(R+; B̃
N
2
−1, N

p1
−1

2,p1,1
+ B̃

N
2
−1,N

p

2,p,1 ) ∩ L1(R+, B̃
N
2

+1,N
p

+1

2,p,1 ).

Moreover this solution is unique if 2
N ≤

1
p + 1

p1
.

Remark 1 This theorem improves the result of Chen et al obtained in [11] as here one
may take p 6= p1. But as in [11] we have strong restrictions on p, that is p < max(4, 2N).
This fact is due to the interactions between low and high frequencies in the paraproduct
laws. However we obtain this result with a new method which seems more flexible ( see
theorem 1.2) and more simple than [7] and [11].

Remark 2 It seems possible to improve the theorem 1.1 by choosing initial data q0 in

B
N
2
−1,N

p

(2,1),(p,∞) ∩ B
N
2
−1,0

(2,1),(∞,1), however some supplementary conditions appear on p1 in this
case.

The key to theorem 1.1 is to introduce a new unknown v1 to avoid the coupling between
the density and the velocity, we analyze by a new way the pressure term. More precisely
we write the gradient of the pressure as a Laplacian of some vector-field v (it means that
∆v = ∇P (ρ)), and we introduce this term in the linear part of the momentum equation
( in other words, v = GP (ρ) where GP (ρ) stands for some pseudo-differential operator
of order −1). We then introduce the effective velocity v1 = u− v. By this way, we have
canceled out the coupling between v1 and the density. More precisely we have then from
(1.3) the following system:

∂tq + (v1 +
1

ν
v) · ∇q +

1

ν
P
′
(1)q = −(1 + q)divv1

− 1

ν
(P (ρ)− P (1)− P ′(1))− 1

ν
q(P (ρ)− P (1)),

∂tv1 −
1

1 + q
Av1 = f − u · ∇u+

1

ν
∇(∆)−1

(
P
′
(ρ)div(ρu)

)
,

q/t=0 = a0, (v1)/t=0 = (v1)0,

4



where v1 = u − 1
ν v is called the effective velocity. Here we can check that v1 verifies a

parabolic equations with the low order terms in remains ∇(∆)−1
(
P
′
(ρ)div(ρu) while q

satisfies a damped transport equation. We next verify easily that we have a Lipschitz
control on the gradient of u (it is crucial to estimate the density by the mass equation).
For more details on the strategy of the proof we refer to section 4.1.

In the previous theorem 1.1, we have as in [11] very strong restrictions on p (p <
max(4, 2N)) because of the behavior in low frequencies. At the difference with the
results of strong solutions in finite time (see [21]), we cannot choose p arbitrarly large.
To overcome this difficulty, we need to add some additional conditions on (q0, u0) in low
frequencies as in [7] to avoid these restrictions in the use of the paraproduct laws. We
obtain then the following theorem:

Theorem 1.2 Let P be a suitably smooth function of the density with P
′
(1) > 0 and 1 ≤

p1 ≤ p < +∞ such that 1
p1
≤ 1

N + 1
p and 1

p+ 1
p1
> 1

N . Assume that u0 ∈ B̃
N
2
−1, N

p1
−1

2,p1,1
∩B0

2,r,

f ∈ L̃1(R+, B̃
N
2
−1, N

p1
−1

2,p1,1
∩B0

2,r) and q0 ∈ B̃
N
2
−1,N

p

2,p,1 ∩ B̃0,1
2,r with r = +∞ if N ≥ 3 and r = 1

if N = 2. Then there exists a constant ε0 such that if:

‖q0‖
B̃
N
2 −1,Np
2,p,1 ∩B̃0,1

2,r

+ ‖u0‖
B̃
N
2 −1, Np1

−1

2,p1,1
∩B0

2,r

+ ‖f‖
L̃1(R+,B̃

N
2 −1, Np1

−1

2,p1,1
∩B0

2,r)
≤ ε0,

then there exists a global solution (q, u) for system (1.1) with 1 + q bounded away from
zero and,

q ∈ C̃(R+, B̃
N
2
−1,N

p

2,p,1 ∩ B̃0,1
2,r ) ∩ L̃1(R+, B̃

N
2

+1,N
p

2,p,1 ∩ B̃2,1
2,r ) and

u ∈ C̃
(
R+; (B̃

N
2
−1, N

p1
−1

2,p1,1
+ B̃

N
2
−1,N

p

2,p,1 ) ∩B0
2,r

)
∩ L̃1(R+, B̃

N
2

+1,N
p

+1

2,p,1 ∩B2
2,r).

Moreover this solution is unique if 2
N ≤

1
p + 1

p1
.

Remark 3 Here we improve the results of [7] and [11] by the fact that we have no
restriction on the size of p of type p < 2N . In particular, we can observe that when p

goes to infinity, we are close to get a weak solution with initial data (q0, u0) in B̃
N
2
−1,0

2,∞,1 ×

B̃
N
2
−1,1

2,N,1 . It means that this theorem bridges the gap of the result of D. Hoff (see [25, 26,
28, 29] where the initial density is in L∞ but where the initial velocity is more regular
and the results of R. Danchin in [17]. Moreover it holds for general pressure laws with
P
′
(1) > 0 while in the works of D. Hoff the pressure has to verify P (ρ) = Kρ with K > 0.

Remark 4 If r = +∞, then we have to replace above the strong continuity in Bs
2,r by

the weak continuity.

Remark 5 To some extent the case p > N is not so important because we obtain only the
existence of global weak solution as in the works of D. Hoff in [25, 26]. However as in the
work of F. Charve and R. Danchin in [7] it is of interest, indeed by adding some additional
condition on the data such that u0 ∈ B0

N,1 (without assumption of smallness on ‖u0‖B0
N,1

)

it is easy to prove some results of persistency on u as for incompressible Navier-Stokes
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equations, more precisely that u belongs to L̃∞(B̃
N
2
−1,0

2,N,1 + B̃
N
2
−1,N

p

2,p,1 )∩ L̃1(B̃
N
2

+1,N
p

+1

2,p,1 ). In
this case, we will get the existence of global strong solutions but with only a condition
of smallness for ‖q0‖

B̃
N
2 −1,Np
2,p,1 ∩B0,1

2,r

, ‖u0‖
B̃
N
2 −1, Np1

−1

2,p1,1
∩B0

2,r

and ‖f‖
L̃1(R+,B̃

N
2 −1, Np1

−1

2,p1,1
∩B0

2,r)
but

not on ‖u0‖B0
N,1

.

In particular it improves widely the results of [11] and [7] inasmuch as we can choose p as
large that we want. Therefore one can almost handle the case q0 ∈ B0

∞,1. Hence we are
close to the results of D. Hoff in [25, 28, 29] in terms of initial density (a bit more regular)
except that we really work in critical spaces for the scaling of the equations in particular
concerning the initial velocity. Furthermore we are able to build unique solutions when p
is arbitrarily large by adding a condition on u0 ∈ B0

N,1 (without assumption of smallness

on ‖u0‖B0
N,1

) . The only point is that we need to ask a condition of regularity on q0 ∈ B̃0,1
2,r

(we will see how to deal with this problem in some case, see remark 7).

In particular as in [7], we can take u0(x) = φ(x) sin(ε−1x · ω)n where ω and n stand
for any unit vector in RN and φ for any smooth compactly supported function then we
have if p1 > N , and for s < 0:

‖u0‖
B
N
p1
−1

p1,1

≤ Cε1− N
p1 and ‖u0‖Bs2,r ≤ Cε

−s,

so that the smallness condition is satisfied by u0 if ε small enough. However we remark
that u0 is arbitrarily big in L3. On the other hand, u0 belongs to Schwartz class S hence
also in B0

N,1 so that uniqueness holds true by persistency results.

In our case, we can not directly apply the previous theorem because we work with u0 ∈ B0
2,r

(it means that in this case with the above choice on ‖u0‖B0
2,r

is not small ). We have

then to modify the assumption on u0 to obtain the same type of result than [7]. In fact,
it is enough to assume that u0 ∈ B−s12,r and q ∈ B−s1,1−s12,r with s1 > 0 arbitrary small, in
this case we have some new limitation on the choice of p in function of s1 (because the
law of paraproduct). However we can easily check that p goes to infinity when s1 goes to
0. So we can get the result of [7] by choosing again arbitrarily large p.

Remark 6 We can observe that u0 ∈ B0
2,r corresponds exactly to the energy space when

r = 2, in this sense this additional assumption on the velocity seems very natural. How-
ever the condition q0 ∈ B̃0,1

2,r seems a little bit too strong in the general case for general
viscosity coefficients, but we will explain in the theorem 1.3 why in some specific case of
viscosity coefficients this condition is suitable.

We finally treat the case of variable viscosity coefficients. More particularly we are
interested in considering the specific case of the so-called BD viscosity coefficients (see
[5, 6]). Indeed with this choice, we naturally obtain some informations on q in B1

2,2 = H1.

In this context, the hypothesis of theorem 1.2 on q0 ∈ B̃0,1
2,r becomes natural (for more

explanations see remark 7).
In the following theorem, we then extend the theorem 1.2 to the case of general viscosity
coefficients.

Theorem 1.3 Let P be a suitably smooth function of the density with P
′
(1) > 0, µ

and λ are general regular functions such that µ > 0 and 2µ + λ > 0. Furthermore we

6



suppose that 1 ≤ p1 ≤ p < +∞ such that 1
p1
≤ 1

N + 1
p and 1

p + 1
p1
> 1

N . Assume that

u0 ∈ B̃
N
2
−1, N

p1
−1

2,p1,1
∩ B0

2,r, f ∈ L̃1(R+, B̃
N
2
−1, N

p1
−1

2,p1,1
∩ B0

2,r) and q0 ∈ B̃
N
2
−1,N

p

2,p,1 ∩ B̃0,1
2,r with

r = +∞ if N ≥ 3 and r = 1 if N = 2. Then there exists a constant ε0 such that if:

‖q0‖
B̃
N
2 −1,Np
2,p,1 ∩B̃0,1

2,r

+ ‖u0‖
B̃
N
2 −1, Np1

−1

2,p1,1
∩B0

2,r

+ ‖f‖
L̃1(R+,B̃

N
2 −1, Np1

−1

2,p1,1
∩B0

2,r)
≤ ε0,

there exists a global solution (q, u) for system (1.1) with 1 + q bounded away from zero
and,

q ∈ C̃(R+, B̃
N
2
−1,N

p

2,p,1 ∩ B̃0,1
2,r ) ∩ L̃1(R+, B̃

N
2

+1,N
p

2,p,1 ∩ B̃2,1
2,r ) and

u ∈ C̃
(
R+; (B̃

N
2
−1, N

p1
−1

2,p1,1
+ B̃

N
2
−1,N

p

2,p,1 ) ∩B0
2,r

)
∩ L̃1(R+, B̃

N
2

+1,N
p

+1

2,p,1 ∩B2
2,r).

Moreover this solution is unique if 2
N ≤

1
p + 1

p1
.

Remark 7 This result is very interesting in the case of the BD viscosity coefficients. In
this case our result is very close of the energy initial data with the optimal condition for
the scaling (q0, u0) ∈ B0

∞,1 ×B0
N,1. In particular it applies to the shallow-water system.

Indeed in [5, 6] D. Bresch and B. Desjardins have discovered a new entropy inequality
whenever the density-dependent viscosity coefficients satisfy the algebraic relation:

λ(ρ) = ρµ
′
(ρ)− µ(ρ).

In this case they show that we can control
√
ρ∇ϕ(ρ) in L∞(L2) where ϕ

′
(ρ) = µ

′
(ρ)
ρ .

Roughly it means that we control the density ρ in L∞(H1). It is exactly the additional
condition that we ask in the theorems 1.2 and 1.3.
We would like to point out that D. Bresch and B. Desjardins use a type of effective
velocity that they note u + ∇ϕ(ρ) (see [5] for more details) different from the one that
we introduce in this paper.

Remark 8 Our method is more flexible than the proofs of D. Hoff in [26, 25, 28, 29]
as these works are based crucially on the notion of effective pressure and on a gain of
integrability on the velocity which works only in the case of constant viscosity coefficients.
Indeed the used technics are essentially based on energy inequalities that is why the fact
to work with constant viscosity coefficients is crucial.

Our paper is structured as follows. In section 2, we give a few notation and briefly
introduce the basic Fourier analysis techniques needed to prove our result. In section 3,
we prove estimates on the transport equation. In section 4, we prove the theorem 1.1.
In section 5 we prove the theorems 1.2 and 1.3. Some technical continuity results for the
paraproduct in hybrid Besov spaces have been postponed in appendix.

2 Littlewood-Paley theory and Besov spaces

Throughout the paper, C stands for a constant whose exact meaning depends on the
context. The notation A . B means that A ≤ CB. For all Banach space X, we
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denote by C([0, T ], X) the set of continuous functions on [0, T ] with values in X. For
p ∈ [1,+∞], the notation Lp(0, T,X) or LpT (X) stands for the set of measurable functions
on (0, T ) with values in X such that t→ ‖f(t)‖X belongs to Lp(0, T ). Littlewood-Paley
decomposition corresponds to a dyadic decomposition of the space in Fourier variables.
We can use for instance any ϕ ∈ C∞(RN ), supported in C = {ξ ∈ RN/3

4 ≤ |ξ| ≤
8
3} such

that: ∑
l∈Z

ϕ(2−lξ) = 1 if ξ 6= 0.

Denoting h = F−1ϕ, we then define the dyadic blocks by:

∆lu = ϕ(2−lD)u = 2lN
∫
RN

h(2ly)u(x− y)dy and Slu =
∑
k≤l−1

∆ku .

Formally, one can write that:

u =
∑
k∈Z

∆ku .

This decomposition is called homogeneous Littlewood-Paley decomposition. Let us ob-
serve that the above formal equality does not hold in S ′(RN ) for two reasons:

1. The right hand-side does not necessarily converge in S ′(RN ).

2. Even if it does, the equality is not always true in S ′(RN ) (consider the case of the
polynomials).

2.1 Homogeneous Besov spaces and first properties

Definition 2.3 For s ∈ R, p ∈ [1,+∞], q ∈ [1,+∞], and u ∈ S ′(RN ) we set:

‖u‖Bsp,q = (
∑
l∈Z

(2ls‖∆lu‖Lp)q)
1
q .

The Besov space Bs
p,q is the set of temperate distribution u such that ‖u‖Bsp,q < +∞.

Remark 9 The above definition is a natural generalization of the nonhomogeneous Sobolev
and Hölder spaces: one can show that Bs

∞,∞ is the nonhomogeneous Hölder space Cs and
that Bs

2,2 is the nonhomogeneous space Hs.

Proposition 2.1 The following properties holds:

1. there exists a constant universal C such that:
C−1‖u‖Bsp,r ≤ ‖∇u‖Bs−1

p,r
≤ C‖u‖Bsp,r .

2. If p1 < p2 and r1 ≤ r2 then Bs
p1,r1 ↪→ B

s−N(1/p1−1/p2)
p2,r2 .

3. Bs
′

p,r1 ↪→ Bs
p,r if s

′
> s or if s = s

′
and r1 ≤ r.

8



Let now recall a few product laws in Besov spaces coming directly from the paradifferen-
tial calculus of J-M. Bony (see [4]) and rewrite on a generalized form in [1] by H. Abidi
and M. Paicu (in this article the results are written in the case of homogeneous sapces
but it can easily generalize for the nonhomogeneous Besov spaces).

Proposition 2.2 We have the following laws of product:

• For all s ∈ R, (p, r) ∈ [1,+∞]2 we have:

‖uv‖Bsp,r ≤ C(‖u‖L∞‖v‖Bsp,r + ‖v‖L∞‖u‖Bsp,r) . (2.4)

• Let (p, p1, p2, r, λ1, λ2) ∈ [1,+∞]2 such that:1
p ≤

1
p1

+ 1
p2

, p1 ≤ λ2, p2 ≤ λ1, 1
p ≤

1
p1

+ 1
λ1

and 1
p ≤

1
p2

+ 1
λ2

. We have then the following inequalities:

if s1 + s2 +N inf(0, 1− 1
p1
− 1

p2
) > 0, s1 + N

λ2
< N

p1
and s2 + N

λ1
< N

p2
then:

‖uv‖
B
s1+s2−N( 1

p1
+ 1
p2
− 1
p )

p,r

. ‖u‖Bs1p1,r‖v‖B
s2
p2,∞

, (2.5)

when s1 + N
λ2

= N
p1

(resp s2 + N
λ1

= N
p2

) we replace ‖u‖Bs1p1,r‖v‖B
s2
p2,∞

(resp ‖v‖Bs2p2,∞)

by ‖u‖Bs1p1,1
‖v‖Bs2p2,r (resp ‖v‖Bs2p2,∞∩L∞), if s1 + N

λ2
= N

p1
and s2 + N

λ1
= N

p2
we take

r = 1.
If s1 + s2 = 0, s1 ∈ (Nλ1 −

N
p2
, Np1 −

N
λ2

] and 1
p1

+ 1
p2
≤ 1 then:

‖uv‖
B
−N( 1

p1
+ 1
p2
− 1
p )

p,∞

. ‖u‖Bs1p1,1
‖v‖Bs2p2,∞ . (2.6)

If |s| < N
p for p ≥ 2 and −N

p′
< s < N

p else, we have:

‖uv‖Bsp,r ≤ C‖u‖Bsp,r‖v‖
B
N
p
p,∞∩L∞

. (2.7)

Remark 10 In the sequel p will be either p1 or p2 and in this case 1
λ = 1

p1
− 1
p2

if p1 ≤ p2,

resp 1
λ = 1

p2
− 1

p1
if p2 ≤ p1.

Corollary 1 Let r ∈ [1,+∞], 1 ≤ p ≤ p1 ≤ +∞ and s such that:

• s ∈ (−N
p1
, Np1 ) if 1

p + 1
p1
≤ 1,

• s ∈ (−N
p1

+N(1
p + 1

p1
− 1), Np1 ) if 1

p + 1
p1
> 1,

then we have if u ∈ Bs
p,r and v ∈ B

N
p1
p1,∞ ∩ L∞:

‖uv‖Bsp,r ≤ C‖u‖Bsp,r‖v‖
B
N
p1
p1,∞∩L∞

.

The study of non stationary PDE’s requires space of type Lρ(0, T,X) for appropriate
Banach spaces X. In our case, we expect X to be a Besov space, so that it is natural to
localize the equation through Littlewood-Payley decomposition. But, in doing so, we ob-
tain bounds in spaces which are not type Lρ(0, T,X) (except if r = p). We are now going
to define the spaces of Chemin-Lerner in which we will work, which are a refinement of the
spaces LρT (Bs

p,r).

9



Definition 2.4 Let ρ ∈ [1,+∞], T ∈ [1,+∞] and s1 ∈ R. We set:

‖u‖
L̃ρT (B

s1
p,r)

=
(∑
l∈Z

2lrs1‖∆lu(t)‖rLρ(Lp)

) 1
r .

We then define the space L̃ρT (Bs1
p,r) as the set of temperate distribution u over (0, T )×RN

such that ‖u‖
L̃ρT (B

s1
p,r)

< +∞.

We set C̃T (B̃s1
p,r) = L̃∞T (B̃s1

p,r) ∩ C([0, T ], Bs1
p,r). Let us emphasize that, according to

Minkowski inequality, we have:

‖u‖
L̃ρT (B

s1
p,r)
≤ ‖u‖LρT (B

s1
p,r)

if r ≥ ρ, ‖u‖
L̃ρT (B

s1
p,r)
≥ ‖u‖LρT (B

s1
p,r)

if r ≤ ρ.

Remark 11 It is easy to generalize proposition 2.2, to L̃ρT (Bs1
p,r) spaces. The indices s1,

p, r behave just as in the stationary case whereas the time exponent ρ behaves according
to Hölder inequality.

In the sequel we will need of composition lemma in L̃ρT (Bs
p,r) spaces.

Lemma 1 Let s > 0, (p, r) ∈ [1,+∞] and u ∈ L̃ρT (Bs
p,r) ∩ L∞T (L∞).

1. Let F ∈W [s]+2,∞
loc (RN ) such that F (0) = 0. Then F (u) ∈ L̃ρT (Bs

p,r). More precisely
there exists a function C depending only on s, p, r, N and F such that:

‖F (u)‖
L̃ρT (Bsp,r)

≤ C(‖u‖L∞T (L∞))‖u‖L̃ρT (Bsp,r)
.

2. Let F ∈W [s]+3,∞
loc (RN ) such that F (0) = 0. Then F (u)−F ′(0)u ∈ L̃ρT (Bs

p,r). More
precisely there exists a function C depending only on s, p, r, N and F such that:

‖F (u)− F ′(0)u‖
L̃ρT (Bsp,r)

≤ C(‖u‖L∞T (L∞))‖u‖2L̃ρT (Bsp,r)
.

Now we give some result on the behavior of the Besov spaces via some pseudodifferential
operator (see [12]).

Definition 2.5 Let m ∈ R. A smooth function function f : RN → R is said to be a Sm
multiplier if for all muti-index α, there exists a constant Cα such that:

∀ξ ∈ RN , |∂αf(ξ)| ≤ Cα(1 + |ξ|)m−|α|.

Proposition 2.3 Let m ∈ R and f be a Sm multiplier. Then for all s ∈ R and 1 ≤
p, r ≤ +∞ the operator f(D) is continuous from Bs

p,r to Bs−m
p,r .

Let us now give some estimates for the heat equation:

10



Proposition 2.4 Let s ∈ R, (p, r) ∈ [1,+∞]2 and 1 ≤ ρ2 ≤ ρ1 ≤ +∞. Assume that

u0 ∈ Bs
p,r and f ∈ L̃ρ2T (B

s−2+2/ρ2
p,r ). Let u be a solution of:{

∂tu− µ∆u = f

ut=0 = u0 .

Then there exists C > 0 depending only on N,µ, ρ1 and ρ2 such that:

‖u‖
L̃
ρ1
T (B̃

s+2/ρ1
p,r )

≤ C
(
‖u0‖Bsp,r + µ

1
ρ2
−1‖f‖

L̃
ρ2
T (B

s−2+2/ρ2
p,r )

)
.

If in addition r is finite then u belongs to C([0, T ], Bs
p,r).

We now want to conclude by a useful lemma of commutator.

Lemma 2 Let 1 ≤ p1 ≤ p ≤ +∞ and σ ∈ (−min(Np ,
N

p
′
1

), Np +1]. There exists a sequence

cq ∈ l1(Z) such that ‖cq‖l1 = 1 and a constant C depending only on N and σ such that:

∀q ∈ Z, ‖[v · ∇,∆q]a‖Lp1 ≤ Ccq2−qσ‖∇v‖
B
N
p
p,1

‖a‖Bσp1,1 . (2.8)

In the limit case σ = −min(Np ,
N

p
′
1

), we have:

∀q ∈ Z, ‖[v · ∇,∆q]a‖Lp1 ≤ Ccq2q
N
p ‖∇v‖

B
N
p
p,1

‖a‖
B
− Np1
p,∞

. (2.9)

Finally, for all σ > 0 and 1
p2

= 1
p1
− 1

p , there exists a constant C depending only on N

and on σ and a sequence cq ∈ l1(Z) with norm 1 such that:

∀q ∈ Z, ‖[v · ∇,∆q]v‖Lp ≤ Ccq2−qσ(‖∇v‖L∞‖v‖Bσp1,1 + ‖∇v‖Lp2‖∇v‖Bσ−1
p,1

). (2.10)

Proof: These results are proved in [3] chapter 2. �

2.2 Hybrid Besov spaces

The homogeneous Besov spaces fail to have nice inclusion properties: owing to the low
frequencies, the embedding Bs

p,1 ↪→ Bt
p,1 does not hold for s > t. Still, the functions

of Bs
p,1 are locally more regular than those of Bt

p,1: for any φ ∈ C∞0 and u ∈ Bs
p,1, the

function φu ∈ Bt
p,1. This motivates the definition of Hybrid Besov spaces introduced

by R. Danchin in [14] where the growth conditions satisfied by the dyadic blocks and
the coefficient of integrability are not the same for low and high frequencies. Hybrid
Besov spaces have been used in [15] to prove global well-posedness for compressible gases
in critical spaces. We generalize here a little bit the definition by allowing for different
Lebesgue norms in low and high frequencies.

Definition 2.6 Let l0 ∈ N, s, t,∈ R, (r, r1) ∈ [1,+∞]2 and (p, q) ∈ [1,+∞]. We set:

‖u‖
B̃s,tp,q,1

=
∑
l≤l0

2ls‖∆lu‖Lp +
∑
l>l0

2lt‖∆lu‖Lq ,

and:
‖u‖

B̃s,t
(p,r),(q,r1

)
=
(∑
l≤l0

(2ls‖∆lu‖Lp)r
) 1
r +

(∑
l>l0

(2lt‖∆lu‖Lq)r1
) 1
r1 .

11



Remark 12 It will be important in the sequel to chose l0 big enough.

Notation 1 We will often use the following notation:

uBF =
∑
l≤l0

∆lu and uHF =
∑
l>l0

∆lu.

Remark 13 We have the following properties:

• We have B̃s,s
p,p,1 = Bs

p,1.

• If s1 ≥ s3 and s2 ≥ s4 then B̃s3,s2
p,q,1 ↪→ B̃s1,s4

p,q,1 .

We shall also make use of hybrid Besov-spaces. For them, one can prove results analogu-
ous to proposition 2.2, we refer to proposition 6.8 in the appendix.

3 The mass conservation equation

We begin this section by recalling some estimates in Besov spaces for transport and heat
equations. For more details, the reader is referred to [3].

Proposition 3.5 Let 1 ≤ p1 ≤ p ≤ +∞, r ∈ [1,+∞] and s ∈ R be such that:

−N min(
1

p1
,

1

p′
) < s < 1 +

N

p1
.

Suppose that q0 ∈ Bs
p,r, F ∈ L1(0, T, Bs

p,r) and that q ∈ L∞T (Bs
p,r) ∩ C([0, T ];S ′) solves

the following transport equation: {
∂tq + u · ∇q = F,

q t=0 = q0.

There exists a constant C depending only on N , p, p1, r and s such that , we have for
a.e t ∈ [0, T ]:

‖q‖
L̃∞t (Bsp,r)

≤ eCU(t)
(
‖q0‖Bsp,r +

∫ t

0
e−CU(τ)‖F (τ)‖Bsp,rdτ

)
, (3.11)

with: U(t) =
∫ t

0 ‖∇u(τ)‖
B
N
p1
p1,∞∩L∞

dτ .

We want to study now the following problem:

(H)

{
∂tq + u · ∇q + αq = F,

q t=0 = q0.

Above q is the unknown function. We assume that F ∈ Lr(0, T ;Bs
p,r), that v is time

dependent vector-fields with coefficients in L1(0, T ;B
N
p1

+1

p1,1
) and α > 0 a constant.
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Proposition 3.6 Let 1 ≤ p1 ≤ p ≤ +∞, r ∈ [1,+∞] and s ∈ R be such that:

−N min(
1

p1
,

1

p′
) < s < 1 +

N

p1
.

There exists a constant C depending only on N , p, p1, r and s such that for all a ∈
L∞([0, T ], Bσ

p,r) of (H) with initial data a0 in Bs
p,r and g ∈ L1([0, T ], Bs

p,r), we have for
a.e t ∈ [0, T ]:

‖q‖
L̃∞t (Bsp,r)

+ ‖q‖
L̃1
t (B

s
p,r)
≤ eCU(t)

(
‖q0‖Bsp,r +

∫ t

0
e−CU(τ)‖F (τ)‖Bsp,rdτ

)
, (3.12)

with: U(t) =
∫ t

0 ‖∇u(τ)‖
B
N
p1
p1,∞∩L∞

dτ .

Proof: Applying ∆l to (H) yields:

∂t∆lq + u · ∇∆lq + α∆lq = Rl + ∆lF,

with Rl = [u · ∇,∆l]q. Multiplying by ∆la|∆la|p−2 then performing a time integration,
we easily get:

‖∆lq(t)‖Lp + α

∫ t

0
‖∆lq(s)‖Lpds ≤ ‖∆lq0‖Lp +

∫ t

0

(
‖Rl‖Lp +

1

p
‖divu‖L∞‖∆lq‖Lp

+ ‖∆lF‖Lp
)
dτ.

Next the term ‖Rl‖Lpmay be bounded according to lemma 2 in appendix. We get then:

‖q‖
L̃∞t (Bsp,r)

+ α‖q‖
L̃1
t (B

s
p,r)
ds ≤ ‖∆lq0‖Bsp,r +

∫ t

0

(
‖F (τ)‖Bsp,r + CU

′
(τ)‖q‖

L̃∞t (Bsp,r)

)
dτ.

We end up with Grönwall lemma by letting X(t) = ‖q‖
L̃∞t (Bsp,r)

+ α‖q‖
L̃1
t (B

s
p,r)

.

4 The proof of theorem 1.1

4.1 Strategy of the proof

To improve the results of Danchin in [14], Charve and Danchin in [7] and Chen et al in
[11], it is crucial to kill the coupling between the velocity and the pressure which exists
in these works. To achieve it, we need to include the pressure term in the study of the
linearized equation of the momentum equation as in [21]. For that, we will try to express
the gradient of the pressure as a Laplacian term, so we have to solve:

∆v = ∇P (ρ).

Let E be the fundamental solution of the Laplace operator. We will set in the sequel:
v = ∇E∗

(
P (ρ)−P (ρ̄)

)
= ∇

(
E∗[P (ρ)−P (ρ̄)]

)
( ∗ here means the operator of convolution).

We verify next that:

∇divv = ∇∆
(
E ∗ [P (ρ)− P (ρ̄)]

)
= ∆∇

(
E ∗ [P (ρ)− P (ρ̄)]

)
= ∆v = ∇P (ρ).
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By this way we can now rewrite the momentum equation of (1.3) as:

∂tu+ u · ∇u− µ

ρ
∆
(
u− 1

ν
v
)
− λ+ µ

ρ
∇div

(
u− 1

ν
v
)

= f,

with ν = 2µ+ λ. We now want to calculate ∂tv, by the transport equation we get:

∂tv = ∇E ∗ ∂tP (ρ) = −∇E ∗
(
P
′
(ρ)div(ρu)

)
.

Notation 2 To simplify the notation, we will note in the sequel

∇E ∗
(
P
′
(ρ)div(ρu)

)
= ∇(∆)−1

(
P
′
(ρ)div(ρu)

)
.

Finally we can now rewrite the system (1.3) as follows:

∂tq + (v1 +
1

ν
v) · ∇q +

1

ν
P
′
(1)q = −(1 + q)divv1

− 1

ν
(P (ρ)− P (1)− P ′(1))− 1

ν
q(P (ρ)− P (1)),

∂tv1 −
1

1 + q
Av1 = f − u · ∇u+

1

ν
∇(∆)−1

(
P
′
(ρ)div(ρu)

)
,

q/t=0 = a0, (v1)/t=0 = (v1)0,

(4.13)

where v1 = u − 1
ν v is called the effective velocity. In the sequel we will study this

system by exhibiting some uniform bounds in Besov spaces on (q, v1). The advantage
of the system (4.13) is that we have canceled out the coupling between v1 and a term
of pressure. Indeed in the works [7] and [11], the pressure was included in the study
of the linear system, thus entailing a coupling between the density and the velocity. In
particular it was impossible to prescribe different index of integration in Besov spaces for
the velocity and the density.

4.2 A linear model with convection

In this section, we will explain how we treat the low frequency regime by following
the approach of Charve and Danchin in [7]. In low frequencies, the first order terms
predominate and the viscous term ∆u may (almost) be neglected so that (1.1) has to
be treated by means of hyperbolic energy methods. It means that we can only work in
spaces constructed on L2. Moreover in the case of low frequencies the effective velocity
is not a suitable unknown in the sense that is less regular than u as (∆)−1∇P (ρ) is not
very regular in low frequencies (indeed the index of regularity for the Besov space is to
high) . It is better in this case to work with u. Namely the first idea would be to study
the linear system associated to (1.1):

(PH)

{
∂tq + divu = F

′
,

∂tu− µ∆u− λ∇divu+∇q = G
′
.

This system has been studied by D. Hoff and K. Zumbrun in [31]. There, they investigate
the decay estimates, and exhibit the parabolic smoothing effect on u and on the low
frequencies of q, and a damping effect on the high frequencies of q.
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The problem is that if we focus on this linear system, it appears impossible to control
the term of convection u · ∇q which is one derivative less regular than q. However in low
frequencies the Green matrix of the linearized system behaves as the heat kernel ( see
[11]), the terms v · ∇q and v · ∇u can be handled as the perturbation terms. We study
then the following system:

(LH)
′

{
∂tq + divu = F − v · ∇q,
∂tu− µ∆u− λ∇divu+∇q = G− v · ∇u.

Proposition 4.7 Let (q, u) a solution of (LH)
′
, let s ∈ R. The following estimate holds:

‖(q, u)BF ‖L̃∞(Bs2,1)
+ ‖(q, u)BF ‖L̃1(Bs+2

2,1 )
≤‖(q0, u0)BF ‖Bs2,1 + ‖(F,G)BF ‖L̃1(Bs2,1)

+ ‖(v · ∇q, v · ∇u)BF ‖L̃1(Bs2,1)
.

Proof: In this case for j ≤ 0, in terms of Green matrix (see [11]), the solution of (LH)
′

can be expressed as:(
∆jq(t)
∆ju(t)

)
= W (t)

(
∆jq0

∆ju0

)
+

∫ t

0
W (t− s)

(
∆jF (s)−∆j(v · ∇q)(s)
∆jG(s)−∆j(v · ∇u)(s)

)
ds,

with W the Green matrix. From proposition 4.4 in [11] and Young’s inequality we obtain
the result.

4.3 Proof of the existence

Construction of approximate solutions

We use a standard scheme:

1. We smooth out the data and get a sequence of local solutions (qn, un)n∈N on [0, Tn]
to (1.3) on R by using the result of [17].

2. We prove uniform estimates on (qn, vn1 ) in high frequencies and on (qn, un) in low
frequencies on [0, Tn] and we deduce that Tn = +∞ .

3. We use compactness to prove that the sequence (qn, un) converges, up to extraction,
to a solution of (1.1).

First step

We smooth out the data as follows:

qn0 = Snq0, un0 = Snu0 and fn = Snf.

Note that we have:

∀l ∈ Z, ‖∆lq
n
0 ‖Lp ≤ ‖∆lq0‖Lp and ‖qn0 ‖

B
N
p
p,1∩B

N
p −1

p,1

≤ ‖q0‖
B
N
p
p,1∩B

N
p −1

p,1

,

and similar properties for un0 and fn, a fact which will be used repeatedly during the
next steps. Now, according [17], one can solve (1.3) with the smooth data (qn0 , u

n
0 , f

n).
We get a solution (qn, un) such that:

qn ∈ C̃([0, Tn], BN
2,1 ∩B

N
2
−1

2,1 ) un ∈ C̃([0, Tn], , B
N
2
−1

2,1 ) ∩ L̃1([0, Tn], , B
N
2

+1

2,1 ). (4.14)
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Uniform bounds

We set now

vn = ∇
(
E ∗ [P (ρn)− P (1)]

)
with divvn = P (ρn)− P (1) and vn1 = un − 1

ν
vn,

with E the fundamental solution of the Laplace operator and ν = λ+ 2µ. In the sequel
we will note g(qn) = P (ρn)− P (1) where g is a regular function.
In this part, we aim at getting uniform estimates on (qnHF , (v1)nHF ) in high frequencies
and on (qnBF , u

n
BF ) in low frequencies in the following space E

′
and F

′
:

E
′

=
(
L̃∞(B

N
p

p,1) ∩ L̃1(B
N
p

p,1)
)
×
(
L̃∞(B

N
p1
−1

p1,1
+B

N
p

p,1) + L̃1(B
N
p1

+1

p1,1
+B

N
p

+2

p,1 )
)
.

F
′

=
(
L̃∞(B

N
2
−1

2,1 ) ∩ L̃1(B
N
2

+1

2,1 )
)
×
(
L̃∞(B

N
2
−1

2,1 ) + L̃1(B
N
2

+1

2,1 )
)
.

More precisely we will obtain uniform estimates on (qn, un) in E and on (qn, vn1 ) in F
whith:

E =
(
L̃∞(B̃

N
2
−1,N

p

2,p,1 ) ∩ L̃1(B̃
N
2

+1,N
p

2,p,1 )
)
×
(
L̃∞(B̃

N
2
−1,N

p

2,p,1 + B̃
N
2
−1, N

p1
−1

2,p1,1
)

∩ L̃1(B̃
N
2

+1,N
p

+1

2,p,1 )
)
.

F =L̃∞(B̃
N
2
−1,N

p

2,p,1 ) ∩ L̃1(B̃
N
2

+1,N
p

2,p,1 )×
(
L̃∞(B̃

N
2
,N
p

2,p,1 + B̃
N
2
, N
p1
−1

2,p1,1
)

∩ L̃1(B̃
N
2

+2,N
p

+2

2,p,1 + B̃
N
2

+2, N
p1

+1

2,p1,1
)
)
.

We will work finally in the space H with:

(q, u) ∈ HT ⇔ (q, u)BF ∈ E
′
T and (q, v1)HF ∈ F

′
T .

Here when we write E
′
T or F

′
T , we means that we consider E

′
or F

′
locally in time on

the interval [0, T ]. We have then: ‖(q, u)‖H = ‖(q, u)BF ‖E′ +‖(q, v1)HF ‖F ′ . We can now
check that (qn, vn1 ) satisfies the following system:

∂tq
n + un · ∇qn +

P
′
(1)

ν
qn = Fn1 ,

∂tv
n
1 −Avn1 = Gn1 + f,

qn0 = q0, (vn1 )/t=0 = un0 −
1

ν
vn0 .

(4.15)

which is a transport equation and a heat equation. Here we have:

Fn1 = −(1 + qn)divvn1 −
1

ν
(P (1 + qn)− P (1)− P ′(1)qn)− 1

ν
qn(P (1 + qn)− P (1)),

Gn1 = (
1

1 + qn
− 1)Avn1 − un · ∇un +

1

ν
∇(∆)−1(P

′
(ρn)div(ρnun)).

Moreover (qn, un)n∈N is the solution of the following system:
∂tq

n + un · ∇qn + divun = Fn

∂tu
n + un · ∇un −Aun + P

′
(1)∇qn = Gn + fn

(qn, un)/t=0 = (qn0 , u
n
0 ),

(4.16)
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with:
Fn = −qndivun,

Gn = − qn

1 + qn
Aun + (P

′
(1)− P ′(1 + qn))∇qn.

Let us set:

E(q, u) = ‖q‖
L̃∞(B̃

N
2 −1,Np
2,p,1 )

+ ‖u‖
L̃∞(B̃

N
2 −1, Np1

−1

2,p1,1
+B̃

N
2 −1,Np
2,p,1 )

+ ‖q‖
L1(B̃

N
2 +1,Np
2,p,1 )

+ ‖u‖
L1(B̃

N
2 +1,Np +1

2,p,1 )
,

E1(q, u) = ‖q‖
L̃∞(B

N
2 −1

2,1 )
+ ‖u‖

L̃∞(B
N
2 −1

2,1 )
+ ‖q‖

L1(B
N
2 +1

2,1 )
+ ‖u‖

L1(B
N
2 +1

2,1 )
.

E2(q, u) = ‖q‖
L̃∞(B

N
p
p,1)

+ ‖u‖
L̃∞(B

N
p1
−1

p1,1
+B

N
p
p,1)

+ ‖q‖
L1(B

N
p
p,1)

+ ‖u‖
L1(B

N
p1

+1

p1,1
+B

N
p +2

p,1 )
.

In the sequel we will work always on the interval [0, Tn], but for simplifying the notation
we do not mention the time Tn in the Lebesgue spaces. One can now apply the proposition
2.4 to our system to obtain uniform bounds. We have then in high frequencies to control
(vn1 , q

n) and in low frequencies for (qn, un):

E2((qn, vn1 )HF ) ≤ C
(
‖(q0)HF ‖

B
N
p −1

p,1 +B
N
p
p,1

+ ‖(u0)HF ‖
B
N
p1
−1

p1,1

+ ‖(Fn1 )HF ‖
L1(B

N
p
p,1)

+ ‖Gn1‖
L1(B

N
p1
−1

p1,1
+B

N
p
p,1)

)
,

and
E1((qn, un)BF ) ≤ C

(
‖(q0)BF ‖

B
N
2 −1

2,1

+ ‖(u0)BF ‖
B
N
2 −1

2,1

+ ‖(Fn)BF ‖
L1(B

N
2 −1

2,1 )
+ ‖Gn‖

L1(B
N
2 −1

2,1 )

)
,

Therefore, it is only a matter of proving appropriate estimates for Fn1 , Gn1 F
n and Gn by

using properties of continuity on the paraproduct and proposition 2.4, 4.7.
We begin by estimating ‖(Fn1 )HF ‖

L̃1(B
N
p
p,1)

and ‖(Gn1 )HF ‖
L̃1(B

N
p1
−1

p1,1
+B

N
p
p,1)

, we have to

use proposition 2.2 and proposition 6.8 and the fact that by interpolation divvn1 is in

L̃1(B̃
N
2

+1,N
p

2,p,1 ) because L̃1(B̃
N
2

+1,N
p

+1

2,p,1 + B̃
N
2

+1, N
p1

2,p1,1
) ↪→ L̃1(B̃

N
2

+1,N
p

2,p,1 ) as p1 ≤ p:

‖
(
(1 + qn)divvn1

)
HF
‖
L̃1(B

N
p
p,1)
≤ ‖divvn1 ‖

L̃1(B̃
N
2 +1,Np
2,p,1 )

+ ‖q‖L∞(L∞)‖divvn1 ‖
L̃1(B̃

N
2 +1,Np
2,p,1 )

+ ‖divvn1 ‖L1(L∞)‖qn‖
L̃∞(B̃

N
2 −1,Np
2,p,1 )

.

‖
[
(P (1 + qn)− P (1)− P ′(1)qn)

]
HF
‖
L̃1(B

N
p
p,1)
≤ C‖qn‖2

L̃2(B̃
N
2 ,
N
p

2,p,1 )

,

‖
[
qn(P (1 + qn)− P (1))

]
HF
‖
L̃1(B

N
p
p,1)
≤ C‖qn‖2

L̃2(B̃
N
2 ,
N
p

2,p,1 )

,
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Next we have to treat the term [ qn

1+qnAv
n
1 ]HF in L̃1(B

N
p1
−1

p1,1
+ B

N
p

p,1), where we can split
Avn1 on the form:

vn1 = hn + gn,

with: hn ∈ L̃∞(B̃
N
2
−1, N

p1
−1

2,p1,1
) ∩ L̃1(B̃

N
2

+2, N
p1

+1

2,p1,1
) and gn ∈ L̃∞(B̃

N
2
,N
p

2,p,1 ) ∩ L̃1(B̃
N
2

+2,N
p

+2

2,p,1 ).
We obtain then by proposition 6.8:

‖
[ qn

1 + qn
Agn

]
HF
‖
L̃1(B

N
p
p,1)
≤ ‖T qn

1+qn
Agn‖

L̃1(B̃
N
2 ,
N
p

2,p,1 )
+ ‖TAgn

qn

1 + qn
‖
L̃1(B̃

N
2 −1,Np
2,p,1 )

+ ‖R(Agn, qn

1 + qn
)‖
L̃1(B̃

N
2 ,
N
p

2,p,1 )
,

≤ C‖qn‖
L̃∞(B̃

N
2 −1,Np
2,p,1 )

‖Agn‖
L̃1(B̃

N
2 ,
N
p

2,p,1 )
.

Next we have to use proposition 6.8 to treat the term TAhn( 1
1+qn−1) and R(Ahn, 1

1+qn−1)
when p1 > N , we have then:

‖TAhn
qn

1 + qn
‖
L̃1(B̃

N
2 ,

N
p1
−1

2,p1,1
)
≤ ‖Ahn‖

L̃1(B̃
N
2 ,

N
p1
−1

2,p1,1
)
‖ qn

1 + qn
‖
L̃∞(B̃

N
2 −1,Np
2,p,1 )

,

where following the proposition 6.8, we have chosen p = 2, q = p1 , and as p ≥ p1 we
have 1

λ′
= 1

p1
− 1

p and λ = +∞. It means that: N
p1
− 1 ≤ N

p (what is assumed) and 2 ≤ λ′

if 2 ≥ p1p
p−p1 . We need then the following assumption:

2 ≥ p1p

p− p1
and

N

p1
− 1 ≤ N

p
. (4.17)

Next we have as N
p1

+ N
p − 1 > 0 by proposition 6.8 for the remainder term on the high

frequencies:

‖
[
R(Ahn, ( 1

1 + qn
− 1))

]
HF
‖
L̃1(B

N
p1
−1

p1,1
)
≤ ‖hn‖

L̃1(B
N
2 −1, Np1

−1

2,p1,1
)
‖ 1

1 + qn
− 1‖

L̃∞(B
N
2 −1,Np
2,p,1 )

.

We have seen that we need the following condition to treat this term:

N

p1
+
N

p
− 1 > 0. (4.18)

Easily we have by proposition 6.8 as L̃∞(B̃
N
2
−1,N

p

2,p,1 ) ↪→ L∞:

‖T qn

1+qn
−1
Ahn]HF ‖

L̃1(B̃
N
p1
−1

p1,1
)
≤ ‖Ahn‖

L̃1(B̃
N
2 −1, Np1

−1

2,p1,1
)
‖ qn

1 + qn
‖
L̃∞(B̃

N
2 −1,Np
2,p,1 )

.

We now treat the term un · ∇un and we have as un ∈ E, it exists hn1 and gn1 such that

un = gn1 + hn1 with hn1 ∈ L̃∞(B̃
N
2
−1,N

p

2,p,1 ) ∩ L̃1(B̃
N
2

+1,N
p

+1

2,p,1 ) and gn1 ∈ L̃∞(B̃
N
2
−1, N

p1
−1

2,p1,1
) ∩
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L̃1(B̃
N
2

+1,N
p

+1

2,p,1 ). We have then by proposition 6.8:

‖
(
hn1 · ∇hn1

)
HF
‖
L̃1(B

N
p
p,1)
≤ ‖Thn1∇h

n
1‖

L̃1(B̃
N
2 ,
N
p

2,p,1 )
+ ‖T∇hn1 h

n
1‖

L̃1(B̃
N
2 −1,Np
2,p,1 )

+ ‖R(∇hn1 , hn1 )‖
L̃1(B̃

N
2 ,
N
p

2,p,1 )
,

≤ ‖hn1‖
L̃1(B̃

N
2 +1,Np +1

2,p,1 )
‖hn1‖

L̃∞(B̃
N
2 −1,Np
2,p,1 )

.

Next we have to treat the term Tgn1∇g
n
1 by using the proposition 6.8 with 1

λ′
= 1

p1
− 1

p ,

2 ≤ λ′ and N
p1
− 1 ≤ N

p then:

‖Tgn1∇g
n
1 ‖

L̃1(B̃
N
2 −1, Np1

−1

2,p1,1
)
≤ ‖gn1 ‖

L̃∞(B̃
N
2 −1, Np1

−1

2,p1,1
)
‖∇gn1 ‖

L̃1(B̃
N
2 ,
N
p

2,p,1 )
.

We have seen that we need the hypothesis:

N

p1
− 1 ≤ N

p
and 2 ≤ p1p

p− p1
. (4.19)

Easily we have as B̃
N
2
,N
p

2,p,1 ↪→ L∞ by proposition 6.8:

‖T∇gn1 g
n
1 ‖

L̃1(B̃
N
2 −1, Np1

−1

2,p1,1
)
≤ C‖gn1 ‖

L̃∞(B̃
N
2 −1, Np1

−1

2,p1,1
)
‖∇gn1 ‖

L̃1(B̃
N
2 ,
N
p

2,p,1 )
.

To finish with the term gn1∇gn1 , we have to treat the term
(
R(gn1 ,∇gn1 )

)
HF

. By proposi-

tion 6.8, as N
p + N

p1
− 1 > 0 we have:

‖
(
R(gn1 ,∇gn1 )

)
HF
‖
L̃1(B

N
p1
−1

p1,1
)
≤ C‖gn1 ‖

L̃∞(B̃
N
2 −1, Np1

−1

2,p1,1
)
‖∇gn1 ‖

L̃1(B̃
N
2 ,
N
p

2,p,1 )
.

We have seen that we need the condition:

N

p1
− 1 +

N

p
≥ 0. (4.20)

From the previous inequalities, we have obtained:

‖
(
gn1 · ∇gn1

)
HF
‖
L̃1(B

N
p1
−1

p1,1
)
≤ C‖gn1 ‖

L̃∞(B̃
N
2 −1, Np1

−1

2,p1,1
)
‖∇gn1 ‖

L̃1(B̃
N
2 ,
N
p

2,p,1 )
.

We can treat similarly the terms gn1 · ∇hn1 and hn1 · ∇gn1 . We have finally under the
conditions (4.17), (4.18), (4.19) and (4.20):

‖
(
un · ∇un

)
HF
‖
L̃1(B

N
p1
−1

p1,1
+B

N
p
p,1)
≤ C‖un‖2E .

We finish with the following term where h is a regular function such that h(0) = 0:

‖
[
∇(∆)−1(P

′
(ρn)div(ρnun))

]
HF
‖
L̃1(B

N
p1
−1

p1,1
+B

N
p
p,1)

≤ ‖
[
∇(∆)−1(f(qn)div(qnun))

]
HF
‖
L̃1(B

N
p1
−1

p1,1
+B

N
p
p,1)

+ ‖
[
∇(∆)−1(div(qnun))

]
HF
‖
L̃1(B

N
p1
−1

p1,1
+B

N
p
p,1)

+ ‖
[
∇(∆)−1div(un)

]
HF
‖
L̃1(B

N
p1
−1

p1,1
+B

N
p
p,1)
,

≤ C‖divun‖
L̃1(B̃

N
2 ,
N
p +1

2,p,1 )
(

1

2l0
+ ‖qn‖

L̃∞(B̃
N
2 ,
N
p

2,p,1 )
+ ‖qn‖2

L̃∞(B̃
N
2 ,
N
p

2,p,1 )

).
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In the last inequality we just take in account the fact that
[
∇(∆)−1div(un)

]
HF

is in

L̃1(B
N
p

+1

p,1 ), so we deduce the following inequality:

‖
[
∇(∆)−1div(un)

]
HF
‖
L̃1(B

N
p1
−1

p1,1
+B

N
p
p,1)
≤ 1

2l0
‖divun‖

L̃1(B̃
N
2 ,
N
p +1

2,p,1 )
.

In the sequel we will need to assume that l0 is big enough to assure some bootstrap
estimates. We have now to treat the case of low frequencies, in particular estimating
‖(Fn)BF ‖

L̃1(B
N
2 −1

2,1 )
and ‖(Gn)BF ‖

L̃1(B
N
2 −1

2,1 )
. We begin with ‖(Fn)BF ‖

L̃1(B
N
2 −1

2,1 )
. We have

then according proposition 6.8 if p < max(4, 2N):

‖(qndivun)BF ‖
L̃1(B

N
2 −1,

2,1 )
≤ ‖Tqn(divun)‖

L̃1(B̃
N
2 −1,Np −1

2,p,1 )
+ ‖Tdivunq

n‖
L̃1(B̃

N
2 −1,Np
2,p,1 )

+ ‖
(
R(qn,divun)

)
BF
‖
L̃1(B

N
2 −1

2,1 )
,

≤ C
(
‖qn‖

L̃2(B̃
N
2 ,
N
p

2,p,1 )
‖un‖

L̃2(B̃
N
2 ,
N
p

2,p,1 )
+ ‖qn‖

L̃∞(B̃
N
2 −1,Np
2,p,1 )

‖un‖
L̃1(B̃

N
2 +1,Np +1

2,p,1 )

)
.

Here the only difficulty is to treat the term R(qn, divun) when N = 2, we need in this
case of the previous condition:

p < max(4, 2N). (4.21)

and:
‖
(
R(qn, divun)

)
BF
‖
L̃1(B

N
2 −1

2,1 )
≤ C‖qn‖

L̃2(B̃
N
2 ,
N
p

2,p,1 )
‖un‖

L̃2(B̃
N
2 ,
N
p

2,p,1 )
.

We now want to estimate ‖Gn‖
L̃1(B̃

N
2 −1, Np1

−1

2,p1,1
+B̃

N
2 −1,Np
2,p,1 )

, we begin with the following

term ‖( qn

1+qnAu
n)HF ‖

L̃1(B
N
2 −1

2,1 )
. The main difficulty corresponds to treat TAun

qn

1+qn and

R( qn

1+qn ,Au
n). We have by using proposition 6.8 if: 1

2 ≤
2
p , N − 1 > 0, 2Np − 1 > 0 (we

recall here that L̃∞(B̃
N
2
,N
p

2,p,1 ) ↪→ L̃∞(B̃
N
2
−1,N

p

2,p,1 )):

‖
(
R(

qn

1 + qn
,Aun)

)
BF
‖
L̃1(B

N
2 −1

2,1 )
≤ C‖ qn

1 + qn
‖
L̃∞(B̃

N
2 ,
N
p

2,p,1 )
‖Aun‖

L̃1(B̃
N
2 −1,Np −1

2,p,1 )
.

We need then of the following conditions:

p < max(4, 2N). (4.22)

Next we have according proposition 6.8 with λ = λ
′

= +∞:

‖
(
TAun

qn

1 + qn
)
BF
‖
L̃1(B

N
2 −1

2,1 )
≤ ‖TAun

qn

1 + qn
‖
L̃1(B̃

N
2 −1,Np −1

2,p,1 )
,

≤ C‖ qn

1 + qn
‖
L̃∞(B̃

N
2 ,
N
p

2,p,1 )
‖Aun‖

L̃1(B̃
N
2 −1,Np −1

2,p,1 )

Finally we have:
‖(K(qn)∇qn)BF ‖

L̃1(B
N
2 −1

2,1 )
≤ ‖qn‖

L̃2(B̃
N
2 ,
N
p

2,p,1 )
.
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To finish, it stays in low frequencies the terms: T∇unu
n and R(un,∇un). We have then

by proposition 6.8 if p < max(4, 2N):

‖(R(hn1 ,∇hn1 ))BF ‖
L̃1(B

N
2 −1

2,1 )
≤ C‖hn1‖

L̃∞(B̃
N
2 −1,Np −1

2,p,1 )
‖∇hn1‖

L̃1(B̃
N
2 ,
N
p

2,p,1 )
.

We have seen that we need again of condition (4.21).
We want now to treat (R(gn1 ,∇gn1 ))BF , we have then by proposition 6.8 if N

p1
+ N

p −1 > 0

and 1
2 ≤

1
p + 1

p1
,

‖(R(gn1 ,∇gn1 ))BF ‖
L̃1(B

N
2 −1

2,1 )
≤ C‖gn1 ‖

L̃∞(B̃
N
2 −1, Np1

−1

2,p1,1
)
‖∇gn1 ‖

L̃1(B̃
N
2 ,
N
p

2,p,1 )
.

We have seen that we need the following conditions:

1

2
≤ 1

p
+

1

p1
and

N

p1
+
N

p
− 1 > 0. (4.23)

Next we have by proposition 6.8:

‖T∇hn1 h
n
1‖

L̃1(B̃
N
2 −1,Np
2,p,1 )

≤ C‖hn1‖
L̃∞(B̃

N
2 −1,Np
2,p,1 )

‖∇hn1‖
L̃1(B̃

N
2 ,
N
p

2,p,1 )
,

and
‖T∇gn1 g

n
1 ‖

L̃1(B̃
N
2 −1,Np
2,p,1 )

≤ C‖gn1 ‖
L̃∞(B̃

N
2 −1, Np1

−1

2,p1,1
)
‖∇gn1 ‖

L̃1(B̃
N
2 ,
N
p

2,p,1 )
.

We proceed similarly to control Tun∇un. Therefore the above inequalities with conditions
(4.17), (4.18), (4.19), (4.20), (4.21), (4.22) and (4.23) imply that for all t ∈ [0, Tn] we
have if l0 is big enough :

‖(qn, un)‖Ht ≤ CeC‖(q
n,un)‖Ht

(
‖q0‖

B
N
2 −1Np
2,p,1

+ ‖u0‖
B
N
2 −1, Np1
2,p1,1

+ ‖f‖
L̃1(B

N
2 −1, Np1

−1

2,p1,1
)

+ ‖(qn, un)‖2Ht
)
.

From a standard bootstrap argument, it is now easy to conclude that there exists a
positive constant c such that if the data has been chosen so small as to satisfy:

‖q0‖
B
N
2 −1Np
2,p,1

+ ‖u0‖
B
N
2 −1, Np1
2,p1,1

+ ‖f‖
L̃1(B

N
2 −1, Np1

−1

2,p1,1
)
≤ c.

then Tn = +∞. Furthermore it exists C > 0 such that for all t ∈ R:

‖(qn, un)‖Ht ≤ C, ∀t ∈ R.

Compactness arguments

Let us first focus on the convergence of (qn)n∈N. We claim that, up to extraction, (qn)n∈N
converges in the distributional sense to some function q such that:

q ∈ L̃∞(B̃
N
2
−1,N

p

2,p,1 ) ∩ L̃1(B̃
N
2

+1,N
p

2,p,1 ). (4.24)
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The proof is based on Ascoli’s theorem and compact embedding for Besov spaces. As
similar arguments have been employed in [13] or [17], we only give the outlines of the
proof. We may write that:

∂tq
n = −un · ∇qn − (1 + qn)divun.

Since (un)n∈N is uniformly bounded in L̃2(B̃
N
2
,N
p

+1

2,p,1 + B̃
N
2
, N
p1

2,p1,1
) and qn ∈ L̃∞(B̃

N
2
−1,N

p

2,p,1 ), we

have (1+qn)divun which is bounded in L̃2(B̃
N
2
−1,N

p

2,p,1 +B̃
N
2
−1, N

p1
−1

2,p1,1
) with the conditions be-

tween p and p1 in theorem 1.1. Similarly un·∇qn is bounded in L̃2
T (B̃

N
2
−1,N

p

2,p,1 +B̃
N
2
−1, N

p1
−1

2,p1,1
).

Finally as p ≥ p1, we have proved that ∂tq
n is bounded in L̃2

T (B̃
N
2
−1,N

p
−1

2,p,1 ), it means that

(qn)n∈N seen as a sequence of B̃
N
2
−1,N

p
−1

2,p,1 valued functions is locally equicontinuous in

R+. In addition (qn)n∈N is bounded in C(R+, B̃
N
2
−1,N

p
−1

2,p,1 ∩ B̃
N
2
,N
p

2,p,1 ). As the embed-

ding B̃
N
2
−1,N

p
−1

2,p,1 ∩ B̃
N
2
,N
p

2,p,1 is locally compact (see [3], Chap2), one can thus conclude
by means of Ascoli’s theorem and Cantor diagonal extraction process that there exists
some distribution q such that up to an omitted extraction (ψqn)n∈N converges to ψq in

C(R+, B̃
N
2
−1,N

p
−1

2,p,1 ) for all smooth ψ with compact support in R+×RN . Then by using the
so-called Fatou property for the Besov spaces, one can conclude that (4.24) is satisfied.
(the reader may consult [3], Chap 10 too). By proceeding similarly, we can prove that
up to extraction, (un)n∈N converges in the distributional sense to some function u such
that:

u ∈ L̃∞(B̃
N
2
−1, N

p1
−1

2,p1,1
+ B̃

N
2
−1,N

p

2,p1,1
) ∩ L̃1(B̃

N
2

+1,N
p

+1

2,p,1 ). (4.25)

In order to complete the proof of the existence part of theorem 1.1, it is only a matter
of checking the continuity properties with respect to time, namely that:

q ∈ C̃(R+, B̃
N
2
−1,N

p

2,p,1 ) and u ∈ C̃(R+, B̃
N
2
−1,N

p

2,p,1 + B̃
N
2
−1, N

p1
−1

2,p1,1
).

As regards q, it suffices to notice that, according to (4.24), (4.25) and to the product
laws in the Besov spaces, we have:

∂tq + u · q = −(1 + q)divu ∈ L̃1(B̃
N
2
,N
p

2,p,1 ).

As q0 ∈ B̃
N
2
,N
p

2,p,1 , classical results for the transport equation (see [3], Chap 3) ensure that

q ∈ C̃(R+, B̃
N
2
,N
p

2,p,1 ). And as previously, we have shown that q ∈ C̃(R+, B̃
N
2
−1,N

p
−1

2,p,1 ), it

means clearly that q ∈ C̃(R+, B̃
N
2
−1,N

p

2,p,1 ).
For getting the continuity result for u, one may similarly use the properties of the heat
equation on v1 in high frequncies and on u in low frequencies.

The proof of the uniqueness

In the case 2
N ≤

1
p + 1

p1
, the uniqueness has been established in [13, 21].
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5 Proof of the theorems 1.2 and 1.3

5.1 Proof of theorem 1.2

We want here to avoid the condition p < max(4, 2N). For simplicity we will treat only
the case N = 3. This condition appears when we want to treat the terms of remainder in
low frequencies. For resolving this problem as in the paper of F. Charve and R. Danchin
in [7], we need an additionnal condition in high frequencies on q0 and u0.
We want then to follow the same strategy as in the proof of theorem 1.1. It means that we
use the same standard scheme which consists in the construction of approximate solutions,
some uniform bounds and results of compactness. We will use the same notations as in
proof of the theorem 1.1. We just want to treat the non linear term where appears the
condition p < max(2N, 4) in an other way by using the additional hypothesis that we
have on (q0, u0) ∈ B̃0,1

2,∞×B0
2,∞. We will work with the same space as in the proof of the

theorem 1.1 except that we expect additional regularity on (qn, un) in E
′

with:

E
′
1 =

(
L̃∞(B̃0,1

2,∞) ∩ L̃1(B̃2,1
2,∞)

)
×
(
L̃∞(B̃0

2,∞) ∩ L̃1(B̃2
2,∞)

)
.

Here (qn, un)n∈N is the solution of the following system:
∂tq

n + un · ∇qn + divun = Fn

∂tu
n + un · ∇un −Aun + P

′
(1)∇qn = Gn + fn

(qn, un)/t=0 = (qn0 , u
n
0 ),

(5.26)

which verifies proposition 4 in [7] with:

Fn = −qndivun,

Gn = − qn

1 + qn
Aun + (P

′
(1)− P ′(1 + qn))∇qn.

We apply exactly the same proof than for theorem 1.1, however we have to complete
the uniform bounds by showing that (qn, un) is uniformly bounded in H

′ ∩E′1, moreover
we have to treat differently the term in low frequencies where appears the conditions
p < max(4, 2N) and 1

2 ≤
1
p + 1

p1
by using the fact that (qn, un) in E

′
1.

We begin with treating the term ‖Fn‖
L̃1(B0,1

2,∞)
and ‖Gn‖

L̃1(B0
2,∞)

by using properties of

continuity on the paraproduct and proposition 4 of [7]. We have then:

‖T ′qndivun‖
L̃1(B1

2,∞)
≤ ‖qn‖L∞(L∞)‖divun‖

L̃1(B1
2,∞)

.

Similarly:
‖T ′qndivun‖

L̃1(B0
2,∞)
≤ ‖qn‖L2(L∞)‖divun‖

L̃2(B0
2,∞)

.

Next we have:
‖K(q)∇q‖

L̃1(B0
2,∞)
≤ ‖q‖L2(L∞)‖K(q)‖

L̃2(B1
2,∞)

.

For the term (1
ρ −

1
ρ̄)∆u = J(q)∆u with J regular and J(0) = 0, we have:

‖TJ(q)∆u‖L̃1(B0
2,∞)
≤ ‖J(q)‖L∞(L∞)‖∆u‖L̃1(B0

2,∞)
,

‖T∆uJ(q)‖
L̃1(B0

2,∞)
≤ ‖J(q)‖

L̃∞(B1
2,∞)
‖∆u‖

L̃1(B̃
N
2 −1,Np −1

2,p,∞ )
.
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Concerning the remainder, we have if p ≥ 2:

‖R(J(q),∆u)‖
L̃1(B0

2,∞)
≤ ‖J(q)‖

L̃∞(B1
2,∞)
‖∆u‖

L̃1(B̃
N
2 −1,Np −1

2,p,∞ )
.

We have then obtained:

‖J(q)∆u‖
L̃1(B0

2,∞)
≤ ‖q‖

L̃∞(B1
2,∞)
‖u‖

L̃1(B̃
N
2 +1,Np +1

2,p,∞ )
+ ‖J(q)‖L∞(L∞)‖∆u‖L̃1(B0

2,∞)
.

It stays now to treat the terms where appears the conditions p < max(4, 2N) and 1
2 ≤

1
p + 1

p1
in an other way. As un ∈ L̃2(B̃

N
2
,N
p

+1

2,p,1 + B̃
N
2
, N
p1

2,p1,1
), we set un = gn + hn with

gn ∈ L̃2(B̃
N
2
,N
p

+1

2,p,1 ) and hn ∈ L̃2(B̃
N
2
, N
p1

2,p1,1
). According to proposition 6.8, we have:

‖
(
R(qn, divgn)

)
BF
‖
L̃1(B

N
2 −1

2,1 )
≤ C‖

(
R(qn, divgn)

)
BF
‖
L̃1(B0

2,1)
,

≤ C‖qn‖
L̃2(B1

2,∞)
‖divgn‖

L̃2(B̃
N
2 −1,Np −1

2,p,1 )
,

≤ C‖qn‖
L̃2(B1

2,∞)
‖divgn‖

L̃2(B̃
N
2 −1,Np
2,p,1 )

.

‖
(
R(qn, divhn)

)
BF
‖
L̃1(B

N
2 −1,

2,1 )
≤ C‖

(
R(qn, divhn)

)
BF
‖
L̃1(B0

2,1)
,

≤ C‖qn‖
L̃2(B̃1

2,∞)
‖divhn‖

L̃2(B̃
N
2 −1, Np1

−1

2,p1,1
)
.

Next we have:

‖
(
R(un,∇un)

)
BF
‖
L̃1(B

N
2 −1,

2,1 )
≤ C‖

(
R(un,∇un)

)
BF
‖
L̃1(B0

2,1)
,

≤ C‖un‖
L̃∞(B0

2,∞)
‖∇un‖

L̃1(B̃
N
2 ,
N
p

2,p,1 )
.

It stays to control the term R( qn

1+qn ,∆u
n) in low frequencies:

‖
(
R(

qn

1 + qn
,∆un)

)
BF
‖
L̃1(B

N
2 −1,

2,1 )
≤ C‖

(
R(

qn

1 + qn
,∆un)

)
BF
‖
L̃1(L2)

,

≤ C‖qn‖
L̃∞(B1

2,∞)
‖∆un‖

L̃1(B̃
N
2 −1,Np −1

2,p,1 )
.

Therefore the above inequalities imply that for all t ∈ [0, Tn] we have :

‖(qn, un)‖
Ht∩(E

′
1)t
≤ CeC‖(qn,un)‖Ht (‖q0‖

B̃
N
2 −1Np
2,p,1 ∩B̃0,1

2,r

+ ‖u0‖
B̃
N
2 −1, Np1

−1

2,p1,1
∩B0

2,r

+ ‖f‖
L̃1(B̃

N
2 −1, Np1

−1

2,p1,1
∩B0

2,r)
+ ‖(qn, un)‖2

Ht∩(E
′
1)t

).

From a standard bootstrap argument, it is now easy to conclude that there exists a
positive constant c such that if the data has been chosen so small as to satisfy:

‖q0‖
B
N
2 −1Np
2,p,1 ∩B0,1

2,r

+ ‖u0‖
B
N
2 −1, Np1
2,p1,1

∩B0
2,r

+ ‖f‖
L̃1(B

N
2 −1, Np1

−1

2,p1,1
∩B0

2,r)
≤ c,
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then Tn = +∞. Furthermore it exists C > 0 such that for all t ∈ R:

‖(qn, un)‖
Ht∩(E

′
1)t
≤ C, ∀t ∈ R.

To conclude we follow the previous proof of the theorem 1.1. Compactness results go
along the same lines of the proof of the theorem 1.1.

5.2 Proof of theorem 1.3

We follow here exactly the lines of the proof of the theorem 1.1 except that we introduce
a new effective velocity. Indeed in our case v verifies the following elliptic equation:

div(µ(1)Dv) +∇(λ(1)divv) = ∇P (ρ) + div(f1(q)Dv) +∇(f2(q)divv),

with f1(q) = µ(1 + q) − µ(1) and f2(q) = λ(1 + q) − λ(1). We can resolve this elliptic
equation as µ(1) ≥ c > 0 and 2µ(1) + λ(1) ≥ c > 0, indeed in our case we work away
from the vacuum. To do this we have to use the estimates on the Lamé operator of the

appendix in [20]. More precisely we have as q ∈ L̃∞(B̃
N
2
−1,N

p

2,p,1 ) for r ≥ 1, p, q ≥ 1 and

|s1| < N
2 , |s2| < N

p :
‖v‖

L̃r(B̃
s1,s2
p,q,1 )

≤ C‖q‖
L̃r(B̃

s1−1,s2−1
p,q,1 )

.

Indeed as q is small, the terms of remainder with f1(q) and f2(q) are easy to treat. It
means that as in the proof of theorem 1.1, v is one derivative more regular than q in high
frequencies and that we can estimate v in function of q. Moreover we have ∂tv which
verifies the following elliptic equation:

div(µ(ρ)D∂tv) +∇(λ(ρ)div∂tv) = ∇∂tP (ρ)− div(∂tµ(ρ)Dv)−∇(∂tλ(ρ)divv).

We can in a similar way getting estimates on ∂tv in function of q and u. The rest of
the proof is exactly similar to the proof of the theorem 1.1 and is nothing than tedious
verifications. It is left to the reader.

6 Appendix

This section is devoted to the proof of paraproduct estimates which have been used in
section 2 and 3. They are based on paradifferential calculus, a tool introduced by J.-
M. Bony in [4]. The basic idea of paradifferentiel calculus is that any product of two
distributions u and v can be formally decomposed into:

uv = Tuv + Tvu+R(u, v) = Tuv + T
′
vu

where the paraproduct operator is defined by Tuv =
∑

q Sq−1u∆qv, the remainder oper-

ator R, by R(u, v) =
∑

q ∆qu(∆q−1v + ∆qv + ∆q+1v) and T
′
vu = Tvu+R(u, v).

Proposition 6.8 Let p1, p2, p3, p4 ∈ [1,+∞], (s1, s2, s3, s4) ∈ R4 and (p, q) ∈ [1,+∞]2,
we have then the following inequalities:
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• If 1
p ≤

1
p2

+ 1
λ ≤ 1, 1

q ≤
1
p4

+ 1
λ′
≤ 1 with (λ, λ

′
) ∈ [1,+∞]2 and p1 ≤ λ

′
, p1 ≤ λ,

p3 ≤ λ
′

then:

‖Tuv‖
B̃
s1+s2+

N
p −

N
p1
− Np2

,s3+s4+
N
q −

N
p3
− Np4

p,q,r

. ‖u‖
B̃
s1,s3
p1,p3,1

‖v‖
B̃
s2,s4
p2,p4,r

, (6.27)

if s1 + N
λ′
≤ N

p1
, s1 + N

λ ≤
N
p1

and s3 + N
λ′
≤ N

p3
.

• If 1
q ≤

1
p3

+ 1
p4

and s3 + s4 +N inf(0, 1− 1
p3
− 1

p4
) > 0 then∑

l≥4

2
l(s3+s4+N

q
− N
p3
− N
p4

)‖∆lR(u, v)‖Lq . ‖u‖B̃s1,s3p1,p3,1
‖v‖

B̃
s2,s4
p2,p4,r

. (6.28)

• If 1
p ≤

1
p3

+ 1
p4
≤ 1, 1

p ≤
1
p3

+ 1
p2
≤ 1, 1

p ≤
1
p1

+ 1
p4
≤ 1, 1

p ≤
1
p1

+ 1
p2
≤ 1 and

s3 + s4 > 0, s3 + s2 > 0, s4 + s1 > 0, s1 + s2 > 0 then∑
l≤4

2
l(s1+s2+N

p
− N
p1
− N
p2

)‖∆lR(u, v)‖Lp . ‖u‖
B̃
s1,

N
p3
− Np1

+s1

p1,p3,1

‖v‖
B̃
s2,

N
p4
− Np2

+s2
p2,p4,r

. (6.29)

with s3 = N
p3
− N

p1
+ s1 and s4 = N

p4
− N

p2
+ s2.

• If u ∈ L∞, we also have:

‖Tuv‖B̃s1,s2p,q,r
. ‖u‖L∞‖v‖B̃s1,s2p,q,r

, (6.30)

and if min(s1, s2) > 0 then:

‖R(u, v)‖
B̃
s1,s2
p,q,r

. ‖u‖L∞‖v‖B̃s1,s2p,q,r
. (6.31)

Proof: Let us prove (6.27). According to the decomposition of J.-M. Bony [4], we have:

uv = Tuv + Tvu+R(u, v),

so for all l > 0:
∆lTuv =

∑
|l−l′ |≤3

∆l(Sl′−1u∆l′v),

For α, β ∈ R, let us define the following characteristic function on Z

ϕα,β = α if r ≤ 0,

ϕα,β = β if r ≥ 1.

if 1
p ≤

1
p2

+ 1
λ ≤ 1 and 1

q ≤
1
p4

+ 1
λ′
≤ 1 then

‖∆lTuv‖Lϕp,q(l) . 2lNϕ
1
p2

+ 1
λ
− 1
p ,

1
p4

+ 1

λ
′ −

1
q (l)

∑
|l−l′ |≤3

‖Sl′−1u‖Lϕλ,λ
′
(l
′
)
‖∆l′v‖Lϕp2,p4 (l

′
)
.
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We have by Berstein inequalities and as p1 ≤ λ
′
, p3 ≤ λ

′
, p1 ≤ λ and s1 + N

λ ≤
N
p1

,

s1 + N
λ′
≤ N

p1
, s3 + N

λ′
≤ N

p3
:

‖Sl′−1u‖Lϕλ,λ
′
(l
′
)
.

∑
k≤l′−2

2k(ϕ
N
p1
, Np3 (k)−ϕ

N
λ
, N

λ
′

(l
′
))‖∆ku‖Lϕp1,p3 (k) ,

.
∑

k≤l′−2

2k(ϕ
N
p1
−s1,

N
p3
−s3 (k)−ϕ

N
λ
, N

λ
′

(l
′
))2kϕ

s1,s3 (k)‖∆ku‖Lϕp1,p3 (k) ,

. 2l
′
(ϕ

N
p1
−s1,

N
p3
−s3 (l

′
)−ϕ

N
λ
, N

λ
′

(l
′
))‖u‖

B̃
s1,s3
p1,p3,1

.

Since ‖∆l′v‖Lϕp2,p4 (l
′
)

= cl′2
−l′ (ϕs2,s4 (l

′
))‖v‖

B̃
s2,s4
p2,p4,1

with
∑

l′∈Z cl′ ≤ 1 we finally gather

as l > 0:

‖∆lTuv‖Lq . cl2lϕ
N
p1

+ N
p2
−Np −s1−s2,

N
p2

+ N
p4
−Nq −s3−s4 (l)‖u‖

B̃
s1,s3
p1,p3,1

‖v‖
B̃
s2,s4
p2,p4,1

.

And we obtain (6.27).

Straightforward modification give (6.30). In this case as ‖Sk−1u‖L∞ ≤ ‖u‖L∞ we have:

‖∆lTuv‖Lϕp,q(l) .
∑
|l−l′ |≤3

‖u‖L∞‖∆l′v‖Lϕp2,p4 (l
′
)
.

Next we have:

2lϕ
p2,p4 (l)‖∆lTuv‖Lϕp,q(l) . ‖u‖L∞

∑
|l−l′ |≤3

2lϕ
p2,p4 (l)−l′ϕp2,p4 (l

′
))2ϕ

p2,p4 (l
′
)‖∆l′v‖Lϕp2,p4 (l

′
)
.

We conclude by convolution.

To prove (6.29), we write:

∆lR(u, v) =
∑
k≥l−2

∆l(∆ku∆̃kv).

We consider now the case l > 3. By Bernstein and Hölder inequalities we obtain when
1
q ≤

1
p3

+ 1
p4
≤ 1:

‖∆lR(u, v)‖Lq . 2
Nl( 1

p3
+ 1
p4
− 1
q

)
∑
k≥l−2

‖∆ku‖Lp3‖∆̃kv‖Lp4 .

Next we have:

2
l(s3+s4+N

q
− N
p3
− N
p4

)‖∆lR(u, v)‖Lq .
∑
k≥l−2

2(l−k)(s3+s4)2ks3‖∆ku‖Lp32ks4‖∆̃kv‖Lp4 ,

. (ck) ∗ (dk′ ),
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with ck = 1[−∞,2](k)2k(s3+s4) and dk′ = 2k
′
s3‖∆ku‖Lp32k

′
s4‖∆̃kv‖Lp4 . We conclude by

Young inequality as s3 + s4 > 0.

We have to treat now the case when l < 0. We have then as 1
p ≤

1
p3

+ 1
p4
≤ 1 and

1
p ≤

1
p1

+ 1
p2
≤ 1:

‖∆lR(u, v)‖Lp . 2
Nl( 1

p3
+ 1
p4
− 1
p

)
∑
k≥2

‖∆ku‖Lp3‖∆̃kv‖Lp4

+
∑

0≤k≤1,|k−k′ |≤1

‖∆ku∆k′v‖Lp + 2
Nl( 1

p1
+ 1
p2
− 1
p

)
∑

l−2≤k≤−1

‖∆ku‖Lp1‖∆̃kv‖Lp2 .

And by convolution on the middle frequencies:

‖∆lR(u, v)‖Lp . 2
Nl( 1

p3
+ 1
p4
− 1
p

)
∑
k≥2

‖∆ku‖Lp3‖∆̃kv‖Lp4 + (2
l( N
p3

+ N
p2
−N
p
−s3−s2)

cl

+ 2
l( N
p1

+ N
p4
−N
p
−s1−s4)

cl + 2
Nl( 1

p1
+ 1
p2
− 1
p

)
∑

l−2≤k≤−1

‖∆ku‖Lp1‖∆̃kv‖Lp2 ,

with cl ∈ l1(Z). Next by convolution we obtain:

‖∆lR(u, v)‖Lp . cl(2
l( N
p3

+ N
p4
−N
p
−s3−s4)

+ 2
l( N
p3

+ N
p2
−N
p
−s3−s2)

+ 2
l( N
p1

+ N
p4
−N
p
−s1−s4)

+ 2
l( N
p1

+ N
p2
−N
p
−s1−s2)

)‖u‖
B̃
s1,s3
p1,p3,1

‖v‖
B̃
s2,s4
p2,p4,r

.

And we can conclude.
We want prove now the inequality (6.30). We have then:

2lϕ
s1,s2 (l)‖∆lR(u, v)‖Lp .

∑
k≥l−2

2(l−k)ϕs1,s2 (l)2kϕ
s1,s2 (l)‖∆ku‖L∞‖∆̃kv‖Lϕp,q(k) ,

And we conclude by Young inequality. �
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