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Well-posedness in critical spaces for the system of

compressible Navier-Stokes in larger spaces

Boris Haspot ∗†

Abstract

This paper is dedicated to the study of viscous compressible barotropic fluids in
dimension N ≥ 2. We address the question of well-posedness for large data having
critical Besov regularity. Our result improves the analysis of R. Danchin in [13], of
Chen et al in [8] and of the author in [15, 16] inasmuch as we may take initial density

in B
N
p

p,1 with 1 ≤ p < +∞. Our result relies on a new a priori estimate for the
velocity, where we introduce a new unknown called effective velocity to weaken one
the coupling between the density and the velocity. In particular for the first time we
obtain uniqueness without imposing hypothesis on the gradient of the density.

1 Introduction

The motion of a general barotropic compressible fluid is described by the following system:
∂tρ+ div(ρu) = 0,

∂t(ρu) + div(ρu⊗ u)− div(µ(ρ)D(u))−∇(λ(ρ)divu) +∇P (ρ) = ρf,

(ρ, u)/t=0 = (ρ0, u0).

(1.1)

Here u = u(t, x) ∈ RN stands for the velocity field and ρ = ρ(t, x) ∈ R+ is the density.
The pressure P is a suitable smooth function of ρ. We denote by λ and µ the two viscosity
coefficients of the fluid, which are assumed to satisfy µ > 0 and λ+ 2µ > 0 (in the sequel
to simplify the calculus we will assume that the viscosity coefficients are constant, except
in the case of the theorem 1.3). Such a condition ensures ellipticity for the momentum
equation and is satisfied in the physical cases where λ + 2µ

N > 0. We supplement the
problem with initial condition (ρ0, u0) and an outer force f . Throughout the paper, we
assume that the space variable x is in RN or in the periodic box TNa with period ai, in
the i-th direction. We restrict ourselves to the case N ≥ 2.
The problem of existence of global time solutions for Navier-Stokes equations was ad-
dressed in one dimension for smooth enough data by Kazhikov and Shelukin in [27], and
for discontinuous ones, but still with densities away from zero, by Serre in [32] and Hoff
in [20]. Those results have been generalized to higher dimension by Hoff in [23, 25]. The
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existence and uniqueness of local classical solutions for (1.1) with smooth initial data
such that the density ρ0 is bounded and bounded away from zero has been stated by
Nash in [31]. Let us emphasize that no stability condition was required there. On the
other hand, for small smooth perturbations of a stable equilibrium with constant positive
density, global well-posedness has been proved in [29]. Refined functional analysis has
been used for the last decades, ranging from Sobolev, Besov, Lorentz and Triebel spaces
to describe the regularity and long time behavior of solutions to the compressible model
[33], [35], [22], [26]. Concerning the existence of global strong solutions in two dimension
with large initial data and specific choice on the viscosity coefficients, we refer to the pi-
oneering works of Vaigant and Kazhikhov in [34]. For results of weak-strong uniqueness,
we would like to mention the recent works of P. Germain [14].
Guided in our approach by numerous works dedicated to the incompressible Navier-Stokes
equation (see e.g [30]):

(NS)

{
∂tv + v · ∇v − µ∆v +∇Π = 0,

divv = 0,

we aim at solving (1.1) in the case where the data (ρ0, u0, f) have critical regularity.
By critical, we mean that we want to solve the system in functional spaces with norm
independent of the changes of scales which leaves (1.1) invariant. In the case of barotropic
fluids, it is easy to see that the transformations:

(ρ(t, x), u(t, x)) −→ (ρ(l2t, lx), lu(l2t, lx)), l ∈ R, (1.2)

have that property, provided that the pressure term has been changed accordingly.
The use of critical functional frameworks led to several new well-posedness results for
compressible fluids (see [10, 11, 13, 5, 15, 16, 19, 7, 8]). In addition to have a norm
invariant by (1.2), we need to control the L∞ norm of the density (or more exactly the
vacuum what is equivalent) in order to take advantage of the parabolicity of the system.
For that reason, we restricted our study to the case where the initial data (ρ0, u0) and
external force f are such that, for some positive constant ρ̄ > 0:

(ρ0 − ρ̄) ∈ B
N
p

p,1, u0 ∈ B
N
p1
−1

p1,1
and f ∈ L1

loc(R+,∈ B
N
p1
−1

p1,1
)

for suitable choice of (p, p1) ∈ [1,+∞[.
In [13], however, we hand to have p = p1 with the limitation p < 2N for the existence of
solutions and p ≤ N for the uniqueness, indeed in this article there exists a very strong
coupling between the pressure and the velocity. To be more precise, the pressure term
is considered as a remainder for the parabolic operator in the momentum equation of
(1.1). This present paper improves the results of R. Danchin in [10, 13] and Chen et

al in [8], inasmuch as the initial density belongs to larger spaces B
N
p

p,1 with p ∈ [1,+∞[
without any restrictions. More precisely, we extend the results of [10, 13] to the case
where the Lebesgue index of Besov spaces are not the same for the density and the
velocity. The main idea of this paper is to introduce a new variable than the velocity
in the goal to cancel out the relation of coupling between the velocity and the density.
This work may be considered as an extension of [1] and [17] (where the authors are
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working with different Lebesgue index for the velocity and the density) where the authors
study the existence of strong solution in critical space for the scaling of the equations of
the dependent density incompressible Navier-Stokes system. However one of the main
difference concerns the fact that in this case the velocity and the density are naturally
decoupled. It is unfortunately not the case for the barotropic Navier-Stokes system (1.1)
that is why it seems appropriate to work with some new unknown in order to overcome
this difficulty.
Before explaining the main idea to do this, in order to simplify the notation, we assume
from now on that ρ̄ = 1. Hence as long as ρ does not vanish, the equations for (a =
ρ−1 − 1,u) read: {

∂ta+ u · ∇a = (1 + a)divu,

∂tu+ u · ∇u− (1 + a)Au+∇(g(a)) = f,
(1.3)

In the sequel we will note A = µ∆ + (λ + µ)∇div and g a smooth function which may
be computed from the pressure function P .
As we mentioned below, the key of the proofs is to introduce a new unknown v1 to
avoid the coupling between the density and the velocity, we analyze by a new way the
pressure term. More precisely we write the gradient of the pressure as a Laplacian of
some vector-field v (it means that ∆v = ∇P (ρ)), and we introduce this term in the linear
part of the momentum equation ( in other words, v = GP (ρ) where GP (ρ) stands for
some pseudo-differential operator of order −1). We then introduce the effective velocity
v1 = u− v. By this way, we have canceled out the coupling between v1 and the density.
More precisely we have then from (1.3) the following system:

∂tq + (v1 +
1

ν
v) · ∇q +

1

ν
P
′
(1)q = −(1 + q)divv1

− 1

ν
(P (ρ)− P (1)− P ′(1))− 1

ν
q(P (ρ)− P (1)),

∂tv1 − (1 + a)Av1 = f − u · ∇u+
1

ν
∇(∆)−1

(
P
′
(ρ)div(ρu)

)
,

a/t=0 = a0, (v1)/t=0 = (v1)0,

where v1 = u − 1
ν v is called the effective velocity and q = ρ − 1 (we will conserve this

notation in the sequel). Here we can check that v1 verifies a parabolic equations with the
low order terms in remains ∇(∆)−1

(
P
′
(ρ)div(ρu)

)
while q satisfies a damped transport

equation. We next verify easily that we have a Lipschitz control on the gradient of u (it
is crucial to estimate the density by the mass equation). For more details on the strategy
of the proof we refer to section 5.5.
One can now state our main result.

Theorem 1.1 Let P be a suitably smooth function of the density and 1 ≤ p1 ≤ p < +∞

such that 1
p1
≤ 1

N + 1
p and 1

p + 1
p1

> 1
N . Let u0 ∈ B

N
p1
−1

p1,1
, f ∈ L1

loc(R+, B
N
p1
−1

p1,1
) and

a0 ∈ B
N
p

p,1 with 1 + a0 bounded away from zero.
There exists then a positive time T such that system (1.1) has a solution (a, u) with 1+a
bounded away from zero and:

a ∈ C̃([0, T ], B
N
p

p,1), u ∈ C̃([0, T ];B
N
p1
−1

p1,1
+B

N
p

+1

p,1 ) ∩ L1([0, T ], B
N
p

+1

p,1 ).

3



Moreover this solution is unique if:

2

N
≤ 1

p
+

1

p1
. (1.4)

Remark 1 We refer to the definition 2.2 for the notation L̃ρ(Bs
p,r) (with s ∈ R, (p, r, ρ) ∈

[1,+∞]3).

Remark 2 We can observe that when p goes to infinity we are close from getting solution
with initial data (a0, u0) in B0

∞,1 × B0
N,1. These spaces are absolutely critical for com-

pressible Navier-Stokes system in the sense that B0
N,1 is close to LN which is critical for

incompressible Navier-Stokes. Furtheremore in this case we do not ask any information
on the derivatives of the initial density when a0 is in B0

∞,1 (this is really new compared
with the different previous results existing in the literature of the topic). In passing we
can remark that B0

∞,1 is not far of L∞ (L∞ being in some sense the most general space
where we can hope to get solutions, indeed it is necessary to have ρ ∈ L∞ in order to
control the non linearities appearing on the density, for example the pressure but also for
some reasons related with the notion of multiplier). In this sense, we can consider that
our result is quite optimal.

Remark 3 It seems possible to improve the theorem 1.1 by choosing initial data a0 in

B
N
p
p,∞ ∩ B0

∞,1. For this we could use some arguments of density to deal with the variable
coefficients of the heat equation . However some supplementary conditions appear on p1 in
this case, in particular for treating some non linear terms requiring additional conditions
to use the paraproduct.

In [21], D. Hoff shows a very strong theorem of uniqueness for weak solutions when the
pressure is of the specific form P (ρ) = Kρ with K > 0. Similarly in [23], [25], [22], D.
Hoff gets global weak solutions and point out regularizing effects on the velocity when
the initial data are small. In particular when the pressure has this form, he does not need
any estimates on the gradient of the initial density, he considers only ρ0 ∈ L∞. In the
following theorem, we will observe that this type of pressure ensures a specific structure
and avoid to impose some extra conditions for the uniqueness as (1.4). We obtain in
this particular case the following result which extends the analysis of theorem 1.1 for the
uniqueness.

Theorem 1.2 Assume that P (ρ) = Kρ with K > 0. Let 1 ≤ p1 ≤ p ≤ +∞ such that

1
p1
≤ 1

N + 1
p and 1

p + 1
p1

> 1
N . Assume that u0 ∈ B

N
p1
−1

p1,1
, f ∈ L1

loc(R+, B
N
p1
−1

p1,1
) and

a0 ∈ B
N
p

p,1with 1 + a0 bounded away from zero.

• There exists a positive time T such that system (1.1) has a solution (a, u) with 1+a
bounded away from zero,

a ∈ C̃([0, T ], B
N
p

p,1), u ∈ C̃([0, T ];B
N
p1
−1

p1,1
+B

N
p

+1

p,1 ) ∩ L1([0, T ], B
N
p

+1

p,1 ).
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• If moreover we assume that
√
ρ0u0 ∈ L2, ρ0− ρ̄ ∈ L1

2, u0 ∈ Hs with s > 0 if N = 2
and s > 1

2 if N = 3. Finally we need to assume that u0 belongs to L2+ε if N = 2
and to L6+ε if N = 3 with ε > 0. Furthermore we assume that 0 < λ < 5

4µ . Then
the solution (a, u) is unique.

Remark 4 In the previous theorem we did not want strive with generalities which may
hide the main functional spaces used on the initial data. But in fact we need of additional
regularity on the source term f when N = 2, 3 to obtain the previous corollary, we refer
to the conditions (1.13) and (1.14) of [24].

Remark 5 Here L1
2 defines the corresponding Orlicz space ( see definition in [28]).

Remark 6 This theorem improves theorem 1.1 inasmuch as we do not need of the con-
dition 2

N ≤
1
p + 1

p1
to get uniqueness as in the theorem 1.1.

Remark 7 Up to my knowledge, it seems that it is the first time that we get strong
solution without any control on the gradient of the initial density ∇ρ0. Indeed in [12],
we have ∇ρ0 ∈ B0

1,N . In our case ∇ρ0 has a negative index of regularity, more precisely

∇ρ0 ∈ B
N
p
−1

p,1 with N
p − 1 < 0 when p > N .

Remark 8 Furthermore we can observe that with this type of pressure we are very close

to have existence of strong solution in finite time for initial data (a0, u0) in B0
∞,1×B

N
2
−1

2,1 .
It means that this theorem bridges the gap between the result of D. Hoff (see [21]) where
the initial density is assumed L∞ but where we have no uniqueness in dimension N = 3
and the results of R. Danchin in [13] where the initial density is far from being only L∞.
However we are slightly subcritical on the initial velocity as we need an additional con-
dition of type u0 ∈ L6+ε with ε > 0 in dimension N = 3. It remains that it is the first
result of strong solution where we can reach the critical case a0 ∈ B0

∞,1.

We finally treat the case of variable viscosity coefficients. More particularly we are
interested in considering the specific case of the so-called BD viscosity coefficients (see

[4]). Indeed with this choice, we naturally obtain some informations on q in B
N
2

2,2 when

N = 2. In this context, the hypothesis of theorem 1.1 on q0 ∈ B̃
N
2

2,1 becomes natural when
p = 2 (for more explanations see remarks 9).
We obtain then a natural extension in the case where the viscosity coefficients are variable.

Theorem 1.3 Let P be a suitably smooth function of the density, µ and λ are regular
functions such that µ > 0 and 2µ+ λ > 0. Let 1 ≤ p1 ≤ p < +∞ such that 1

p1
≤ 1

N + 1
p

and 1
p + 1

p1
> 1

N . Let u0 ∈ B
N
p1
−1

p1,1
, f ∈ L1

loc(R+, B
N
p1
−1

p1,1
) and a0 ∈ B

N
p

p,1with 1 +a0 bounded
away from zero.
There exists then a positive time T such that system (1.1) has a solution (a, u) with 1+a
bounded away from zero and:

a ∈ C̃([0, T ], B
N
p

p,1), u ∈ C̃([0, T ];B
N
p1
−1

p1,1
+B

N
p

+1

p,1 ) ∩ L1([0, T ], B
N
p

+1

p,1 ).

Moreover this solution is unique if 2
N ≤

1
p + 1

p1
.
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Remark 9 This result is very interesting in the context of the BD viscosity coefficients.
In this case our result is very close of the energy initial data with the optimal condition for
the scaling (q0, u0) ∈ B0

∞,1 ×B0
N,1. In particular it applies to the shallow-water system.

Indeed in [4] Bresch and Desjardins have discovered a new entropy inequality whenever
the density-dependent viscosity coefficients satisfy the algebraic relation:

λ(ρ) = ρµ
′
(ρ)− µ(ρ).

In this case they show that we can control
√
ρ∇ϕ(ρ) in L∞(L2) where ϕ

′
(ρ) = µ

′
(ρ)
ρ .

Roughly it means that we control the density ρ in L∞(H1). It is very close in dimension

N = 2 from the initial data that we need. Indeed we ask that a0 belongs to B
N
p

p,1, and

when p ≥ 2, we have B
N
p

p,1 ↪→ B
N
2

2,1. By this way, the theorem 1.3 seems extremely critical
in the case of initial data verifying the BD entropy.

Remark 10 Our method is more flexible than the proofs of D. Hoff in [23], [25], [22]
as these works are based crucially on the notion of effective pressure and on a gain of
integrability on the velocity which works only in the case of constant viscosity coefficients.
By working in Besov space our technique of effective velocity appears more robust.

We now are interested in showing a blow-up result for the solutions constructed in theo-
rem 1.1. For this we will see as in [18] that only a control on the density is necessary to
extend the strong solution of theorem 1.1. It is a crucial difference with the results on
incompressible Navier-Stokes inasmuch as we need enough regularity on the velocity u for
avoiding any blow-up effects. In our case, we get more precisely the following theorem.

Theorem 1.4 Let P be a suitably smooth function of the density and 1 ≤ p1 ≤ p < +∞
such that 1

p1
≤ 1

N + 1
p , 1

p + 1
p1
> 1

N and p1 = N + ε (where ε > 0 arbitrary small). Let

u0 ∈ B
N
p1
−1+ε

p1,1
, f ∈ L1

loc(R+, B
N
p1
−1+ε

p1,1
) and a0 ∈ B

N
p

+ε

p,1 with 1 + a0 bounded away from

zero. In addition we assume that ρ
1
p1
0 u0 ∈ Lp1, u0 ∈ B0

N,1 and a0 ∈ B1
N,1. Furthermore

we assume the following conditions on the viscosity coefficients:

λ ≤ 4µ

N2(p1 − 1)
, (1.5)

Now, we assume that the solution constructed in theorem 1.1 satisfies on the time interval
[0, T ) the following conditions:

• the function a belongs to L∞(0, T ;B
N
p

+ε
p,∞ ), with ε > 0 arbitrary small.

Then (a, u) may be continued beyond T .

Remark 11 As in [18], the main argument of the proof will be to obtain a gain of
integrability on the velocity at the condition that we have enough integrability on the
pressure.
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Remark 12 We can observe that in this theorem, our assumption are subcritical on the

initial data. In particular as we assume that ρ0 ≥ c > 0, we have u0 ∈ Lp1 ↪→ B
N
p1
−1

p1,1

by Besov embedding. In fact we need of this additional assertion on the regularity of the
initial data in order to prove that the time of existence T of the strong solution in theorem
1.1 depends on the initial data. More precisely we have:

T ≥ C

(‖u0‖Lp1 + ‖a0‖
B
N
p +ε

p,1

+ ‖ 1
ρ0
‖L∞ + ‖f‖

L̃1(B
N
p1
−1+ε

)
)α
,

with α > 0. Here C and α depend on N and on the viscosity coefficients.

Remark 13 Here we also assume that u0 is in B0
N,1 and a0 in B1

N,1. Indeed without
these assumptions we are unable to prove some results of uniqueness. In fact we will
have similar estimates on (a, u) than in theorem 1.1 and in addition by persistency results
using similar techniques than for incompressible Navier-Stokes, we will show that:

a ∈ L̃∞T (B1
N,1) and u0 ∈ L̃∞T (B0

N,1) ∩ L̃1
T (B2

N,1).

It will be then enough to use some arguments of uniqueness.

Remark 14 We would like to point out that we do not need to assert a control on the
vacuum. Indeed as in [18] to control the norm L∞ on the density, it is enough to control
the norm of 1

ρ in L∞.

Remark 15 As in [18], we obtain a criterion of blow-up for strong solution for com-
pressible Navier-Stokes system without imposing a control Lipschitz on the norm ∇u as
in [13]. In fact it improves [18] inasmuch as we are working with slightly subcritical
initial data on the density and the velocity. In the case of [18], we need to control the
velocity in dimension 3 in L6 which is far from being critical.

Our paper is structured as follows. In section 2, we give a few notation and briefly
introduce the basic Fourier analysis techniques needed to prove our result. Sections 3
and 4 are devoted to the proof of key estimates for the linearized system (1.1). In section
5.5, we prove the theorem 1.1 , theorem 1.2 and 1.3. whereas section 6 is devoted to the
proof of continuation criterions of theorem 1.4.

2 Littlewood-Paley theory and Besov spaces

Throughout the paper, C stands for a constant whose exact meaning depends on the
context. The notation A . B means that A ≤ CB. For all Banach space X, we
denote by C([0, T ], X) the set of continuous functions on [0, T ] with values in X. For
p ∈ [1,+∞], the notation Lp(0, T,X) or LpT (X) stands for the set of measurable functions
on (0, T ) with values in X such that t→ ‖f(t)‖X belongs to Lp(0, T ). Littlewood-Paley
decomposition corresponds to a dyadic decomposition of the space in Fourier variables.
Let α > 1 and (ϕ, χ) be a couple of smooth functions valued in [0, 1], such that ϕ is

7



supported in the shell supported in {ξ ∈ RN/α−1 ≤ |ξ| ≤ 2α}, χ is supported in the ball
{ξ ∈ RN/|ξ| ≤ α} such that:

∀ξ ∈ RN , χ(ξ) +
∑
l∈N

ϕ(2−lξ) = 1.

Denoting h = F−1ϕ, we then define the dyadic blocks by:

∆−1u = χ(D)u = h̃ ∗ u with h̃ = F−1χ,

∆lu = ϕ(2−lD)u = 2lN
∫
RN

h(2ly)u(x− y)dy with h = F−1χ, if l ≥ 0,

Slu =
∑
k≤l−1

∆ku .

Formally, one can write that: u =
∑

k≥−1 ∆ku. This decomposition is called nonhomo-
geneous Littlewood-Paley decomposition.

2.1 Nonhomogeneous Besov spaces and first properties

Definition 2.1 For s ∈ R, p ∈ [1,+∞], q ∈ [1,+∞], and u ∈ S ′(RN ) we set:

‖u‖Bsp,q = (
∑
l≥−1

(2ls‖∆lu‖Lp)q)
1
q .

The Besov space Bs
p,q is the set of temperate distribution u such that ‖u‖Bsp,q < +∞.

Proposition 2.1 The following properties hold:

1. there exists a constant universal C such that:
C−1‖u‖Bsp,r ≤ ‖∇u‖Bs−1

p,r
≤ C‖u‖Bsp,r .

2. If p1 < p2 and r1 ≤ r2 then Bs
p1,r1 ↪→ B

s−N(1/p1−1/p2)
p2,r2 .

3. Bs
′

p,r1 ↪→ Bs
p,r if s

′
> s or if s = s

′
and r1 ≤ r.

Before going further into the paraproduct for Besov spaces, let us state an important
proposition.

Proposition 2.2 Let s ∈ R and 1 ≤ p, r ≤ +∞. Let (uq)q≥−1 be a sequence of functions
such that

(
∑
q≥−1

2qsr‖uq‖rLp)
1
r < +∞.

If suppû1 ⊂ C(0, 2qR1, 2
qR2) for some 0 < R1 < R2 then u =

∑
q≥−1 uq belongs to Bs

p,r

and there exists a universal constant C such that:

‖u‖Bsp,r ≤ C
1+|s|( ∑

q≥−1

(2qs‖uq‖Lp)r
) 1
r .

8



Let now recall a few product laws in Besov spaces coming directly from the paradifferen-
tial calculus of J-M. Bony (see [3]) and rewrite on a generalized form in [1] by H. Abidi
and M. Paicu (in this article the results are written in the case of homogeneous spaces
but it can easily generalize for the nonhomogeneous Besov spaces).

Proposition 2.3 We have the following laws of product:

• For all s ∈ R, (p, r) ∈ [1,+∞]2 we have:

‖uv‖Bsp,r ≤ C(‖u‖L∞‖v‖Bsp,r + ‖v‖L∞‖u‖Bsp,r) . (2.6)

• Let (p, p1, p2, r, λ1, λ2) ∈ [1,+∞]2 such that:1
p ≤

1
p1

+ 1
p2

, p1 ≤ λ2, p2 ≤ λ1, 1
p ≤

1
p1

+ 1
λ1

and 1
p ≤

1
p2

+ 1
λ2

. We have then the following inequalities:

if s1 + s2 +N inf(0, 1− 1
p1
− 1

p2
) > 0, s1 + N

λ2
< N

p1
and s2 + N

λ1
< N

p2
then:

‖uv‖
B
s1+s2−N( 1

p1
+ 1
p2
− 1
p )

p,r

. ‖u‖Bs1p1,r‖v‖B
s2
p2,∞

, (2.7)

when s1 + N
λ2

= N
p1

(resp s2 + N
λ1

= N
p2

) we replace ‖u‖Bs1p1,r‖v‖B
s2
p2,∞

(resp ‖v‖Bs2p2,∞)

by ‖u‖Bs1p1,1
‖v‖Bs2p2,r (resp ‖v‖Bs2p2,∞∩L∞), if s1 + N

λ2
= N

p1
and s2 + N

λ1
= N

p2
we take

r = 1.
If s1 + s2 = 0, s1 ∈ (Nλ1 −

N
p2
, Np1 −

N
λ2

] and 1
p1

+ 1
p2
≤ 1 then:

‖uv‖
B
−N( 1

p1
+ 1
p2
− 1
p )

p,∞

. ‖u‖Bs1p1,1
‖v‖Bs2p2,∞ . (2.8)

If |s| < N
p for p ≥ 2 and −N

p′
< s < N

p else, we have:

‖uv‖Bsp,r ≤ C‖u‖Bsp,r‖v‖
B
N
p
p,∞∩L∞

. (2.9)

Remark 16 In the sequel p will be either p1 or p2 and in this case 1
λ = 1

p1
− 1
p2

if p1 ≤ p2

or 1
λ = 1

p2
− 1

p1
if p2 ≤ p1.

Corollary 1 Let r ∈ [1,+∞], 1 ≤ p ≤ p1 ≤ +∞ and s such that:

• s ∈ (−N
p1
, Np1 ) if 1

p + 1
p1
≤ 1,

• s ∈ (−N
p1

+N(1
p + 1

p1
− 1), Np1 ) if 1

p + 1
p1
> 1,

then we have if u ∈ Bs
p,r and v ∈ B

N
p1
p1,∞ ∩ L∞:

‖uv‖Bsp,r ≤ C‖u‖Bsp,r‖v‖
B
N
p1
p1,∞∩L∞

.

We recall now a result concerning the composition for Besov spaces:
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Proposition 2.4 Let I be an open interval of R. Let s > 0 and σ be the smallest integer
such that σ ≥ s. Let F : I → R satisfy F (0) = 0 and F ′ ∈ W σ,∞(I;R). Assume that
v ∈ Bs

p,r has values in J ⊂⊂ I. Then F (v) ∈ Bs
p,r and there exists a constant C depending

only on s, I, J, and N, and such that

‖F (v)‖Bsp,r ≤ C
(
1 + ‖v‖L∞

)σ‖F ′‖Wσ,∞‖v‖Bsp,r .

The study of non stationary PDE’s requires spaces of type Lρ(0, T,X) for appropriate
Banach spaces X. In our case, we expect X to be a Besov space, so that it is natural to lo-
calize the equation through Littlewood-Paley decomposition. But, by doing so, we obtain
bounds in spaces which are not type Lρ(0, T,X) (except if r = p). We are now going to de-
fine the spaces of Chemin-Lerner (see [6]) in which we will work, which are a refinement of
the spaces LρT (Bs

p,r).

Definition 2.2 Let ρ ∈ [1,+∞], T ∈ [1,+∞] and s1 ∈ R. We set:

‖u‖
L̃ρT (B

s1
p,r)

=
( ∑
l≥−1

2lrs1‖∆lu(t)‖rLρ(Lp)

) 1
r .

We then define the space L̃ρT (Bs1
p,r) as the set of temperate distribution u over (0, T )×RN

such that ‖u‖
L̃ρT (B

s1
p,r)

< +∞.

We set C̃T (B̃s1
p,r) = L̃∞T (B̃s1

p,r) ∩ C([0, T ], Bs1
p,r). Let us emphasize that, according to

Minkowski inequality, we have:

‖u‖
L̃ρT (B

s1
p,r)
≤ ‖u‖LρT (B

s1
p,r)

if r ≥ ρ, ‖u‖
L̃ρT (B

s1
p,r)
≥ ‖u‖LρT (B

s1
p,r)

if r ≤ ρ.

Remark 17 It is easy to generalize proposition 2.3, to L̃ρT (Bs1
p,r) spaces. The indices s1,

p, r behave just as in the stationary case whereas the time exponent ρ behaves according
to Hölder inequality.

Here we recall a result of interpolation which explains the link between the space Bs
p,1

and the space Bs
p,∞, see [9].

Proposition 2.5 There exists a constant C such that for all s ∈ R, ε > 0 and 1 ≤ p <
+∞,

‖u‖
L̃ρT (Bsp,1)

≤ C 1 + ε

ε
‖u‖

L̃ρT (Bsp,∞)

(
1 + log

‖u‖
L̃ρT (Bs+εp,∞)

‖u‖
L̃ρT (Bsp,∞)

)
.

Now we give some result on the behavior of the Besov spaces via some pseudodifferential
operator (see [9]).

Definition 2.3 Let m ∈ R. A smooth function function f : RN → R is said to be a Sm
multiplier if for all muti-index α, there exists a constant Cα such that:

∀ξ ∈ RN , |∂αf(ξ)| ≤ Cα(1 + |ξ|)m−|α|.
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Proposition 2.6 Let m ∈ R and f be a Sm multiplier. Then for all s ∈ R and 1 ≤
p, r ≤ +∞ the operator f(D) is continuous from Bs

p,r to Bs−m
p,r .

We conclude this section by giving two lemma of commutators which will be useful in
section 3 and 4. For a proof, we refer the reader to [2].

Lemma 1 Let 1 ≤ p1 ≤ p ≤ +∞ and σ ∈ (−min(Np ,
N

p
′
1

), Np +1]. There exists a sequence

cq ∈ l1(Z) such that ‖cq‖l1 = 1 and a constant C depending only on N and σ such that:

∀q ∈ Z, ‖[v · ∇,∆q]a‖Lp1 ≤ Ccq2−qσ‖∇v‖
B
N
p
p,1

‖a‖Bσp1,1 . (2.10)

In the limit case σ = −min(Np ,
N

p
′
1

), we have:

∀q ∈ Z, ‖[v · ∇,∆q]a‖Lp1 ≤ Ccq2q
N
p ‖∇v‖

B
N
p
p,1

‖a‖
B
− Np1
p,∞

. (2.11)

Finally, for all σ > 0 and 1
p2

= 1
p1
− 1

p , there exists a constant C depending only on N

and on σ and a sequence cq ∈ l1(Z) with norm 1 such that:

∀q ∈ Z, ‖[v · ∇,∆q]v‖Lp ≤ Ccq2−qσ(‖∇v‖L∞‖v‖Bσp1,1 + ‖∇v‖Lp2‖∇v‖Bσ−1
p,1

). (2.12)

Lemma 2 Let 1 ≤ p1 ≤ p ≤ +∞ and α ∈ (1 − N
p , 1], k ∈ {1, · · · , N} and Rq =

∆q(a∂kw)− ∂k(a∆qw). There exists c = c(α,N, σ) such that:∑
q

2qσ‖Rq‖Lp1 ≤ C‖a‖
B
N
p +α

p,1

‖w‖Bσ+1−α
p1,1

(2.13)

whenever −N
p < σ ≤ α+ N

p .

In the limit case σ = −N
p , we have for some constant C = C(α,N):

sup
q

2
−qN

p ‖Rq‖Lp1 ≤ C‖a‖
B
N
p +α

p,1

‖w‖
B
− Np1

+1−α
p1,∞

. (2.14)

Remark 18 For proving proposition 3.9, we shall actually use the following non-stationary
version of inequality (2.14):

sup
q

2
−qN

p ‖Rq‖L1
T (Lp1 ) ≤ C‖a‖

L̃∞T (B
N
p +α

p,1 )
‖w‖

L̃1
T (B

− Np1
+1−α

p1,∞ )
,

which may be easily proved by following the computations of the previous proof, dealing
with the time dependence according to Hölder inequality. For a proof, we refer to [2].

3 Estimates for a parabolic system with variable coeffi-
cients

Let us first state estimates for the following constant coefficient parabolic system (see
[2]): {

∂tu− µ∆u− (λ+ µ)∇divu = f,

u/t=0 = u0.
(3.15)

11



Proposition 3.7 Let s ∈ R and 1 ≤ p, r ≤ +∞. Assume that µ > 0 and that λ+2µ > 0.
Then there exists a universal constant κ such that for all s ∈ Z and T ∈ R+,

‖u‖
L̃∞T (Bsp1,1

)
≤ C(‖u0‖Bsp1,1 + ‖f‖L1

T (Bsp1,1
)),

κν‖u‖L1
T (Bs+2

p,r ) ≤
∑
l≥0

2ls(1− e−κν22lT )(‖∆lu0‖Lp1 + ‖∆lf‖L1
T (Lp1 ))

+ T
(
‖u0‖Bsp,r + ‖f‖L1

T (Bsp,r)

)
,

with ν = min(µ, λ+ 2µ).

We now consider the following parabolic system which is obtained by linearizing the
momentum equation: {

∂tu− b
(
µ∆u+ (λ+ µ)∇divu

)
= f + g,

u/t=0 = u0 = u1
0 +2 u0.

(3.16)

Above u is the unknown function and b = 1 + a. We assume that u0 ∈ Bs
p1,1

, f ∈
L1(0, T ;Bs

p1,1
), g ∈ L1(0, T ;Bs

p2,1
), that b is bounded by below by a positive constant b

and a belongs to L∞(0, T ;B
N
p

p,1) with p ∈ [1,+∞].

Proposition 3.8 Let g = 0. Let ν = bmin(µ, λ+ 2µ) and ν̄ = µ+ |λ+ µ|. Assume that
s ∈ (−N

p , N inf(1
p ,

1
p1

)] if 1
p + 1

p1
≤ 1 and s ∈ (−N

p
′
1

, N inf(1
p ,

1
p1

)] if 1
p + 1

p1
≥ 1 . Let m ∈ Z

be such that bm = 1 + Sma satisfies:

inf
(t,x)∈[0,T )×RN

bm(t, x) ≥ b

2
. (3.17)

There exist three constants c, C and κ (with c, C, depending only on N and on s, and κ
universal) such that if in addition we have:

‖a− Sma‖
L∞(0,T ;B

N
p
p,1)
≤ cν

ν̄
(3.18)

then setting:

Zm(t) = 22mν̄2ν−1

∫ t

0
‖a(τ, ·)‖2

B
N
p
p1,1

dτ,

we have for all T > 0 and u a solution of (3),

‖u‖
L̃∞((0,T )×Bsp1,1)

+ κν‖u‖
L̃1((0,T )×Bs+2

p1,1
)
≤ eC(1+T )Zm(T )((1 + T )‖u0‖Bsp1,1

+

∫ T

0
e−C(1+τ)Zm(τ)‖f(τ)‖Bsp1,1dτ).

Remark 19 Let us stress the fact that if a ∈ L̃∞((0, T )×B
N
p

p,1) then assumption (3.17)
and (3.18) are satisfied for m large enough. This will be used in the proof of theorem 1.1.
Indeed, according to Bernstein inequality, we have:

‖a− Sma‖L∞((0,T )×RN ) ≤
∑
q≥m
‖∆qa‖L∞((0,T )×RN ) .

∑
q≥m

2
qN
p ‖∆qa‖L∞(Lp).
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Because a ∈ L̃∞((0, T )×B
N
p

p,1), the right-hand side is the remainder of a convergent series
hence goes to zero when m goes to infinity. For a similar reason, (3.18) is satisfied for
m large enough.

Proof: In the sequel, we will treat only the case p1 ≤ p, the other case is similar. Let
us first rewrite (3) as follows:

∂tu− bm
(
µ∆u+ (λ+ µ)∇divu

)
= f + Em, (3.19)

with Em = (µ∆u+(λ+µ)∇divu)(Id−Sm)a. Note that, because s ∈ (−N
p , N inf(1

p ,
1
p1

)] if
1
p + 1

p1
≤ 1 and s ∈ (−N

p
′
1

, N inf(1
p ,

1
p1

)] if 1
p + 1

p1
≥ 1, the error term Em may be estimated

by:
‖Em‖Bsp1,1 . ‖a− Sma‖B

N
p
p,1

‖D2u‖Bsp1,1 , (3.20)

Now applying ∆q to equation (3.19) yields for q ≥ 0:

d

dt
uq − µdiv(bm∇uq)− (λ+ µ)∇(bmdivuq) = fq + Em,q + R̃q. (3.21)

where we denote by uq = ∆qu and with:

R̃q = µ
(
∆q(bm∆u)− div(bm∇uq)

)
+ (λ+ µ)

(
∆q(bm∇divu)−∇(bmdivuq)

)
.

Next multiplying both sides by |uq|p1−2uq, and integrating by parts in the second, third
and last term in the left-hand side, we get:

1

p1

d

dt
‖uq‖p1Lp1 −

1

p1

∫ (
|uq|p1divv + µdiv(bm∇uq)|uq|p1−2uq + ξ∇

(
bmdivuq

)
|uq|p1−2uq)

)
dx

≤ ‖uq‖p1−1
Lp1 (‖fq‖Lp1 + ‖∆qEm‖Lp1 + ‖R̃q‖Lp1 ),

where we have denoted ξ = µ+ λ, ν = min(µ, λ+ 2µ). Now by using (3.17), lemma [A5]
of [10] and Young’s inequalities we get:

1

p1

d

dt
‖uq‖p1Lp1 +

νb(p1 − 1)

p2
1

22q‖uq‖p1Lp1 ≤ ‖uq‖
p1−1
Lp1

(
‖fq‖Lp1 + ‖Em,q‖Lp1 + ‖R̃q‖Lp1

)
,

which leads, after time integration to:

‖uq‖Lp1 +
νb(p1 − 1)

p1
22q

∫ t

0
‖uq‖Lp1dτ ≤ ‖∆qu0‖Lp1 +

∫ t

0

(
‖fq‖Lp1 + ‖Em,q‖Lp1

+ ‖R̃q‖Lp1
)
dτ,

(3.22)

where ν = bν. For commutator R̃q, we have the following estimate (see lemma 2 ):

‖R̃q‖Lp1 . cqν̄2−qs‖Sma‖
B
N
p1

+1

p1,1

‖Du‖Bsp1,1 , (3.23)

where (cq)q∈Z is a positive sequence such that
∑

q∈Z cq = 1, and ν̄ = µ + |λ + µ|. Note
that, owing to Bernstein inequality, we have:

‖Sma‖
B
N
p +1

p,1

. 2m‖a‖
B
N
p
p,1

.
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Hence, plugging these latter estimates and (3.20) in (3.22), then multiplying by 2qs and
summing up on q ≥ 0, we discover that, for all t ∈ [0, T ]:

‖u−∆1u‖L∞t (Bsp1,1
) +

νb(p1 − 1)

p
‖u−∆1u‖L1

t (B
s+2
p1,1

) ≤ ‖u0‖Bsp1,1 + ‖f‖L1
t (B

s
p1,1

)

+ Cν̄

∫ t

0
(‖a− Sma‖

B
N
p
p,1

‖u‖Bs+2
p1,1

+ 2m‖a‖
B
N
p
p,1

‖u‖Bs+1
p1,1

)dτ.

(3.24)

We now need to control the block ∆1u corresponding to the low frequencies. To treat the
term ∆1u similarly we apply the operator ∆−1 to the equation and by energy inequalities,
we get:

‖∆−1u(t)‖Lp1 ≤ ‖∆−1u0‖Lp1 + ‖f‖L1(Lp1 ) +

∫ t

0
(‖a− Sma‖

B
N
p
p,1

‖u‖Bs+2
p1,1

+ 2m‖a‖
B
N
p
p,1

‖u‖Bs+1
p1,1

)ds,

and:

‖∆−1u(t)‖L1
t (L

p1 ) ≤ t
(
‖∆−1u0‖Lp1 + ‖f‖L1(Lp1 ) +

∫ t

0
(‖a− Sma‖

B
N
p
p,1

‖u‖Bs+2
p1,1

+ 2m‖a‖
B
N
p
p,1

‖u‖Bs+1
p1,1

)ds
)
.

So we have by the two previous inequalities and (3.24):

‖u‖L∞t (Bsp1,1
) +

νb(p1 − 1)

p
‖u‖L1

t (B
s+2
p1,1

) ≤ C(1 + t)
(
‖u0‖Bsp1,1 + ‖f‖L1

t (B
s
p1,1

)

+ ν̄

∫ t

0
(‖a− Sma‖

B
N
p
p,1

‖u‖Bs+2
p1,1

+ 2m‖a‖
B
N
p
p,1

‖u‖Bs+1
p1,1

)dτ
)
,

for a constant C depending only on N and s. Let X(t) = ‖u‖L∞t (Bsp1,1
) + νb‖u‖L1

t (B
s+2
p1,1

).

Assuming that m has been chosen so large as to satisfy:

Cν̄‖a− Sma‖
L∞T (B

N
p
p,1)
≤ ν,

and using that by interpolation, we have:

Cν̄‖a‖
B
N
p
p,1

‖u‖Bs+2
p1,1
≤ κν +

C2ν̄222m

4κν
‖a‖2

B
N
p
p,1

‖u‖Bsp1,1 .

We end up with:

X(t) ≤ C(1 + t)
(
‖u0‖Bsp1,1 + ‖f‖L1

t (B
s
p1,1

) + C
ν̄2

ν

∫ t

0
22m‖a‖2

B
N
2
p,1

X(τ)dτ
)
.

Grönwall lemma then leads to the desired inequality �

In the following corollary, we generalize proposition 3.9 when g 6= 0 and g ∈ L̃1(Bs
′

p2,1
).

Moreover here u0 = u1 + u2 with u1 ∈ Bs
p1,1

and u2 ∈ Bs
′

p2,1
.
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Corollary 2 Let ν = bmin(µ, λ+2µ) and ν̄ = µ+|λ+µ|. Assume that s ∈ (−N
p , N inf(1

p ,
1
p1

)]

if 1
p + 1

p1
≤ 1 and s ∈ (−N

p
′
1

, N inf(1
p ,

1
p1

)] if 1
p + 1

p1
≥ 1. Moreover we assume that:

s
′ ∈ (−N

p , N inf(1
p ,

1
p2

)] if 1
p + 1

p2
≤ 1 and s

′ ∈ (−N

p
′
2

, N inf(1
p ,

1
p2

)] if 1
p + 1

p2
≥ 1. Let

m ∈ Z be such that bm = 1 + Sma satisfies:

inf
(t,x)∈[0,T )×RN

bm(t, x) ≥ b

2
. (3.25)

There exist three constants c, C and κ (with c, C, depending only on N and on s, s
′

and
κ universal) such that if in addition we have:

‖a− Sma‖
L∞(0,T ;B

N
p
p,1)
≤ cν

ν̄
(3.26)

then setting:

Zm(t) = 22mν̄2ν−1

∫ t

0
‖a(τ, ·)‖2

B
N
p
p,1

dτ,

We have for all T > 0,

‖u‖
L̃∞T (Bsp1,1

+Bs
′
p2,1

)
+ κν‖u‖

L̃1
T (Bs+2

p1,1
+Bs

′
+2

p2,1
)
≤ eC(1+T )Zm(T )

(
(1 + T )(‖u1

0‖Bsp1,1+

‖u2
0‖Bs′p2,1

) +

∫ T

0
e−C(1+τ)Zm(τ)(‖f(τ)‖Bsp1,1 + ‖g(τ)‖

Bs
′
p2,1

)dτ
)
.

Proof: We split the solution u in two parts u1 and u2 which verify the following equations:{
∂tu1 + v · ∇u1 + u1 · ∇w − b

(
µ∆u1 + (λ+ µ)∇divu1

)
= f,

u/t=0 = u0
1,

and: {
∂tu2 + v · ∇u2 + u2 · ∇w − b

(
µ∆u2 + (λ+ µ)∇divu2

)
= g,

u/t=0 = u0
2.

We have then u = u1 + u2 and we conclude by applying proposition 3.8. �
Proposition 3.8 fails in the limit case s = −N

p . The reason why is that proposition 2.3
cannot be applied any longer. One can however state the following result which will be
the key to the proof of uniqueness in dimension two.

Proposition 3.9 Under condition (3.17), there exists three constants c, C and κ (with
c, C, depending only on N , and κ universal) such that if:

‖a− Sma‖
L̃∞t (B

N
p
p,1)
≤ cν

ν̄
, (3.27)

then we have:

‖u‖
L∞t (B

− Np1
p1,∞)

+ κν‖u‖
L̃1
t (B

2− Np1
p1,∞ )

≤ C(1 + t)(‖u0‖
B
− Np1
p1,∞

+ ‖f‖
L̃1
t (B

N
p1
p1,∞)

),

whenever t ∈ [0, T ] satisfies:

ν̄2t(1 + t)‖a‖2
L̃∞t (B

N
p
p,1)

≤ c2−2mν. (3.28)
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Proof: We just point out the changes that have to be be done compare to the proof
of proposition 3.8. The first one is that instead of (3.20), we have in accordance with
proposition 2.3:

‖Em‖
L̃1
t (B
− Np1
p1,∞)

. ‖a− Sma‖
L̃∞t (B

N
p
p,1)
‖D2u‖

L̃1
t (B
− Np1
p1,∞)

, (3.29)

The second change concerns the estimate of commutator R̃q. According remark 18, we
now have for all q ∈ Z:

‖R̃q‖ . ν̄2
q N
p1 ‖Sma‖

L̃∞t (B
N
p +1

p,1 )
‖Du‖

L̃1
t (B
− Np1
p1,∞)

. (3.30)

Plugging all these estimates in (3.22) then taking the supremum over q ∈ Z, we get:

‖u‖
L∞t (B

− Np1
p1,∞)

+ 2ν‖u‖
L̃1
t (B

2− Np1
p1,∞ )

≤ (1 + t)
(
‖u0‖

B
− Np1
p1,1

+ Cν̄‖a− Sma‖
L̃∞t (B

N
p
p,1)
‖u‖

L̃1
t (B

2− Np1
p1,∞ )

+ 2m‖a‖
L∞t (B

N
p
p,1)
‖u‖

L̃1
t (B

1− Np1
p1,∞ )

+ ‖f‖
L̃1
t (B
− Np1
p1,∞)

)
.

Using that:

‖u‖
L̃1
t (B

1− Np1
p1,∞ )

≤
√
t‖u‖

1
2

L̃1
t (B

2− Np1
p1,∞ )

‖u‖
1
2

L∞t (B
N
p1
p1,∞)

,

and taking advantage of assumption (3.27) and (3.28), it is now easy to complete the
proof. �

4 The mass conservation equation

Let us first recall standard estimates in Besov spaces for the following linear transport
equation:

(H)

{
∂ta+ u · ∇a = g,

a/t=0 = a0.

Proposition 4.10 Let 1 ≤ p1 ≤ p ≤ +∞, r ∈ [1,+∞] and s ∈ R be such that:

−N min(
1

p1
,

1

p′
) < s < 1 +

N

p1
.

There exists a constant C depending only on N , p, p1, r and s such that for all a ∈
L∞([0, T ], Bs

p,r) of (H) with initial data a0 in Bs
p,r and g ∈ L1([0, T ], Bs

p,r), we have for
a.e t ∈ [0, T ]:

‖f‖
L̃∞t (Bsp,r)

≤ eCU(t)
(
‖f0‖Bsp,r +

∫ t

0
e−CV (τ)‖F (τ)‖Bsp1,rdτ

)
, (4.31)

with: U(t) =
∫ t

0 ‖∇u(τ)‖
B
N
p1
p1,∞∩L∞

dτ .
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For the proof of proposition 4.10, see [2]. We now focus on the mass equation associated
to (1.3): {

∂ta+ v · ∇a = (1 + a)divv,

a/t=0 = a0.
(4.32)

Here we generalize a proof of R. Danchin in [13].

Proposition 4.11 Let r ∈ 1,+∞, 1 ≤ p1 ≤ p ≤ +∞ and s ∈ (−min(Np1 ,
N
p′

), Np1 ) if

r < +∞ and s ∈ (−min(Np1 ,
N
p′

), Np1 ) if r = 1. Assume that a0 ∈ Bs
p,r ∩ L∞, v ∈

L1(0, T ;B
N
p1

+1

p1,1
) and that a ∈ L̃∞T (Bs

p,r)∩L∞T satisfies (4.32). Let V (t) =
∫ t

0 ‖∇v(τ)‖
B
N
p1
p1,1

dτ .

There exists a constant C depending only on N such that for all t ∈ [0, T ] and m ∈ Z,
we have:

‖a‖
L̃∞t (Bsp,r∩L∞)

≤ e2CV (t)‖a0‖Bsp,r∩L∞ + e2CV (t) − 1, (4.33)

‖a−Sma‖
B
N
p
p,1

≤ ‖a0−Sma0‖
B
N
p
p,1

+
1

2
(1+‖a0‖

B
N
p
p,1∩L∞

)(e2CV (t)−1)+C‖a‖L∞V (t), (4.34)

(∑
l≤m

2
lN
p ‖∆l(a− a0)‖L∞t (Lp)

)
≤ (1 + ‖a0‖

B
N
p
p,1

)(eCV (t) − 1)

+ C2m‖a0‖
B
N
p
p,1

∫ t

0
‖v‖

B
N
p1
p1,1

dτ.

(4.35)

Proof: Applying ∆l to (4.32) yields:

∂t∆la+ v · ∇∆la = Rl + ∆l((1 + a)divv) with Rl = [v · ∇,∆l]a.

Multiplying by ∆la|∆la|p−2 then performing a time integration, we easily get:

‖∆la(t)‖Lp . ‖∆la0‖Lp +

∫ t

0

(
‖Rl‖Lp + ‖divv‖L∞‖∆la‖Lp + ‖∆l((1 + a)divv)‖Lp

)
dτ.

According to proposition 2.3 and interpolation, there exists a constant C and a positive
sequence (cl)l∈N in lr with norm 1 such that:

‖∆l((1 + a)divv)‖Lp ≤ Ccl2−ls(1 + ‖a‖Bsp,r∩L∞)‖divv‖
B
N
p1
p1,1

.

Next the term ‖Rl‖Lp may be bounded according to lemma 1. We end up with:

∀t ∈ [0, T ], ∀l ∈ Z, 2ls‖∆la(t)‖Lp ≤ 2ls‖∆la0‖Lp +C

∫ t

0
cl(1+‖a‖Bsp,r∩L∞)V

′
dτ, (4.36)

hence, summing up on Z in lr,

∀t ∈ [0, T ], ∀l ∈ Z, ‖a(t)‖Bsp,r ≤ ‖a0‖Bsp,r +

∫ t

0
CV

′‖a(τ)‖Bsp,rdτ+

∫ t

0
C(1+‖a‖L∞T )V

′
dτ.
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Next we have:

‖a‖L∞t ≤
∫ t

0
(1 + ‖a(τ)‖L∞)V

′
(τ)dτ.

By summing the two previous inequalities, applying Gronwall lemma and proposition 2.2
yields inequality (4.33). Let us now prove inequality (4.34). Starting from (4.36) and
summing up over l ≥ m in lr, we get:

(
∑
l≥m

2lsr‖∆la‖rL∞t (Lp))
1
r ≤ (

∑
l≥m

2lsr‖∆la0‖rLp)
1
r + C

∫ t

0
V
′
(e2CV ‖a0‖Bsp,r∩L∞ + e2CV − 1)dτ

+

∫ t

0
C(1 + ‖a‖L∞)V

′
dτ.

Straightforward calculations then leads to (4.34). In order to prove (4.35), we use the
fact that ã = a− a0 satisfies:{

∂tã+ v · ∇ã = (1 + ã)divv + a0divv − v · ∇a0,

ã/t=0 = 0.

Therefore, arguing as for proving (4.36), we get for all t ∈ [0, T ] and l ∈ Z,

2
lN
p ‖∆lã‖Lp ≤

∫ t

0
2
lN
p
(
‖∆l(a0divv)‖Lp + ‖∆l(v · ∇a0)‖Lp

)
dτ

+ C

∫ t

0
cl(1 + ‖a‖

B
N
p
p,1

)V
′
dτ.

Since B
N
p

p,1 is an algebra and the product maps B
N
p

p,1 ×B
N
p
−1

p,1 in B
N
p
−1

p,1 , we discover that:

2
lN
p ‖∆lã‖L∞(Lp) ≤ C

( ∫ t

0
2lcl‖a0‖

B
N
p
p,1

‖v‖
B
N
p
p,1

dτ +

∫ t

0
cl(1 + ‖a0‖

B
N
p
p,1

+ ‖a‖
B
N
p
p,1

)V
′
dτ
)
,

hence, summing up on l ≤ m,∑
l≤m

2
lN
p ‖∆lã‖L∞(Lp) ≤ C

( ∫ t

0
2m‖a0‖

B
N
p
p,1

‖v‖
B
N
p
p,1

dτ +

∫ t

0
(1 + ‖a0‖

B
N
p
p,1

+ ‖a‖
B
N
p
p,1

)V
′
dτ
)
,

Plugging (4.33) in the right-hand side yields (4.35).

5 The proof of theorem 1.1

5.1 Strategy of the proof

To improve the results of R. Danchin in [10], [13] and of the author [15, 16], it is crucial to
kill the coupling between the velocity and the pressure. To achieve it, we need to include
the pressure term in the study of the linearized equation of the momentum equation. For
that, we will try to express the gradient of the pressure as a Laplacian term, so we have
to solve for ρ̄ = 1 a constant state:

∆v = ∇P (ρ).
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Let E be the fundamental solution of the Laplace operator. We will set in the sequel:
v = ∇E∗

(
P (ρ)−P (ρ̄)

)
= ∇

(
E∗[P (ρ)−P (ρ̄)]

)
( ∗ here means the operator of convolution).

We verify next that:

∇divv = ∇∆
(
E ∗ [P (ρ)− P (ρ̄)]

)
= ∆∇

(
E ∗ [P (ρ)− P (ρ̄)]

)
= ∆v = ∇P (ρ).

By this way we can now rewrite the momentum equation of (1.3) as:

∂tu+ u · ∇u− µ

ρ
∆
(
u− 1

ν
v
)
− λ+ µ

ρ
∇div

(
u− 1

ν
v
)

= f,

with ν = 2µ+ λ. We now want to calculate ∂tv, by the transport equation we get:

∂tv = ∇E ∗ ∂tP (ρ) = −∇E ∗
(
P
′
(ρ)div(ρu)

)
.

Notation 1 To simplify the notation, we will note in the sequel

∇E ∗
(
P
′
(ρ)div(ρu)

)
= ∇(∆)−1

(
P
′
(ρ)div(ρu)

)
.

Finally we can now rewrite the system (1.3) as follows:

∂tq + (v1 +
1

ν
v) · ∇q +

1

ν
P
′
(1)q = −(1 + q)divv1

− 1

ν
(P (ρ)− P (1)− P ′(1))− 1

ν
q(P (ρ)− P (1)),

∂tv1 − (1 + a)Av1 = f − u · ∇u+
1

ν
∇(∆)−1

(
P
′
(ρ)div(ρu)

)
,

q/t=0 = a0, (v1)/t=0 = (v1)0,

(5.37)

where v1 = u − 1
ν v is called the effective velocity. In the sequel we will study this

system by exhibiting some uniform bounds in Besov spaces on (q, v1). The advantage
of the system (5.37) is that we have canceled out the coupling between v1 and a term
of pressure. Indeed in the works [10, 13, 15, 16], the pressure was included in the study
of the linear system, thus entailing a coupling between the density and the velocity. In
particular it was impossible to prescribe different index of integration in Besov spaces for
the velocity and the density.

5.2 Proof of the existence

Construction of approximate solutions

We use a standard scheme:

1. We smooth out the data and get a sequence of smooth solutions (an, un)n∈N to
(1.3) on a bounded interval [0, Tn] which may depend on n. We set vn1 = un − vn
where divvn = P (ρn)− P (ρ̄) with vn = ∇E ∗

(
P (ρn)− P (ρ̄)

)
.

2. We exhibit a positive lower bound T for Tn (which does not depend on n), and
prove uniform estimates on (an, vn1 ) in the space:

ET = C̃T (B
N
p

p,1)×
(
C̃T (B

N
p1
−1

p1,1
+B

N
p

+1

p,1 ) ∩ L̃1
T (B

N
p1

+1

p1,1
+B

N
p

+2

p,1 )
)
.
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We will deduce then that (an, un) belong to the space:

FT = C̃T (B
N
p

p,1)×
(
C̃T (B

N
p1
−1

p1,1
+B

N
p

+1

p,1 ) ∩ L̃1
T (B

N
p

+1

p,1 )
)
.

3. We use compactness to prove that the sequence (an, un) converges, up to extraction,
to a solution of (5.37).

Througout the proof, we denote ν = bmin(µ, λ+ 2µ) and ν̄ = µ+ |µ+λ|, and we assume

(with no loss of generality) that f belongs to L̃1
T (B

N
p1
−1

p1,1
).

First step

We smooth out the data as follows:

an0 = Sna0, un0 = Snu0 and fn = Snf.

Note that we have:

∀l ∈ Z, ‖∆la
n
0‖Lp ≤ ‖∆la0‖Lp and ‖an0‖

B
N
p
p,∞

≤ ‖a0‖
B
N
p
p,∞

,

and similar properties for un0 and fn, a fact which will be used repeatedly during the
next steps. Now, according [13], one can solve (1.3) with the smooth data (an0 , u

n
0 , f

n).
We get a solution (an, un) on a non trivial time interval [0, Tn] such that:

an ∈ C̃([0, Tn), BN
2,1) and un ∈ C̃([0, Tn), B

N
2
−1

2,1 ) ∩ L̃1
Tn(B

N
2

+1

2,1 ). (5.38)

Uniform bounds

Let Tn be the lifespan of (an, un), that is the supremum of all T > 0 such that (1.1) with
initial data (an0 , u

n
0 ) has a solution which satisfies (5.38). Let T be in (0, Tn). We aim at

getting uniform estimates in ET for T small enough. For that, we need to introduce the
solution (vn1 )L to the linear system:

∂t(v
n
1 )L −A(vn1 )L = fn,

(vn1 )L(0) = (vn1 )0.

Now, we set un = vn1 + 1
ν v

n with vn = ∇E ∗
(
P (ρn) − P (ρ̄)

)
(in particular we have

divvn = P (ρn)−P (1)). Finally we set ṽn1 = vn1 − (vn1 )L and we can check that ṽn1 satisfies
the parabolic system:
∂tṽ

n
1 − (1 + an)Aṽn1 = −((vn1 )L +

1

ν
vn) · ∇ṽn1 − ṽn1 · ∇un + anA(vn1 )L −

1

ν
((vn1 )L · ∇vn

+ vn · ∇(vn1 )L +
1

ν
vn · ∇vn)− (vn1 )L · ∇(vn1 )L +

1

ν
∇(∆)−1(P

′
(ρn)div(ρnun)),

(ṽn1 ) t=0 = 0.
(5.39)
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which has been studied in proposition 3.8. Define m ∈ Z by:

m = inf{p ∈ N/ 2ν̄
∑
l≥p

2
lN
p ‖∆la

n
0‖Lp ≤ cν̄} (5.40)

where c is small enough positive constant (depending only on N) to be fixed hereafter.
In the sequel we will need of a control on an − Sman small to apply proposition 3.8, so
here m is enough big (we explain how in the sequel). Let:

b̄ = 1 + sup
x∈RN

a0(x), A0 = 1 + 2‖a0‖
B
N
p
p,1

, U0 = ‖u0‖
B
N
p1
−1

p1,1

+ ‖a0‖
B
N
p
p,1

+ ‖f‖
L1
T (B

N
p1
−1

p1,1
)
,

and Ũ0 = 2CU0 + 4Cν̄A0 (where C
′

is a constant embedding and C stands for a large
enough constant depending only N which will be determined when applying proposi-
tion 2.3, 3.8 and 4.10 in the following computations.) We assume that the following
inequalities are fulfilled for some η > 0:

(H1) ‖an − Sman‖
L̃∞T (B

N
p
p,1)
≤ cνν̄−1,

(H2) Cν̄2T‖an‖2
L̃∞T (B

N
p
p,1)

≤ 2−2mν,

(H3)
1

2
b ≤ 1 + an(t, x) ≤ 2b̄ for all (t, x) ∈ [0, T ]× RN ,

(H4) ‖an‖
L̃∞T (B

N
p
p,1)
≤ A0,

(H5) ‖(vn1 )L‖
L̃∞T (B

N
p1
−1

p1,1
+B

N
p +1

p,1 )
≤ U0, ‖(vn1 )L‖

L1
T (B

N
p1

+1

p1,1
+B

N
p +3

p,1 )
≤ η,

(H6) ‖ṽn1 ‖
L̃∞T (B

N
p1
−1

p1,1
+B

N
p
p,1)

+ ν‖ṽn1 ‖
L1
T (B

N
p1

+1

p1,1
+B

N
p +2

p,1 )
≤ Ũ0η,

(H7) ‖vn‖
L̃∞T (B

N
p +1

p,1 )
≤ C ′A0,

(H8) ‖∇un‖
L̃1
T (B

N
p
p,1)
≤ (ν−1Ũ0 + 1)η

Remark that since:
1 + Sma

n = 1 + an + (Sma
n − an),

assumptions (H1) and (H3) combined with the embedding B
N
p

p,1 ↪→ L∞ insure that:

inf
(t,x)∈[0,T ]×RN

(1 + Sma
n)(t, x) ≥ 1

4
b, (5.41)

provided c has been chosen small enough (note that ν
ν̄ ≤ b̄).

We are going to prove that under suitable assumptions on T and η (to be specified
below) if condition (H1) to (H8) are satisfied, then they are actually satisfied with strict
inequalities. Since all those conditions depend continuously on the time variable and
are strictly satisfied initially, a basic bootstrap argument insures that (H1) to (H8) are
indeed satisfied for T enough small (with a T which could depend of n). In the sequel, we
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will see that these conditions on T do not depend on n and by a criterion of continuation
we will see that our T check T ≤ Tn.
First we shall assume that η and T satisfies:

C(1 + ν−1Ũ0)η +
C
′

ν
A0T < log 2 (5.42)

so that denoting:

Ṽ n
1 (t) =

∫ t

0
‖∇ṽn1 ‖

B
N
p1
p1,1

+B
N
p +1

p,1

dτ, V n(t) =
1

ν

∫ t

0
‖∇vn‖

B
N
p
p,1

dτ and

(V n
1 )L(t) =

∫ t

0
‖∇(vn1 )L‖

B
N
p1

+1

p1,1
+B

N
p +2

p,1

dτ, Un(t) = Ṽ n
1 (t) + (V n

1 )L(t) + V n(t).

We have, according to (H5) and (H6):

eC((V n1 )L+Ṽ n1 +Ṽ n)(T ) < 2 and eC((V n1 )L+Ṽ n1 +Ṽ n)(T ) − 1 ≤ 1. (5.43)

In order to bound an in L̃∞T (B
N
p

p,1), we apply inequality (4.33) and get:

‖an‖
L̃∞T (B

N
p
p,1)

< 1 + 2‖a0‖
B
N
p
p,1

= A0. (5.44)

Hence (H4) is satisfied with a strict inequality. (H7) verifies a strict inequality, it follows
from proposition 2.6 and (H4). Next, applying proposition 3.7 and proposition 2.6 yields:

‖(vn1 )L‖
L̃∞T (B

N
p1
−1

p1,1
+B

N
p +1

p,1 )
≤ U0, (5.45)

κν‖(vn1 )L‖
L1
T (B

N
p1

+1

p1,1
+B

N
p +3

p,1 )
≤
∑
l≥0

2
l( N
p1
−1)

(1− e−κν22lT )(‖∆lu0‖Lp1 + ‖∆la0‖Lp)

+ TU0.

(5.46)

Hence taking T such that:

κν‖(vn1 )L‖
L1
T (B

N
p1

+1

p1,1
+B

N
p +3

p,1 )
≤ κην, (5.47)

insures that (H5) is strictly verified. Since (H1), (H2), (H5), (H6), (H7) and (5.41) are
satisfied, proposition 3.8 may be applied, we obtain:

‖ṽn1 ‖
L̃∞T (B

N
p1
−1

p1,1
+B

N
p
p,1)

+ ν‖ṽn1 ‖
L1
T (B

N
p1

+1

p1,1
+B

N
p +2

p,1 )

≤ CeC(1+T )

∫ T

0

(
‖anA(vn1 )L‖

B
N
p1
−1

p1,1
+B

N
p
p,1

+ ‖(vn1 )L · ∇(vn1 )L‖
B
N
p1
−1

p1,1
+B

N
p
p,1

+ ‖(vn1 )L · ∇vn‖
B
N
p1
−1

p1,1
+B

N
p
p,1

+ ‖vn · ∇vn‖
B
N
p
p,1

+ ‖∇(∆)−1(P
′
(ρn)div(ρnun))‖

B
N
p
p,1

+ ‖vn · ∇(vn1 )L‖
B
N
p1
−1

p1,1
+B

N
p
p,1

+ ‖((vn1 )L +
1

ν
vn) · ∇ṽn1 ‖

B
N
p1
−1

p1,1
+B

N
p
p,1

+ ‖ṽn1 · ∇un‖
B
N
p1
−1

p1,1
+B

N
p
p,1

)
dt.
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As N
p + N

p1
− 1 ≥ 0 and P

′
(ρn)div(ρnun) = ∇P (ρn) · un + P

′
(ρn)ρndivun, we can take

advantage of proposition 2.3, 2.1 and 2.6. ( In passing, we would like to mention that here

a crucial point is that ∆ṽn1 belongs to L̃1
T (B

N
p

p,1 + B
N
p1
−1

p1,1
) , it means that we are able to

give sense to the product anAṽn1 with the condition N
p + N

p1
−1 ≥ 0. It is the main novelty

compared with the works of R. Danchin in [10, 13], indeed we are able to cancel out in
some sense the coupling between the pressure term and the velocity. And it is exactly
at this point that we can use paraproduct laws without the restrictions that it exist in
[10, 13]. An other way to express this point is to say that the constraints concerning
the law of paraproduct for the term a∆u are less important. It means that we are able
to ask no more than the hypothesis on p and p1 used in the case of Navier-Stokes with
dependent density (see [1] and [17]).)
We get then with h and h1 regular function checking the conditions of proposition 2.4:

‖∇(∆)−1(P
′
(ρn)div(ρnun))‖

L̃1
T (B

N
p
p,1)

≤ C(‖∇(∆)−1(h(an)div(h1(an)un))‖
L̃1
T (B

N
p
p,1)

+ ‖∇(∆)−1(div(un))‖
L̃1
T (B

N
p
p,1)

),

≤ CP
(
‖un‖

L̃1
T (B

N
p
p,1)

(1 + ‖an‖2
L̃∞T (B

N
p
p,1)

)
)
,

≤ CP
(√
T (‖(vn1 )L‖

L̃2
T (B

N
p1
p,1 +B

N
p +2

p,1 )
+ ‖ṽn1 ‖

L̃2
T (B

N
p1
p,1 +B

N
p +1

p,1 )
+ T‖an‖

L̃∞T (B
N
p
p,1)

)

× (1 + ‖an‖2
L̃∞T (B

N
p
p,1)

)
)
.

The next term vn · ∇vn determines the choice of working in the space L̃1
T (B

N
p1
−1

p1,1
+B

N
p

p,1)
for the remainder, indeed we recall here that at the difference of the works in [10, 13],
we have no coupling between the density and the velocity. So in this sense this term
is crucial inasmuch as he decides on the regularity of ṽn1 and in particular the following
term vn · ∇vn where we have:

‖vn · ∇vn‖
L̃1
T (B

N
p
p,1)
≤ C1T‖an‖2

L̃∞T (B
N
p
p,1)

.
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We proceed similarly for the other terms and we end up with:

‖ṽn1 ‖
L̃∞T (B

N
p1
−1

p1,1
+B

N
p
p,1)

+ ν‖ṽn1 ‖
L1
T (B

N
p1

+1

p1,1
+B

N
p +2

p,1 )
≤ CeC(1+T )

(
C1T‖an‖2

L̃∞T (B
N
p
p,1)

+ CP
(√
T (‖(vn1 )L‖

L̃2
T (B

N
p1
p,1 +B

N
p +2

p,1 )
+ ‖ṽn1 ‖

L̃2
T (B

N
p1
p,1 +B

N
p +1

p,1 )
+ T‖an‖

L̃∞T (B
N
p
p,1)

)

× (1 + ‖an‖2
L̃∞T (B

N
p
p,1)

)
)

+ ‖an‖
L̃∞T (B

N
p
p,1)
‖(vn1 )L‖

L̃1
T (B

N
p1

+1

p,1 +B
N
p +3

p,1 )

+ ‖(vn1 )L‖
L̃∞T (B

N
p1
−1

p,1 +B
N
p +1

p,1 )
‖(vn1 )L‖

L̃1
T (B

N
p1

+1

p,1 +B
N
p +3

p,1 )

+
√
T‖unL‖

L̃2
T (B

N
p1
p,1 +B

N
p +2

p,1 )
‖an‖

L̃∞T (B
N
p
p,1)

+ T‖ṽn1 ‖
L̃∞T (B

N
p1
−1

p1,1
+B

N
p
p,1)
‖an‖

L̃∞T (B
N
p
p,1)

+
(
‖(vn1 )L‖

L̃2
T (B

N
p1
p,1 +B

N
p +2

p,1 )
+
√
T‖an‖

L̃∞T (B
N
p
p,1)

)
‖ṽn1 ‖

L̃2
T (B

N
p1
p1,1

+B
N
p +1

p,1 )

+ ‖ṽn1 ‖
L̃∞T (B

N
p1
−1

p1,1
+B

N
p
p,1)

(
‖ṽn1 ‖

L̃1
T (B

N
p1

+1

p1,1
+B

N
p +2

p,1 )
+ ‖(vn1 )L‖

L̃1
T (B

N
p1

+1

p,1 +B
N
p +3

p,1 )

))

(5.48)

with C = C(N)and CP = (N,P, b, b̄). Now, using assumptions (H4), (H5) and (H6), and
inserting (5.43) in (5.48) gives:

‖ṽn1 ‖
L̃∞T (B

N
p1
−1

p1,1
+B

N
p
p,1)

+ ‖ṽn1 ‖
L1
T (B

N
p1

+1

p1,1
+B

N
p +2

p,1 )
≤ 2C(ν̄A0 + Ũ2

0 η + U0)η + C1TA0(1 +A0)

+
√
TA0U0,

hence (H6) is satisfied with a strict inequality provided when T and η verifies:

2C(ν̄A0 + U0 + Ũ2
0 η)η + C1TA0(1 +A0) +

√
TA0U0 < Cν̄η. (5.49)

(H8) follows from proposition (H5), (H6) and (H7) indeed we recall that by Besov em-
bedding as p1 ≤ p:

‖∇un‖
L̃1
T (B

N
p
p,1)
≤
∫ t

0
‖∇ṽn1 ‖

B
N
p1
p1,1

+B
N
p +1

p,1

dτ+
1

ν

∫ t

0
‖∇vn‖

B
N
p
p,1

dτ+

∫ t

0
‖∇(vn1 )L‖

B
N
p1
p1,1

+B
N
p +2

p,1

dτ.

We easily obtains by this previous inequality (H8).
We now have to check whether (H1) is satisfied with strict inequality. For that we apply
proposition (4.11) which yields for all m ∈ Z,∑
l≥m

2l
N
2 ‖∆la

n‖L∞T (Lp) ≤
∑
l≥m

2
lN
p ‖∆la0‖Lp + (1 + ‖a0‖

B
N
2
p,1

)
(
eC((V n1 )L+Ṽ n1 +V n)(T ) − 1

)
.

(5.50)
Using (5.42) and (H5), (H6), we thus get:

‖an − Sman‖
L̃∞T (B

N
p
p,1)
≤
∑
l≥m

2
lN
p ‖∆la0‖Lp +

C

log 2
(1 + ‖a0‖

B
N
p
p,1

)(1 + ν−1L̃0)η.

Hence (H1) is strictly satisfied provided that η further satisfies:

C

log 2
(1 + ‖a0‖

B
N
p
p,1

)(1 + ν−1Ũ0)η <
cν

2ν̄
. (5.51)
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In order to check whether (H3) is satisfied, we use the fact that:

an − a0 = Sm(an − a0) + (Id− Sm)(an − a0) +
∑
l>m

∆la0,

whence, using B
N
p

p,1 ↪→ L∞:

‖an − a0‖L∞((0,T )×RN ) ≤ C
(
‖Sm(an − a0)‖

L̃∞T (B
N
p
p,1)

+ ‖an − Sman‖
L̃∞T (B

N
p
p,1)

+ 2
∑
l≥m

2
lN
p ‖∆la0‖Lp

)
.

Changing the constant c in the definition of m and in (5.51) if necessary, one can, in view
of the previous computations, assume that:

C
(
‖an − Sman‖

L̃∞T (B
N
p
p,1)

+ 2
∑
l≥m

2
lN
p ‖∆la0‖Lp

)
≤ b

4
.

As for the term ‖Sm(an − a0)‖
L∞T (B

N
p
p,1)

, it may be bounded according proposition 4.11:

‖Sm(an − a0)‖
L̃∞T (B

N
p
p,1)
≤ (1 + ‖a0‖

B
N
p
p,1

)(eC(Ṽ n1 +V n+(V n1 )L)(T ) − 1) + C22m
√
T‖a0‖

B
N
p
p,1

× ‖un‖
L̃2
T (B

N
p1
p1,1

+B
N
p
p,1)
.

Note that under assumptions (H5), (H6), (5.42) and (5.51) ( and changing c if necessary),
the first term in the right-hand side may be bounded by b

8 . Hence using interpolation,
(5.45) and the assumptions (5.42) and (5.51), we end up with:

‖Sm(an − a0)‖
L̃∞T (B

N
p
p,1)
≤ b

8
+ C2m

√
T‖a0‖

B
N
p
p,1

√
η(U0 + Ũ0η)(1 + ν−1Ũ0.

Assuming in addition that T satisfies:

C2m
√
T‖a0‖

B
N
p
p,1

√
η(U0 + Ũ0η)(1 + ν−1Ũ0 <

b

8
, (5.52)

and using the assumption b ≤ 1 + a0 ≤ b̄ yields (H3) with a strict inequality.
One can now conclude that if T < Tn has been chosen so that conditions (5.47), (5.49)
and (5.52) are satisfied (with η verifying (5.42) and (5.51)), and m defined in (5.40) then
(an, un) satisfies (H1) to (H8). Thus we observe that (an, un) is bounded independently
of n on [0, T ].
We still have to state that Tn may be bounded by below by the supremum T̄ of all times
T such that (5.47), (5.49) and (5.52) are satisfied. This is actually a consequence of the
uniform bounds we have just obtained, and of remark continuations theorems (see for
example [13]) and proposition 4.10. Indeed, by combining all these informations, one can
prove that if Tn < T̄ then (an, un) is actually in:

L̃∞Tn(B
N
2

2,1 ∩B
N
p

p,1)×
(
L̃∞Tn

(
B

N
2

2,1 ∩B
N
p

+1

p,1

)
∩ L1

Tn
(
B

N
2

+1

2,1 ∩ (B
N
p1
−1

p1,1
+B

N
p

+1

p,1 )
))N

hence may be continued beyond T̄ as we control ∇un ∈ L1(L∞) (see the remark on the
lifespan following the statement in [13]). We thus have Tn ≥ T̄ .
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Compactness arguments

We now have to prove that (an, un)n∈N tends (up to a subsequence) to some function
(a, u) which belongs to FT . Here we recall that:

FT = C̃([0, T ], B
N
p

p,1)×
(
L̃∞(B

N
p1
−1

p1,1
+B

N
p

+1

p,1 ) ∩ L̃1(B
N
p

+1

p,1 )
)
.

The proof is based on Ascoli’s theorem and compact embedding for Besov spaces. As
similar arguments have been employed in [10] or [13], we only give the outlines of the
proof.

• Convergence of (an)n∈N:
We use the fact that ãn = an − an0 satisfies:

∂tã
n = −un · ∇an + (1 + an)divun.

Since (un)n∈N is uniformly bounded in L̃1
T (B

N
p

+1

p,1 ) ∩ L̃∞T (B
N
p1
−1

p1,1
+ B

N
p

+1

p,1 ), then

(un)n∈N is also bounded in L̃rT (B
N
p
−1+ 2

r

p,1 ) for any r ∈ [1,+∞]. By using the standard
product laws in Besov spaces, we thus easily get that (∂tã

n) is uniformly bounded in

L̃2
T (B

N
p
−1

p,1 ). Hence (ãn)n∈N is bounded in L̃∞T (B
N
p
−1

p,1 ∩B
N
p

p,1) and equicontinuous on

[0, T ] with values in B
N
p
−1

p,1 . Since the embedding B
N
p
−1

p,1 ∩B
N
p

p,1 is (locally) compact,

and (an0 )n∈N tends to a0 in B
N
p

p,1, we conclude that (an)n∈N tends (up to extraction)

to some distribution a. Given that (an)n∈N is bounded in L̃∞T (B
N
p

p,1), we actually

have a ∈ L̃∞T (B
N
p

p,1).

• Convergence of ((vn1 )L)n∈N:
From the definition of (vn1 )L and proposition 3.7, it is clear that (vn1 )L goes to a
solution (v1)L of:  ∂t(v1)L −A(v1)L = f,

(v1)L(0) = u0 −
1

ν
v0.

in L̃∞T (B
N
p1
−1

p1,1
+B

N
p

+1

p,1 ) ∩ L̃1
T (B

N
p1

+1

p1,1
+B

N
p

+3

p,1 ).

• Convergence of (ṽn1 )n∈N:
By proceeding similarly, we can prove that up to extraction, (ṽn1 )n∈N converges in
the distributional sense to some function ṽ1 such that:

ṽ1 ∈ L̃∞(B
N
p1
−1

p1,1
+B

N
p

p,1) ∩ L̃1(B
N
p

+1

p,1 ). (5.53)

By interpolating with the bounds provided by the previous step, one obtains better
results of convergence so that one can pass to the limit in the mass equation and in the
momentum equation. Finally by setting u = ṽ1 + v + (v1)L, we conclude that (a, u)
satisfies (1.3).
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In order to prove continuity in time for a it suffices to make use of proposition 4.10.

Indeed, a0 is in B
N
p

p,1, and having a ∈ L̃∞T (B
N
p

p,1) and u ∈ L̃1
T (B

N
p

+1

p,1 ) insure that ∂ta+u·∇a

belongs to L̃1
T (B

N
p

p,1). Similarly, continuity for u may be proved by using that (ṽ1)0 ∈

B
N
p1
−1

p1,1
and that (∂tv1 − µ∆v1) ∈ L̃1

T (B
N
p1
−1

p1,1
+B

N
p

p,1). We conclude by using the fact that

u = v1 + 1
ν v.

5.3 The proof of the uniqueness

In this section, we are interested in proving the results of uniqueness of theorem 1.1, we
will use similar arguments as in [10, 13, 16].

Uniqueness when 1 ≤ p1 < N , 2
N < 1

p + 1
p1

and N ≥ 3

In this section, we focus on the cases 1 ≤ p1 < N , 2
N < 1

p + 1
p1

, N ≥ 3 and postpone the
analysis of the other cases (which turns out to be critical) to the next section. Throughout
the proof, we assume that we are given two solutions (a1, u1) and (a2, u2) of (1.3). In the
sequel we will show that a1 = a2 and v1

1 = v2
1 where ui = vi1 + 1

ν v
i (for the notation, we

conserve the same as in the previous section). It will imply in particular that u1 = u2).
We know that (a1, v1

1) and (a2, v2
1) belongs to:

C̃([0, T ];B
N
p

p,1)×
(
C̃([0, T ];B

N
p1
−1

p1,1
+B

N
p

+1

p,1 ) ∩ L̃1(0, T ;B
N
p1

+1

p1,1
+B

N
p

+2

p,1 )
)N
.

Let δa = a2 − a1, δv = v2 − v1and δv1 = v2
1 − v1

1. The system for (δa, δv1) reads:

∂tδa+ u2 · ∇δa = δadivu2 + (δv1 +
1

ν
δv) · ∇a1 + (1 + a1)div(δv1 +

1

ν
δv),

∂tδv1 + u2 · δ∇v1 + δv1 · ∇u1 − (1 + a1)Aδv1 = δaAv2
1 −

1

ν
(u2 · ∇δv

− δv · ∇u1) +∇(∆)−1

(
(P
′
(ρ2)− P ′(ρ1))div(ρ2u2) + P

′
(ρ1)div(ρ1δu)

+ P
′
(ρ1)div((ρ2 − ρ1)u2)

)
.

(5.54)

The function δa may be estimated by taking advantage of proposition 4.10 with s = N
p −1.

Denoting U i(t) = ‖ui‖
L̃1
t (B

N
p +1

p,1 )
for i = 1, 2, we get for all t ∈ [0, T ],

‖δa(t)‖
B
N
p −1

p,1

≤ CeCU2(t)

∫ t

0
e−CU

2(τ)‖δadivu2 + (δv1 +
1

ν
δv) · ∇a1

+ (1 + a1)div(δv1 +
1

ν
δv)‖

B
N
p −1

p,1

dτ,

Next using proposition 2.3 and 2.6 we obtain:

‖δa(t)‖
B
N
p −1

p,1

≤ CeCU2(t)

∫ t

0
e−CU

2(τ)‖δa‖
B
N
p −1

p,1

(
‖u2‖

B
N
p +1

p,1

+ (1 + 2‖a1‖
B
N
p
p,1

)
)

+ (1 + 2‖a1‖
B
N
p
p,1

)‖δv1‖
B
N
p1
p1,1

+B
N
p +1

p,1

dτ,
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Hence applying Grönwall lemma, we get:

‖δa(t)‖
B
N
p −1

p,1

≤ CeCU2(t)

∫ t

0
e−CU

2(τ)(1 + ‖a1‖
B
N
p
p,1

)‖δv1‖
B
N
p1
p1,1

+B
N
p +1

p,1

dτ. (5.55)

For bounding δv1, we aim at applying proposition 4.8 of [16] to the second equation of
(5.54). So let us fix an integer m such that:

1 + inf
(t,x)∈[0,T ]×RN

Sma
1 ≥ b

2
and ‖a1 − Sma1‖

L∞T (B
N
p
p,1)
≤ cν

ν̄
. (5.56)

Note since a1 satisfies a transport equation with right-hand side in L̃1
T (B

N
p

p,1), proposition

4.10 guarantees that a1 is in C̃T (B
N
p

p,1). Hence such an integer does exist (see remark 19).

Now applying proposition 4.8 of [16] with s = N
p1
− 2 and s

′
= N

p − 1 insures that for all
time t ∈ [0, T ], we have:

‖δv1‖
L1
t (B

N
p1
p1,1

+B
N
p +1

p,1 )
≤ CeC(1+t)U(t)

∫ t

0
e−C(1+τ)U(τ)

(
‖δaAv2

1 −
1

ν
(δv · ∇v1

1 + v1
1 · ∇δv)

− 1

ν2
(v1 · ∇δv + δv · ∇v2)‖

B
N
p1
−2

p1,1
+B

N
p −1

p,1

)
dτ,

with U(t) = U1(t) + U2(t) + 22mν−1ν̄2
∫ t

0 ‖a
1‖2
B
N
p
p,1

dτ .

Hence, applying proposition 2.3 we get:

‖δv1‖
L̃1
t (B

N
p1
p1,1

+B
N
p +1

p,1 )
≤ CeC(1+t)U(t)

∫ t

0
e−C(1+τ)U(τ)

(
1 + ‖a1‖

B
N
p
p,1

+ ‖a2‖
B
N
p
p,1

+ ‖v2
1‖
B
N
p1

+1

p1,1
+B

N
p +2

p,1

)
‖δa‖

B
N
p −1

p,1

dτ.
(5.57)

Finally plugging (5.55) in (5.57), we get for all t ∈ [0, T1],

‖δv1‖
L̃1
t (B

N
p1
p1,1

+B
N
p +1

p,1 )
≤ C

∫ t

0

(
1 + ‖a1‖

B
N
p
p,1

+ ‖a2‖
B
N
p
p,1

+ ‖v2
1‖
B
N
p1

+1

p1,1
+B

N
p +2

p,1

)
× ‖δv1‖

L̃1
τ (B

N
p1
p1,1

+B
N
p +1

p,1 )
dτ.

Since a1 and a2 are in L∞(B
N
p

p,1) and v2
1 belongs to L1

T (B
N
p1

+1

p1,1
+B

N
p

+2

p,1 ), applying Grönwall
lemma yields δv1 = 0, an [0, T ].

Uniqueness when: 2
N = 1

p1
+ 1

p or p1 = N or N = 2.

The above proof fails in dimension two or in the case 2
N = 1

p1
+ 1

p or p1 = N . One of

the reasons why is that the product of functions does not map B
N
p
−1

p,1 ×B
N
p1
−2

p1,1
in B

N
p1
−2

p1,1

but only in the larger space B
N
p1
−2

p1,∞ . This induces us to bound δa in  L∞T (B
N
p
−1

p,∞ ) and
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δv1 in L∞T (B
N
p1
−2

p1,∞ + B
N
p
p,∞) ∩ L1

T (B
N
p1
p1,∞ + B

N
p

+1
p,∞ ) (or rather, in the widetilde version of

those spaces, see below). Yet, we are in trouble because due to B
N
p1
p1,∞ is not embedded

in L∞, the term δv1 · ∇a1 in the right hand-side of the first equation of (5.54) cannot
be estimated properly. As noticed in [12], this second difficulty may be overcome by
making use of logarithmic interpolation and Osgood lemma ( a substitute for Gronwall
inequality). Let us now tackle the proof. Fix an integer m such that:

1 + inf
(t,x)∈[0,T ]×RN

Sma
1 ≥ b

2
and ‖a1 − Sma1‖

L̃∞T (B
N
p
p,1)
≤ cν

ν̄
, (5.58)

and define T1 as the supremum of all positive times t such that:

t ≤ T and tν̄2‖a1‖
L̃∞T (B

N
p
p,1)
≤ c2−2mν. (5.59)

Remark that the proposition 4.10 ensures that a1 belongs to C̃T (B
N
p

p,1) so that the above
two assumptions are satisfied if m has been chosen large enough. For bounding δa in

L∞T (B
N
p
−1

p,∞ ), we apply proposition 4.10 with r = +∞ and s = 0. We get (with the
notation of the previous section):

∀t ∈ [0, T ], ‖δa(t)‖
B
N
p −1

p,∞

≤ CeCU2(t)

∫ t

0
e−CU

2(τ)‖δadivu2 + (δv1 +
1

ν
δv) · ∇a1

+ (1 + a1)div(δv1 +
1

ν
δv)‖

B
N
p −1

p,∞

dτ,

hence using that the product of two functions maps B
N
p
−1

p,∞ ×B
N
p1
p1,1

in B
N
p
−1

p,∞ , and applying
Gronwall lemma,

‖δa(t)‖
B
N
p −1

p,∞

≤ CeCU2(t)

∫ t

0
e−CU

2(τ)(1 + ‖a1‖
B
N
p
p,1

)‖δv1‖
B
N
p1
p1,1

+B
N
p +1

p,1

dτ. (5.60)

Next, using proposition 4.8 of [16] combined with proposition 2.3 and corollary 1 in order
to bound the nonlinear terms, we get for all t ∈ [0, T1],:

‖δv1‖
L̃1
T (B

N
p1
p1,∞+B

N
p +1

p,∞ )
≤ CeC(1+t)(U1+U2)(t)

∫ t

0
(1 + ‖a1‖

B
N
p
p,1

+ ‖a2‖
B
N
p
p,1

+ ‖v2
1‖
B
N
p1

+1

p1,1
+B

N
p +2

p,1

)‖δa‖
B
N
p −1

p,∞

dτ.
(5.61)

In order to control the term ‖δv1‖
B
N
p1
p1,1

+B
N
p +1

p,1

which appears in the right-hand side of

(5.60), we make use of the following logarithmic interpolation inequality whose proof
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may be found in [12], page 120:

‖δv1‖
L1
t (B

N
p1
p1,1

+B
N
p +1

p,1 )
.

‖δv1‖
L̃1
t (B

N
p1
p1,∞)

log
(
e+

‖δv1‖
L̃1
t (B

N
p1
−1

p1,∞ )
+ ‖δv1‖

L̃1
t (B

N
p1

+1

p1,∞ )

‖δv1‖
L̃1
t (B

N
p1
p1,∞)

)

+ ‖δv1‖
L̃1
t (B

N
p +1

p,∞ )
log
(
e+

‖δv1‖
L̃1
t (B

N
p
p,∞)

+ ‖δv1‖
L̃1
t (B

N
p +2

p,∞ )

‖δv1‖
L̃1
t (B

N
p
p,∞)

)
.

(5.62)

Because v1
1 and v2

2 belong to L̃∞T (B
N
p1
−1

p1,1
+B

N
p

+1

p,1 ) ∩ L1
T (B

N
p1

+1

p1,1
+B

N
p

+2

p,1 ), the numerator
in the right-hand side may be bounded by some constant CT depending only on T and
on the norms of v1

1 and v2
1. Therefore inserting (5.60) in (5.61) and taking advantage of

(5.62), we end up for all t ∈ [0, T1] with:

‖δv1‖
L̃1
T (B

N
p1
p1,∞+B

N
p +1

p,∞ )
≤ C(1 + ‖a1‖

L̃∞T (B
N
p
p,1)

)

×
∫ t

0
(1 + ‖a1‖

B
N
p
p,1

+ ‖a2‖
B
N
p
p,1

+ ‖v2
1‖
B
N
p1

+1

p1,1
+B

N
p +2

p,1

)‖δv1‖
L̃1
t (B

N
p1
p1,∞+B

N
p +1

p,∞ )

× log(e+ CT ‖δv1‖−1

L̃1
τ (B

N
p1
p1,∞+B

N
p +1

p,∞ )

)
dτ.

Since the function t → ‖a1(t)‖
B
N
p
p,1

+ ‖a2(t)‖
B
N
p
p,1

+ ‖v2
1(t)‖

B
N
p1

+1

p1,1
+B

N
p +2

p,1

is integrable on

[0, T ], and: ∫ 1

0

dr

r log(e+ CT r−1)
= +∞

Osgood lemma yields ‖δv1‖
L̃1
T (B

N
p1
p1,∞+B

N
p +1

p,∞ )
= 0. Note that the definition of m depends

only on T and that (5.56) is satisfied on [0, T ]. Hence, the above arguments may be
repeated on [T1, 2T1], [2T1, 3T1],etc. until the whole interval [0, T ] is exhausted. This
yields uniqueness on [0, T ] for a and v1 which implies uniqueness for u. �

5.4 Proof of theorem 1.2

The proof follows the same line as theorem 1.1 except concerning the uniqueness. In the
sequel we will concentrate us only on the result of uniqueness which improves significantly
in the specific case P (ρ) = Kρ with K > 0 the theorem 1.1. Indeed we will be able to
reach the critical case for the initial density . For that we use the main theorem of D.
Hoff in [21] which is a result of weak-strong uniqueness. For the completeness of the
proof we would like to recall the result of D. Hoff (see [21] for more details).
Let (ρ, u) a weak solution of the system (1.1) (see the definition of D. Hoff in [21]) with
the following properties:

u ∈ C((0, T ]× RN ) ∩ Lr((0, T )× RN ) ∩ L1(0, T,W 1,∞(RN )) ∩ L∞loc(L∞(RN )), (5.63)
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ρ− ρ̄, u, f ∈ L2((0, T )× RN ), (5.64)

1

ρ
∈ L∞, (5.65)

and
u ∈ Lr((0, T )× RN ), (5.66)

with r > N . Let (ρ1, u1) a strong solution such that (5.63), (5.64) and (5.65) are verified
and:∫ T

0
[‖u1(t, ·)‖2L∞ + t‖∇u1(t, ·))‖2L∞ + t‖∇F1(·, t),∇ω1‖2L2

+ (t‖∇F1(·, t),∇ω1‖2L4)a]dt < +∞,
(5.67)

with F1 = divu1 − P (ρ1) + P (ρ̄) the effective pressure, ω1 the curl of u1 and with a = 2
3

if N = 2 and a = 4
5 for N = 3. We assume in the sequel that:

f ∈ L1((0, T ), L2q(RN ), (5.68)

for some q ∈ [1,+∞]. And finally D. Hoff needs to assume that:

ρ0 − ρ̄ ∈ L2 ∩ L2p, (5.69)

where p is the Hölder conjugate of q.
We can now state the result that D. Hoff obtains in [21]:

Theorem 5.5 Assuming that (ρ, u) and (ρ1, u1) are weak solutions (for the precise def-
inition see [21]), moreover (ρ, u) verify (5.63), (5.64), (5.65), (5.66) and (ρ1, u1) verify
(5.63), (5.64), (5.65), (5.67) and (5.68) . The initial data are chosen as in the theorem
1.2 with the additional condition (5.69). Let P (ρ) = Kρ with K > 0. Then under the
previous hypothesis:

u = u1 and u = u1 on (0, T ).

Remark 20 Here (ρ1, u1) have to consider as the strong solution and (ρ, u) as the weak
solution.

Furthermore in [24], D. Hoff exhibits a class of solutions (ρ1, u1) satisfying all the con-
ditions (5.63), (5.64), (5.65), (5.67) and (5.68) except that u1 ∈ L1((0, T ),W 1,∞(RN )).
For this D. Hoff assume the following conditions on the initial data:

ρ0 ∈ L∞, ρ0 − ρ̄ ∈ L1
2,

inf ρ0 > 0,

u0 ∈ Hs with s > 0 if N = 2 or s >
1

2
if N = 3.

u0 ∈ Lq, with q > 2 if N = 2 or q = 6 if N = 3.

(5.70)

For proving these results D. Hoff uses essentially inequalities of energy (in his case the
initial data are assumed small and he obtains existence of global weak solutions, for a
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similar case with large initial data we refer to [18]). The main difficulty for using the
theorem 5.5 is then to prove the Lipchitz condition on u1, i.e u1 in L1((0, T ),W 1,∞(RN )).

In our context, we want to verify that a solution (ρ̄, ū) constructed in theorem 1.1 with
the additional conditions on the initial data of theorem 1.2 verify all the hypothesis of
theorem 5.5 . It means that (ρ̄, ū) have to check the hypothesis of the class of the strong
solution and of the class of weak solution. In this case, we will be able to conclude that
if we choose two solutions (ρ̄, ū) and (ρ̄1, ū1) in the class of the solutions of theorem 1.1
then (ρ̄, ū) = (ρ̄1, ū1).
As we explain previously, the regularizing effects obtained on the velocity in [24] result
from energy inequalities combined with an argument of smallness to apply a bootstrap.
This idea has been developed in [18] in the case of large initial data. In particular it is
shown in [24, 18] that with our choice on the initial data in theorem 1.2 the solution of
theorem 1.1 satisfy all the conditions (5.63), (5.64), (5.65), (5.67) and (5.68). Indeed for
proving (5.63), (5.64), (5.65), (5.67) and (5.68), it suffices to use the same argument than
in [24, 18], it means tricky energy inequalities.
The only new point compared with [24, 18] to achieve the proof of uniqueness corre-
sponds to prove that ū is in L1

T (W 1,∞(RN )) and that (ρ̄, ū) verify the condition of the
weak solution of theorem 5.5. The last point is evident. We only want to point out that

ū is in L1((0, T ),W 1,∞(RN )) because ū belongs to L1
T (B

N
p

+1

p,1 ). This conclude the proof
of the uniqueness. �

5.5 Proof of theorem 1.3

We follow here exactly the same lines than the proof of theorem 1.1 except that we
introduce a new effective velocity. Indeed in our case the viscosity coefficients are variable,
so we set v which verifies the following elliptic equation:

(2µ+ λ)∆v + div
(
f1(q)Dv

)
+∇

(
f2(q)divv

)
= ∇P (ρ). (5.71)

with f1(q) = µ(ρ)−µ(1) and f2(q) = λ(ρ)−λ(1). We can resolve this elliptic equation as
µ ≥ c > 0 and 2µ+λ ≥ c > 0, indeed in our case we work away from the vacuum. To do
this we have to use the estimates on the Lamé operator of the appendix in [17]. The idea
is in fact to treat the system (5.71) as a Lamé operator with regular variable viscosity
coefficient that we perturb by a remainder with small variable viscosity coefficient. We
use only the fact that the functions in C0

∞ are dense in BN
p p,1

. The idea is exactly the

same as in the proof of proposition 3.8. More precisely we have as q ∈ L̃∞(B
N
p

p,1) for

r ≥ 1, p ≥ 1 and |s| ≤ N
p (for more details we refer to [17]):

‖v‖
L̃r(Bsp,1)

≤ C‖q‖
L̃r(Bs−1

p,1 )
.

It means that as in the proof of theorem 1.1, v is one derivative more regular than q
and that we can estimate v in function of q. Moreover we have ∂tv which verifies the
following elliptic equation:

div(µ(ρ)D∂tv) +∇(λ(ρ)div∂tv) = ∇∂tP (ρ)− div(∂tµ(ρ)Dv)−∇(∂tλ(ρ)divv).
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We can in a similar way getting estimates on ∂tv in function of q, u and v, so in function
of q and u. To do this, we have one time more to apply elliptic estimates in Chemin-
Lerner spaces. In the sequel as in the proof in theorem 1.1, we will have to consider an
effective velocity defined by v1 = u − v. The rest of the proof is exactly similar to the
proof of the theorem 1.1 and is nothing than tedious verifications. It is left to the reader.

�

6 Proof of theorem 1.4

We now want to prove theorem 1.4. We have assumed here that ρ
1
p1
0 u0 ∈ Lp1 with

p1 = N + ε with ε arbitrary small. We would like to show that with our hypothesis in

particular that a is in L∞T and then we are able to prove that ρ
1
p1 u ∈ L∞T (Lp1). First

as in [18] we can show that if we control ρ in norm L∞ then we control the vacuum or
more precisely 1

ρ in L∞. We refer to [18] for more details. Let now showing that we can

control ρ
1
p1 u in L∞T (Lp1).

We multiply the momentum equation by u|u|p1−2 and we get after integration by part:

1

p1

∫
RN

ρ|u|p1(t, x)dx+ µ

∫ t

0
|u|p1−2|∇u|2(t, x)dtdx+

p1 − 2

4
µ

∫ t

0
|u|p1−4|∇|u|2|2(t, x)dxdt

+ λ

∫ t

0

∫
RN

(divu)2|u|p1−2(t, x)dtdx+ λ
p1 − 2

2

∫ t

0

∫
RN

divu
∑
i

ui∂i|u|2|u|p1−4(t, x)dtdx−∫ t

0

∫
RN

(
P (ρ)− P (ρ̄)

)(
divu|u|p1−2 + (p1 − 2)

∑
i,k

uiuk∂iuk|u|p1−4
)
(t, x)dtdx

≤
∫
RN

ρ0|u0|p1dx.

By Young’s inequalities, inequality (1.5) and the fact that P (ρ)−P (ρ̄) belongs in L∞(L1∩
L∞) we conclude that ρ

1
p1 u is in L∞T (Lp1) and that u is in L∞T (Lp1) as 1

ρ is in L∞.

Now as u, 1
ρ and ρ are bounded respectively in L∞T (Lp1) ↪→ L̃∞T (B

N
p1
−1+ e

2

p1,1
), L∞T (L∞)

and in L̃∞T (B
N
p

+ e
2

p,1 ). We now can use the remark 12 (for a proof we refer to [10]). It
means that there exists a time T ≥ c > 0 where c depends only on the dimension N , the
viscosity coefficients and on ‖q‖

L̃∞T (B
N
p + e2
p,1 )

and ‖u‖
L̃∞T (B

N
p1
−1+ e2

p1,1
)
. In fact it suffices only

to verify how the conditions (5.47), (5.49) and (5.52) are verifies.
It means that we can construct by theorem 1.1 a solution (a1, u1) on (T −α, T −α+T

′
)

with initial data (a(T − α), u(T − α)) (here α < T
′
). The only difficulty is to prove that

on (T − α, T ) we have:
(ρ1, u1) = (ρ, u).

Now we can use our supplementary condition on the initial data, i.e (a0, u0) ∈ B1
N,1×B0

N,1.
Indeed by persistency results as in [19], we can show that:

a ∈ L̃∞T (B1
N,1), u ∈ L̃∞T (B0

N,1) and u ∈ L̃1
T (B2

N,1).
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It means that (a(T − α), u(T − α)) and (a1(T − α), u1(T − α)) are in B1
N,1 × B0

N,1. We
can show then by theorem 1.1 that (ρ1, u1) = (ρ, u) on (T − α, T ), because (a1, u1) and
(a, u) are in the class on (T − α, T ) of the solutions of theorem 1.1 which are unique.
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