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Estimation of the Degree of Polarization for
Hybrid/Compact and Linear Dual-Pol SAR
Intensity Images: Principles and Applications

Reza ShirvanyStudent Member, IEEBViarie ChabertMember, IEEE and
Jean-Yves TournereBenior Member, IEEE

Abstract—Analysis and comparison of linear and hybrid/ traditional ones are linear single-polarization (single-pol) and
compact dual-polarization (dual-pol) synthetic aperture radar dual-polarization (dual-pol) systems. More sophisticated ones

(SAR) imagery have gained a wholly new importance in the e f|| polarimetric systems. Other recently developed designs
last few years, in particular, with the advent of new space-

borne SARs such as the Japanese ALOS PALSAR, the Canadian €1 be found in the literature, which are called hybrid/compact
RADARSAT-2, and the German TerraSAR-X. Compact polarime- dual-pol and are proposed for future SAR missions. Single-
try, hybrid dual-pol, and quad-pol modes are newly promoted in pol SAR systems were designed using a single polarization;
the literature for future SAR missions. In this paper, we investigate  transmitting and receiving horizontally (H) or vertically (V)

and compare different hybrid/compact and linear dual-pol modes |76 radiation. In conventional dual-pol modes, two linear

in terms of the estimation of the degree of polarization (DoP). S . .
The DoP has long been recognized as one of the most importantpOIar'Zat'OnS are considered, i.e., (HH, HV), (VH, VV), or (HH,

parameters characterizing a partially polarized electromagnetic VV). Full polarimetric (full-pol) systems alternately transmit
wave. It can be effectively used to characterize the information two orthogonal polarizations and record both received polar-
content of SAR data. We study and compare the information jzations (HH, HV, VH, and VV). Full-pol SARs allow much
content of the intensity data provided by different hybrid/compact more information to be extracted from a scene compared with
and linear dual-pol SAR modes. For this purpose, we derive the . .
joint distribution of multilook SAR intensity images. We use this single- and dual-pol data. However, they are d'sadvamaged_ by
distribution to derive the maximum likelihood and moment-based @ lower radar swath coverage and higher antenna transmitter
estimators of the DoP in hybrid/compact and linear dual-pol power requirements (see [9] and references therein for more
tmOdfeS-(;’_\f/fe evat|uatz and C%mtlﬁr’]afe tm? r;)_erforgwancl:z Otf thei{? ﬁStima-details). As a result, hybrid/compact polarimetric systems have
ors for different modes on both synthetic and real data, which are ; ; ; ; ;
acquired by RADARSAT-2 spaceborne and NASA/JPL airborne _been Wl.dely |_nvest|gated n _recent years as a pos_S|b_Ie tra_deoff
in polarimetric SARs. hybrid/compact polarimetric imaging

SAR systems, over various terrain types such as urban, vegetation, - . )
and ocean. provides a wider swath width and, hence, greater area cov-

. o erage, compared with a full-pol system. Souyeisal. [10]
Index Terms—Compact polarimetry, degree of polarization . . L
(DoP), dual-pol, hybrid polarity, maximum likelihood (ML), mul- introduced th_eT/4 mo_de, Wher_e the transmltte_d polarlzgtlon is
tivariate gamma distribution (MGD), synthetic aperture radar  the superposition of linear horizontal and vertical polarizations
(SAR). (L4s50), and the received returns are recorded in both horizontal
and vertical polarizations. In another study, Stacy and Preiss
|. INTRODUCTION [11] proposed the dual circular polarimetric (DCP) mode based

. . i . on a right (or left) circular polarization transmit, and right
OLARIMETRIC imagery is a well-established tool pro and left circular polarization receives (RR, RL). In a recent

viding complementary information to traditional imagery : . .
in a variety of fields. Polarimetric imagery has been wideIStUdy’ Raney [12] promoted a hybrid (circular linear) mode

studied and employed in different applications such as jff_operatlon (CL-pal), with a right (or left) circular polariza-
I

tronomy [1], meteorological investigations [2], [3], wetlan fon on transmission and two linear polarizations on reception

monitoring [4], estimation of forest parameters [5], oil spi RH, RV).
g 1% X ' PP 0t is important to understand the information content of

detection [6], computer vision [7], and medicine [8]. . . - . .
) . . : different polarimetric images and to appreciate the suitable
Radar polarimetry has gained considerable importance 1n . . ' .
) . configuration for each particular application. Recent SAR sys-
recent years. There exists a variety of spaceborne and air- . . .
. ) i ems can provide both complex and intensity data, whereas
borne polarimetric synthetic aperture radar (SAR) systems : . ! .
some other systems only provide amplitude data with no in-
formative phase (e.g., airborne SAR (AirSAR) CYCLOPS and
ENVISAT ASAR). The AirSAR CYCLOPS is an enhance-

ment of the standard AirSAR quick-look processor, which is
The authorsare with the University of Toulouse, IRIT/INP-ENSEEIHT/ d€Signed to provide amplitude imagery over a large range and
TéSA, 31071 Toulouse, France (e-mail: reza.shirvany@enseeiht.fr; maggimuth swaths [13]. Such intensity data are of great interest
chabert@enseeiht.fr; jean-yves.tourneret@enseeiht.fr). for those investigators who require calibrated SAR data over
large swaths, notably for monitoring large coastal and ocean
areas under all-weather conditions. Analysis and comparison of



different SAR imagery modes, particularly the comparison a@f Ey and Ey, and the relative phase between them. We

linear and hybrid/compact modes, have gained new importame thatE, represented in vector form and denotedFs-

in the last few years [14], [15]. The aim of this paper i$Ex, Ey)T, is called the Jones vector [21]. In order to deal

therefore to investigate in detail the information content of theith a partially polarized wave, either the covariance matrix of

intensitydata in different hybrid/compact and linear dual-poFE or the Stokes vector can be used. The covariance matrix of

modes. The degree of polarization (DoP) can be effectivel is defined as [17], [22]

used to characterize the information content of SAR data. This

scalar parameter is considered as the most important parameter TI'=E [E ET] = (

characterizing a partially polarized electromagnetic wave [16],

[17]. Knowledge of DoP can help to determine the nature of

the objects that backscatter the wave. However, four intensity

images are necessary for the classical estimation of the DoP;

thus, estimation of the DoP based on only two (dual-polyhereE. is the expectation operatdr,is the conjugate trans-

intensity images is a challenging task. This task is addresggske;" is the complex conjugate, ane| denotes the magnitude

in detail in this paper. of the complex field. In his remarkable paper in 1852, Stokes
Images observed by SAR systems are degraded by spe¢RB introduced four measurable quantities, which are known as

noise due to coherent interference of waves reflected fratre Stokes parameters, for describing the properties of polarized

many elementary scatterers [9], [18]. This noise generatesight. Considering the Pauli group of matrices, i.e.,

grainy structure in the image and reduces the precision of

E[|Ex?] E [EHEV*]>
E[EvEgY] E[|Ev|?]

( aq as +iay ) @)

az — 7:CL4 ag

1>

the measurements. Speckle noise can be reduced by multilook oo = <1 0) o= <1 0 >

processing wherg-independent SAR images (of the same 01 0 -1

scene) are averaged to formydook image. The statistics of 0 1 0 —i

these multilook intensity images have been studied in partic- 2= <1 0) 03 = (2 0 ) 3)

ular cases (see [19] and [20] and references therein). In this

paper, we derive the joint distribution of the multilook SARhe multilook (empirical) covariance matrik can be decom-
intensity images in a more generalized case. Based on thissed as [24], [25]

distribution, we derive maximum likelihood (ML) and moment- ) i

based (MoM) estimators of the DoP in hybrid/compact and T — (EE') = ( <|EH|*> <EHE¥>>

linear dual-pol modes. We evaluate and compare the perfor- (BEvEy) (lEv]?)

mance of the proposed estimators for both synthetic and real 1

data, which are acquired by RADARSAT-2 spaceborne and =5(800 + 8101 + 8202 + g305)
NASA/JPL AirSAR systems. We compare the DoP estimators 1 ,

in different linear and hybrid/compact dual-pol SAR modes - ( g+ 81 82— 183 ) (4)
over various terrain types such as urban, vegetation, and ocean. 2\&211gs g~ &

Some potential applications of these DoP estimators are a\'/?ﬁere parametersy,

g1, 92, g3+ are called the Stokes param-
presented.

eters, and the vector

This paper is organized as follows. In Section Il, we first re-
view some physical and mathematical definitions used through- go <|EH\2 + |Ey \2>
out this paper and formulate the problem of interest. In Sec- _ e | _ | {Eul?*-|EVI?) ®)
tion lI-A, the joint distribution of multilook SAR intensity &= g | 2R(EnEY,)
images is derived. This distribution is used, in Sections IlI-C g3 23 (EuEYy)

and Il1-D, to derive the ML and MoM estimators of the DoP. In o
Section IV, our synthetic and real data sets are described. £5-called the Stokes vector. In these expressidisis the
perimental results, discussions, and future work are presenfiPlex electric field received in the subscripted polarization,

in Section V, with concluding remarks given in Section vI. () denotes ensemble averaging (multilooking in the SAR con-
text), and® and ¥ denote the real and imaginary parts of the

complex field, respectively. Note that the transmit polarization

[I. POLARIZATION CHARACTERISTICS is not included in the subscripting. The transmit polarization
for a traditional dual-pol radar is either H or V, for the hybrid
(CL-pol) mode is either left or right circular (L and R), and for
the /4 compact mode is HV oriented at 45 (Lyso).

As aforementioned, the state of polarization of an electro-
E(u t) = Feilwt—vu) 1) magnetic wave can be characterized by the DoP, which is

’ defined in terms of the covariance matrix elements as [17]

Considering a right-handed systdiiy, @y, %), an electro-
magnetic monochromatic plane wave propagating along
expressed as

wherew is the angular frequency, is the wavenumbett = 1 9 . o 1
Bty + Evay is a complex 2-D vector, andiy, iy ) forms o _ (1 4 T ) °_ <1 4 laraz — (a3 + a)] )

(trT)?
of an electromagnetic wave is determined from the amplitudes (6)

a basis with two orthogonal unit vectors. The polarization state (a1 + az)?



where|T'| andtrT are the determinant and traceIfrespec- wherel, is a 2x 2 identity matrix,® is a 2x 2 complex Her-
tively. We see that (6) is invariant under unitary transformatiomsitian matrix, and|-| represents the determinant. The random
(such as rotation); thus, the DoP does not depend on the partiermitian matrixA g is expressed in terms of thhlook Stokes
ular orthogonal pair of polarimetric channels chosen to measyr&ameters as follows:
the backscattered wave [26]. Hence, the DoP is invariant of
the (receiver) polarization basis. Note that the wave is totallg _zq: ( |En, > En, By, > _q ( g0+81 gz—z’g3>
. . E— % 2 — . .
depolarized forP = 0, totally polarized forP = 1, and par- =\ Bv; By, |Ev, | 2 \g2tigs go—&1
tially polarized wher? €]0, 1[. The estimation of the DoP from (12)
expression (6) can be conducted by estimating the parameters ~
of the covariance matrix, i.eu;, i = 1, . .., 4. For this purpose, BY deﬂmtg)p, the Laplace transform of the pdf@fs L4(6) =
we introduce a modified Stokes vecgpdefined as Elexp(—6"g)], with & = (61,62, 03,04)". Therefore, using (7)
) and (12), one can obtain
g = — - T 7
g=5(g0 + 81,80 — 8180 + 82,80 + 83) (7) La(®) —E [exp (—tr(OT Ap))]
Throughout this paper, we refer to the four elementg afs =La,(©) (13)
four intensity imagesWe also consider that for each intensity
image, ¢ looks are taken. Note that full polarimetric radaghere
systems measure the complex-valued elements of the scattering _
matrix S (also called the Sinclair matrix [27]) rather than the ®— < @1‘ O3 + Z@4> (14)
modified Stokes parameters. The scattering matrirelates O3 — 10, ©2

the electric vectolE" of the received (or backscattered) field .
to the transmitted (or incident) illuminatiofi* b with  q01 =01 + (63 +04)/2, 492 =02+ (03 +04)/2,
itted (or incident) illuminatiofi” by 4Os — 03/2, and ¢O, — 6,/2. Hence, using (11) and (13),

E" — SE'. S — Sun  Suv ®) and after calculating the determinant, we obtain the Laplace
' Svu Svv )’ transform of the pdf of the modified Stokes vegioas

However, in what follows, we show that the modified Stokes 1

parameters introduced in this paper are of great mathematicaF( ) 13(9)(1
interest (in addition to their physical relevance in optical _ .
polarimetric imagery [28, pp. 340-341]) and can be employed?(6) =1+ a0 + (20105 + 0504 + (61 + 02)(03 + 04)]
to derive simple estimators of the DoP. 1 T
a1 + as a1 + ao
az; (al,ag, 5 + as, 5 +a4>

Ill. THEORY

1
A. Joint Distribution of Multilook SAR Intensity Images B = 5 (a1ag — a3 —a3) . (15)

SAR data are usually multilook processed for speckle re- - ) ] .
duction. A multilook image is obtained by averaging multipldVe see that(0) is a quadratic affine polynomial; thus, the
independent measurements. In order to estimate the DoP, di@ribution of theg-look intensity vectorg is a multivariate
first study the statistical properties of the multilook intensitgamma distribution (MGD) with/ = 4 (see Appendix A for
vectorg. For this purpose, we derive the Laplace transform #fore details). We note that € N is the dimension of the
&. Itis well known that, under the usual assumption of fully dedamma distribution, i.e., the number of available intensity
veloped speckle, the Jones vectis distributed according to Images. Moreover, based on the characteristics of an MGD,
a complex circular Gaussian distribution [18] whose probabiliiie marginal distributions of twgd = 2) or three (d = 3)

density function (pdf) is multilook intensity images are also MGDs. Thus, one can set
the corresponding; to zero in order to obtain the related
pa(E) = % exp(—E'T7'E). (9) polynomials leading to the marginal pdfs. The parameter
m2|[| both the number of looks and the shape parameter of the gamma
Consideringg-independent (1-look) sampleB;, where j = distribution. The earlier results are valid for amy> 0; thus,q.
1,...,q from such a distribution, the-look Hermitian covari- ¢an be chosen as either the number of looks (with values in the
ance matrixT is expressed as set of positive integerd) or the equivalent number of looks [9],
. [29] (with values in the set of real positive numb&rs).
T = 1ZEJ-E; (10)
153 B. Marginal Distribution of Two Multilook Intensity Images
Let Ar =q¢L. Based on Appendix A, the matriAg is In the general case, where the four intensity images (defined
distributed according to a Wishart distribution whose Laplad®/ 8) are available, the properties of an MGD can be used to
transform is directly derive the estimators of the DoP [30] under different

polarizations and incidence angles [31]. However, in dual-pol
La,(®)=Elexp (—tr(@"Ag))] = [l +T'®|? (11) SAR systems where only two intensity images are delivered,



estimation of the DoP is challenging. In the particular case tife ML estimators of-, which is denoted ag,y,, satisfies the
two multilook intensity imagesd = 2), it can be shown that following nonlinear relation:
(80,81)T follows a BGD whose pdf is (see Appendix A):

S AN~ (g Jar (CE0[]E [])
a2§o+a1“g'1) g el alML@ML*’"ML’EZ;gO & g e o) "
243 (28)"T(q) ” (18)

*Ja(cgog1)lz: (€0.81) (16)  \ve note that (18) also ensures that the ML estimators of
a; and a, decouple from one another and The practical
determination of~y, is achieved by using a Newton—Raphson

_ ] procedure under the constraiir, € [0, 1]. The ML estimators
fa(z) = 32720 27 /(T(q + j)j!) is related to confluent hyperge-of 4, | 4,, andr are then plugged into (6), yielding the DoP ML
ometric and modified Bessel functions [32, p. 374]. We see thaltimator based on two multilook polarimetric images

this distribution is parameterized ly, a2, andr. Hence, we

can derive the ML estimators of these three parameters. More- ~
over, based on the first- and second-order moments of such a P = |1 -
distribution (given in Appendix A), the moment estimators of
a1, as, andr can also be derived.

The earlier distributions, which are derived fpe R™ and .
d € {1,2,3,4}, generalize those of [20, eq. (16)] derived fof- MoM Estimators
g=1andd =2, [19, eq. (30)] derived for, € N andd = 2, The first- and second-order moments of a BGD are given in
and that of Chatelairet al. [30] derived forg =1 andd € Appendix A. Considering (16) along with these moments, one
{1,2,3,4}. It is worth noting that while the introduced mod-can find the first- and second-order momentsgf g, )7 as
ified Stokes vectog follows an MGD, the Stokes vect@ is

PBGD(80,81) = exp <—

where 8 = 1/2¢%(a1as — r), ¢ = ¢*r/(araa — 1)%, r = a3 +
a3, T2 (80,81) is the indicator function orR* x R*, and

1

4(alML62ML — ?ML)
(alML + aQML )2

(19)

not distributed according to an MGD (sinég(6) = 1/P(6)9, m1 =E[go] =a1, me=E[g]=a (20)
where the polynomialP(8) is not affine)! The latter makes o r
clear that the modified Stokes vectgris more appropriate mi2 =E[gog1] = p + a1az. (21)

than the standard Stokes vectpffor deriving the estimators

of the DoP. In the following sections, we derive ML and MoMHence, moment estimators of, a», andr can be obtained as
estimators of a;, az, r) using the properties of a BGD. Thesgollows:

estimators lead to the ML and MoM estimators of the DoP

, o _ S

based on two intensity images. Qlygons =111 = Zgl ] 1=1,2 (22)
Jj=1

C. ML Estimators Taront = (M2 — M1Ma)

The ML method can be applied in the bivariate cége- G~ R R

2) since a closed-form expression of the density is avail- Zﬁzgo 181 7] — q@1on @20pon - (23)
able, as shown in (16). Consideringindependent vectors J=1

g[1],...,g[n] from such a distribution and differentiating the.l_
joint density ofg;.,, = (g[1],...,g[n])T, which is denoted as
p(g1.n), With respect tau; andas, and solving the equations
Op(&1.0)/0a1 = Op(g1.n)/0as = 0, we obtain the ML estima-
tors ofa; andas as

hese estimators are then plugged into (6), yielding the MoM
estimator of the DoP, which is denoted Ag,\. We see that
the moment estimators af;, a» are the same as their ML esti-
mators. On the other hand, the ML estimator-ahcorporates

a weighted second-order moment compared with its moment
N 1< estimatoriyon. We note that these results generalize those in
Uiy, = Zgz 7], I=1,2 (17)  [33] derived forg = 1 (using a different method) in an optical

J=1 polarimetric imagery context.

wheren is the number of pixels used for the estimation. In

practice,a;,,, is calculated for each pixel of the multilook IV. DATA AND STUDY SITES

intensity image by using a sliding square window (centered on

the considered pixel) and computing the empirical mean overThe performance of the proposed DoP estimators are evalu-
the n pixels contained in the window. The parameteis the ated on both synthetic and real data. In this paper, we use a set

correlation coefficient for the BGD; thus, it is upper bounde@f synthetic polarimetric images as well as four real data sets,
by 1. Moreover, we have = a2 + a2, which makes- to be Which are acquired by RADARSAT-2 spaceborne and NASA/

positive; thus, we have € [0, 1]. By replacinga; anda, in  JPL AirSAR systems._The full-pol data sets are used to generate
Op(&1.:m)/0r = 0 by their ML estimators, one can show thahybrid/compact and linear dual-pol data. We compare the DoP
estimators in different SAR modes over various terrain types
1The distribution of the Stokes vector is more complex; however, it can gich as urban, Vegetat'_on’ and ocean. The synthetic and real
obtained from the distribution @ by a change of variables. data sets are described in what follows.



TABLE |
DOP AND THE CORRESPONDINGCOVARIANCE MATRICES OFSYNTHETIC POLARIMETRIC IMAGES

| lPo| Ty [ Ts | Ps [Ty [ Ts | Te [ T7 [ Ts | To |
a1 2 5 15 1 16 82 18 30 2 1.25
as 2 5 6 1 3.6 17 11 14 2 26
a3 0 1 0.2 0.4 0 0 7 16 0.6 0
ay 0 0 0.5 | +v0.14 0 13 8 8 1.8 5.5

P o ]o020]045] 055 [ 0.63 | 0.70 | 0.77 | 0.90 | 0.95 | 0.99 |

Fig. 1. San Francisco Bay, CA. USA. (a) Google Earth image of the are,
(b) Pauli RGB image of the RADARSAT-2 fully polarimetric data set (Red,
|SHH — val; Green,\SHV + SVH|; Blue, ‘SHH + Svv). The four out-
lined areas in (b) are (from left to right) ocean, urban 1, park, and urban
regions. The original image has a size of 1270450 pixels.

A. Synthetic Data

To evaluate the performance of the proposed estimators
synthetic data, we consider ten different valued oflenoted
asTy, I'y, ..., I'y, as shown in Table I. The synthetic images
were generated from these covariance matrices, without spe€ig- 2. Vancouver, BC, Canada. (a) Google Earth image of the area. (b) Pauli

; ; ; ; i At GB image of the RADARSAT-2 fully polarimetric data set (Réfgu —
|cally considering any particular polarization (see [30] for mor | Green,Siry + Sval: Blue, [Sixt -+ Svv ). The outlined areas in (b)
details). are (from top to bottom) vegetation, urban, and sea regions. The original image

has a size of 198% 11393 pixels.

B. Real Data

1) Full Polarimetic Data: We evaluate and compare the
proposed estimators using two C-band data sets acquired
RADARSAT-2, as well as two L-band data sets acquired bjgs™
the NASA/JPL AirSAR system. RADARSAT-2 is a Canadianjg
C-band SAR satellite launched in December 2007. It providd
many operating modes, including linear dual-pol and quad-pf
modes, and supports right- and left-look imaging. The NAS
JPL AirSAR system is a side-looking three-frequency airborne

polarimetric system. It became operational in 1988, simultarfdg- 3. Flevoland, The Netherlands. (a) Google Earth image of the area.
(b) Pauli RGB image of the NASA/JPL AirSAR fully polarimetric data set

ously providing P-, L-, and C-band fully polarimetric data.  (red, sy — Syv|: Green,Sgy + Syrl; Blue, |Spr + Syv|). The out-
The RADARSAT-2 data sets are acquired in fine quad-piled area in (b) is a test area in which a number of high-voltage transmission

mode over San Francisco Bay, CA. USA—i{?O 450" N, towers are present. The original image has a size of 20280 pixels.
+122°1770”" W), and over Vancouver, BC, Canada

(+49°15'0" N, +123°6'0" W). The Google Earth and Flevoland data set covers a large agricultural area of horizon-
Pauli RGB images of these data sets are shown in Figs. 1 dallly flat topography and homogeneous soils, some man-made
2, respectively. These data sets consist of three main regiostsuctures, and a small water area. The San Francisco data set
man-made structures (urban areas, bridges, etc.), water ama®rs nearly the same regions as the first RADARSAT-2 data

(ocean, seas, and lakes), and vegetation areas. set. The Google Earth and Pauli RGB images of these data sets
The NASA/JPL AirSAR data sets are acquired in quadire shown in Figs. 3 and 4, respectively.
pol mode over Flevoland, The Netherlands5¢° 20" 00” N, We use the scattering vectér= (Sun, Suv, Svia, Svv)’

+5°23'00” E), and over San Francisco Bay, CA. USA. Théo represent full polarimetric SAR data. Scattering vectors in
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—2F —e— MoM g=1
t==MoM g=35
g—MLg=1

Fig. 4. San Francisco Bay, CA. USA. (a) Google Earth image of the are
(b) Pauli RGB image of the NASA/JPL AirSAR fully polarimetric data set
(Red,|Sun — Svv|; Green,|Suv + Svul; Blue, [Sun + Svv|). The four gy 5 10s MSE of P as a function of P for polarization matrices;
outlined areas in (b) are (from left to right) ocean, urban 1, park, and urbarhqu' n': o8 P ’

) SN - h 11 x 11. Number of Monte Carlo realizations i80%, and ¢ =
regions. The original image has a size of 102900 pixels. number of looks.

hybrid/compact and linear dual-pol modes are built from quac TR
pol data as follows (see Appendix B for more details). =i
2) Dual-Pol Data: The scattering vectors for traditional -5t

I === MOM § = 5 =ML 7 = 1 -=-ML g = 5 =4 images, ¢ = 1 -=-4 images, g = 5

dual-pol modes are given by ) gf
Fop1 = (Sum, Siv)" J;:z_:
kppa = (Svi, Svv) T éta: g "
kpps = (Stm, Svv)T. (24) _“\ o -'
3) Hybrid/Compact Data:The scattering vectors for the e e ey e e

w/4 [10], DCP with right circular transmit, [11], and right cir- Fig.6. (a)log MSE of P versus the logarithm of the sample size for the matrix

cular transmit, linear receive (CL-pol) [12] modes are given b, ) same as (a) for the matris. Number of Monte Carlo realizations is

104, andg = number of looks.

- 1 T
Fja = \/i(SHH + Sy, Svv + Svn) that the ML estimators of the DoP deliver better estimations
. 1 compared with the MoM estimators (which is a classical result).
kpcp = 5 (Sun — Svv —i[Suv + Svu], Sun Fig. 6 shows the performance of the different estimators as a
- function of the sample size for different numbers of looks
+Svv + Suv — Svu)

and two matrice¥’; andI'g (given in Table I). The usual linear
relation betweetog,;, MSE andlog,,(n) is observed in both
single- and multilook cases. These figures also show the gain of
performance obtained with the ML method compared with the
We note that under the scattering reciprocity and in th@om. We note that ML is significantly better than MoM for
backscatter alignment convention, we havg, = Svu [34].  T'g (P close to 1). In other words, the DoP estimation using the
ML method is more precise than MoM, particularly in highly
V. EXPERIMENTAL RESULTS AND DISCUSSION polarized regions (which is explained by the weighted second-
order moment ofryr,). As aforementioned, speckle noise is
better reduced with a larger number of loakswhich in turn
The performance of the ML and MoM estimators are conleads to a better estimation performance. We note that, in Fig. 6,
pared using the synthetic data presented in Section IV-the larger the number of lookg, the better the estimation
Fig. 5 shows the log MSEs of the DoP estimates obtain@érformance is for both ML and MoM estimators.
with two images using the ML (red diamond markers) and
MoM (blue square markers) estimators for different numbers Bf
looks. Comparing these MSEs with those corresponding to four
images (black circle markers), the performance loss that occurdhe performance of the ML and MoM estimators are
when using only two polarimetric images, instead of four, casompared using dual-polarized SAR data presented in
be clearly observed (note that the ML and the MoM estimatio@ection 1V-B2. Maps of the DoP in (HH, HV) and (HV,VV)
coincide when four images are observed). Moreover, both Milual-pol modes for RADARSAT-2 San Francisco Bay and
and MoM estimators deliver good estimations wifers close AirSAR Flevoland data sets are presented in Figs. 7 and 8. A
to 1, whereas both estimators tend to estimate the DoP legsual inspection of the results suggests that all the estimators
accurately wherP is close to 0. This confirms that the estihave a similar global behavior with the water areas having the
mation of the DoP is more precise for highly polarized regiomaaximum DoP and the vegetation areas having the minimum
compared with moderately polarized areas. Moreover, we deeP. Since the DoP estimation based on four images is the

- 1 . .
kcr-pol = E(SHH —iSuv, —iSvv + Svu)".  (25)

A. Performance Analysis With Synthetic Data

Performance Analysis in Dual-Pol SAR Imagery



area in (HH, HV) dual-pol mode. The scatter plots have been
normalized in the range of [0, 1]. The closer the estimated val-
ues are to the diagonal line, the better the estimation, compared
with the given reference (note that the scatter plots of the ocean
region are shown in a different scale). The DoP reference maps,
computed using four images, are shown in Fig. 10. There are
2 ". by i 3 several phenomena to note in Fig. 9. The ML estimators of
o A the DoP deliver better estimations over all the different terrain
types, which are present in our data set, compared with MoM
3 i gk estimators. Both ML and MoM estimators tend to overestimate
Al . R N S S ¢ | the DoP for urban areas (values over the diagonal line). These
(d)-_'ﬁ_"“‘gﬂﬁ_‘f”;‘j ' ﬁ (LJQ'%; = b ' estimators deliver good estimations for valuesiflose to
¥ """f'g&ﬁ' ? “{{ﬁ? 1 (ML over the ocean being the best). However, they tend to
i estimate the DoP less accurately in the vegetation areas with
‘P values close to 0.7 (the MoM estimator over the park area
being the worst). Scatter plots derived from other presented
data sets suggest the same results. This is in agreement with
Ry the results from synthetic data presented in Fig. 5. Fig. 11
AT shows the scatter plots of the ML and MoM estimators for
' different sizes of the sliding window over the park region. It
confirms that a bigger sliding window leads to better estimation
Rl - i : results for both ML and MoM estimators. We also notice that
@& se . - - 74| foreach sliding window, the ML method gives estimators with
smaller variances (i.e., better performance), compared with the
corresponding MoM estimators.
Fig. 7. Comparison of the DoP ML and MoM estimators in dual-pol modes.

RADARSAT-2 image of San Francisco Bay, CA. @ML in (HH, HV) mode. . . . . .
(b) Patont in (HH. HV) mode. (/P in (VH, VW) mode. (d)Pagons in (VH. C. Comparison of DoP Estimations in Hybrid/Compact and

VV) mode. A sliding window covering. = 9 x 9 pixels is used. Linear Dual-Pol Modes

In this section, we study and compare the ML estimators
of the DoP, based on two intensity images, in hybrid/compact
and linear dual-pol modes. As aforementioned, the phase in-
formation simplifies the estimators of the DoP and can also
provide us with potentially useful information (see [31] for
more details). However, the analysis conducted in this paper
mainly applies to applications where the phase information is
not available. Hybrid/compact dual-pol data are simulated using
(25) based on quad-pol data. Figs. 12 and 13 show the maps
of the DoP obtained using two intensity images delivered in
each hybrid/compact and linear dual-pol mode, respectively,
for RADARSAT-2 San Francisco Bay and AirSAR Flevoland
data sets. We note that Figs. 12 and 13(a) and (b) are the same
as Figs. 7 and 8(a) and (c), respectively. A visual inspection
of the results for the RADARSAT-2 San Francisco Bay image
- suggests that the DoP estimates in traditional linear dual-pol
00 02 a4 06 0% 10 modes [see Figs. 12(a) and (b)] are better suited for the segmen-
Fig. 8. Comparison of the DoP ML and MoM estimators in dual-pol modeg‘.’Jltlon of the image, compareq with 2Other hybr!dlcompa(:t QUaI-
NASA/JPL AirSAR image of Flevoland, The Netherlands. I%)IL in (HH, pol mOdeS'_The _meamand variance~ of the, estimated D_OP _m
HV) mode. (b) Pagony in (HH, HV) mode. (¢)Py, in (VH, VV) mode. each polarimetric mode over four test regions, shown in Fig. 1,
(d) Prtons in (VH, VV) mode. A sliding window covering, = 5 x 5 pixelsis ~ are given in Table Il. We note that the proposed MLE estimators
used. are asymptotically unbiased (i.e., considering a large number of

samples); thus, the variance can demonstrate the performance
benchmark (classical) estimation, we consider it as the refef-the estimators. Since the ocean region is a homogeneous
ence in this paper. We use scatter plots in order to examirggion, the estimates with small variances demonstrate better
how well the DoP estimations in dual-pol modes fit the DoBstimation performance. We notice that, in Table Il, traditional
estimations based on four images. linear dual-pol modes, i.e., (HH, HV) and (VH, VV), give

Fig. 9 shows the scatter plots of the DoP ML and MoMstimators with smaller variances (i.e., better performance)
estimations over different regions of the San Francisco Bagpmpared with other dual-pol modes. We highlight that the
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Fig. 9. Scatter plots of the DoP ML and MoM estimates in (HH, HV) dual-pol mode versus the DoP estimates based on four intensity images over differen
regions of the San Francisco Bay image (RADARSAT-2 data set). On the abscisPavatees based on four intensity images, and on the ordinate are the
estimated values in the dual-pol mode. Perfectly estimated values lie along the diagonal gy (ayer ocean. (bPrion Over ocean. (CPyy, over urban 1.

(d) 7/5MDM over urban 1. (ey/J\ML over park. (f)73MoM over park. (g)I/J\ML over urban 2. (h)Pnion Over urban 2. Regions are shown in Fig. 1(b). A sliding
window covering 9x 9 pixels is used.

1 1 pr
08 038 e i
0.6 0.6 3
0.4 £ 5 D04 o
RAL pMoM
0.2 02
0 0
0 020406 08 0 020406 08 1
P P
1 I
0.8 0.8
0.6 : 0.6
0.2 0.2
Y 020406 08 1 Yoz oaps 08 1
Fig. 10. Maps of the DoP based on four intensity images. (a) San Francisco 1 P I P _
Bay, CA. USA,n = 9 x 9. (b) Flevoland, The Netherlands,= 5 x 5. o P 488"
0.6 / 0.6 p
latter conclusion is coherent with previous studies, although 0.4 P D 04
. . ML Mo
using a different approach (see, e.g., [35, Table I11]). 02 0.2
The statistics of the DoP ML estimators in different hybrid/ Q 9
X . 0.2 04 06 08 1 0.2 0.4 06 08 1
compact and linear dual-pol modes are further studied for water, P I P
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urban, and vegetation areas in Figs. 14, 15, and 16, respectively.

For each of such areas, three test regions are chosen fromrAbet1. Comparison of the scatter plots of the DoP ML and MoM estimates
RADARSAT-2 Vancouver, the RADARSAT-2 San Franciscdor different sliding windows over the park region. On the absciss@®drased
Bay, and the ATSAR San Francisco Bay data sets. The (83{001 ey mages, e on e crivate e e eetmate aues 1 e
regions are 0““'”99' in Figs. 1, 2, and 4. We _nOte that t I?eft column)7/5ML. (Right cqumn)ﬁMoM. (First row)n = 5 x 5. (Second
selected water regions are homogeneous regions with oelln = 11 x 11. (Third row)n = 19 x 19.

bounce scattering mechanism. On the other hand, the urban ar-

eas include buildings, streets, grass, trees, and other structysesvide discriminating information for different regions. These
Therefore, the urban regions represent combinations of diffeesults are of interest for the classification and segmentation of
ent scattering mechanisms, although even-bounce scatteringaarimetric SAR images, in particular, the distinction of urban
dominant. The vegetation regions exhibit a volume scatteriagd vegetation areas from water areas (compare Figs. 15 and 16
mechanism. In these figures, the variance of the DoP shawdig. 14). We note that, due to the high level of detail involved
that urban and vegetation areas are more random than ocieathhe urban environment, the full benefit of the DoP for urban
areas (which is well known). Moreover, we notice that the meapplications is achieved by performing the DoP estimation on
of the DoP is different for these areas; thus, mean values dagh-resolution SAR images. This is an interesting subject for
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Fig. 12. Maps of the DoP (ML estimates) in different hybrid/compact and linear dual-pol modes, over San Francisco Bay area (RADARSAT-2 data set).
(a) HH-HV. (b) VH-VV. (c) HH-VV (d) DCP. (e) CL-pol. (fyr /4. A sliding window covering 9x 9 pixels is used.

Fig. 13. Maps of the DoP (ML estimates) in different hybrid/compact and linear dual-pol modes, over Flevoland, The Netherlands (AirSAR dattsety. (a)
(b) VH-VV. (c) HH-VV (d) DCP. (e) CL-pol. (f)r/4. A sliding window covering 5x 5 pixels is used.

future work, notably with the advent of new emerging highthe clutter background is the backscatter from the agricultural
resolution SAR systems such as RADARSAT-2 ultrafine modeea. The Google Earth and Pauli RGB images of this test
(3 m), and TerraSAR-X high-resolution Spotlight mode (up toegion are shown in Fig. 17(a) and (b), respectively. The eight
1 m) imagery. As the last part of our analysis, we examirfégh-voltage transmission towers are manually identified on the
the capability of DoP ML estimations in hybrid/compact an&oogle Earth image of the area (see the red boxes). In the Pauli
linear dual-pol modes to detect man-made metallic objects irinaage, the pink areas show the important dihedral contribution
natural environment. For this purpose, we study a subset of fnem high-voltage transmission towers.Some of these towers
AIrSAR Flevoland image (see Fig. 3) containing high-tensiocare bright enough to be identified on the Pauli RGB image,
electrical transmission lines in an agricultural environment. \whereas others are hidden in the agricultural environment.
this case, the targets are high-voltage transmission towers, &gl highlight that the detection of the transmission towers



TABLE I
MEAN gt AND VARIANCE o2 OF THEDOP ML ESTIMATES IN DIFFERENTPOLARIMETRIC MODES, OVER OCEAN, PARK, URBAN 1, AND
URBAN 2 REGIONS OFRADARSAT-2 SAN FRANCISCOBAY DATA SET (REGIONSARE SHOWN IN FIG. 1)

HH-HV VH-VV | HH-VV DCP CL-pol /4

®| o b o K| o2 © o2 b o K| o2

Ocean | 09751 1e-4 | 09821 1e-4 | 0929, 12e-4 | 09101 16e-4 | 0.910, 17e-4 | 0.928) 12e-4
1 I 1 1 1

Park 07211111e-4 | 0.6921111e-4 | 0.4661316e-4 | 0.3981336e-4 | 0.4051344e-4 | 0.5371255¢-4
1 1 1 1 1 1

L L 1 1 1 s

1 I 1 1 1 1
Urban 1] 0s20 120e-4 | 0.82750e-4 | 0.603)198e-4 | 0.562,285e-4 | 0.6041213e-4 | 0.647 1177e-4

1 L 1 1 1 L
1 ! 1 1 1 1

Urban 2 | 0949} 16e-4 | 0.913130e-4 | 0.602)221e-4 | 0.5841280e-4 | 0.603)223e-4 | 0.618]212¢-4

1 ! 1 1 1 1

Sea Park
AIrSAR RADARSAT-2 RADARSAT-2 AIrSAR RADARSAT-2 RADARSAT-2
San Francisco Bay San Francisco Bay Vancouver San Francisco Bay San Francisco Bay Vancouver
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Fig. 14. Histograms of DoP ML estimates in different polarimetric mode
over three different water areas. (First row) HH-HV. (Second row) DCP. (Thi
row) CL-pol. (Fourth row)r /4. (Left column) Water area from the AirSAR
San Francisco Bay data. (Middle column) Water area from the RADARSAT:
San Francisco Bay data. (Right column) Water area from the RADARSAT:
Vancouver data. Regions are shown in Figs. 1, 2, and 4. A sliding wind
covering 9x 9 pixels is used.

d|g 16. Histograms of DoP ML estimates in different polarimetric modes
over three different vegetation areas. (First row) HH-HV. (Second row) DCP.
(Third row) CL-pol. (Fourth row)r /4. (Left column) Vegetation area from the
rSAR San Francisco Bay data. (Middle column) Vegetation area from the
DARSAT-2 San Francisco Bay data. (Right column) Vegetation area from
e RADARSAT-2 Vancouver data. Regions are shown in Figs. 1, 2, and 4. A
sliding window covering 9 9 pixels is used.

Urban . . .
— RADARSAT.2 R — Fhe eight towers are clearly detected by DoP. ML estimations
San Francisco Bay San Francisco Bay Vancouver in CL-pol and /4 modes, whereas the traditional dual-pol
J ‘ ‘ modes in Fig. 17(c) and (d) demonstrate lower target detection
0 02 04 06 08 1 0 02 04 06 08 |1 02 04 06 08 performance in this test case. We note that, in Fig. 17(c)—(f), a

threshold has been manually chosen so that a maximum number
of targets is visible. We see that the DoP is a good parameter
02 04 06 08 to separate deterministic objects from a random environment
in partial polarimetry. These results are of great interest in a
variety of applications dealing with the detection of targets in

&

0 02 04 06 08 1 0 02 04 06 08

L

0 02 04 06 08 1 0 02 04 06 08 I 62 04 06 08 a natural environment, such as maritime surveillance, vessel
‘ detection, ship observation, and so forth [31].

0 02 04 06 08 1 0 02 04 06 04 06 08

Fig. 15. Histograms of DoP ML estimates in different polarimetric modes VI. CONCLUSION

over three different urban areas. (First row) HH-HV. (Second row) DCP. (Third .. T . . . .
row) CL-pol. (Fourth row)r /4. (Left column) Urban area from the AirSAR 1 he joint distribution of multilook polarimetric SAR inten-

San Francisco Bay data. (Middle column) Urban area from the RADARSATSAty images was derived and expressed in closed form. ML
San Francisco Bay data. (Right column) Urban area from the RADARSATagnd MoM estimators of the DoP, based on hybrid/compact
Vancouver data. Regions are shown in Figs. 1, 2, and 4. A sliding window

covering9 x 9 pixels is used. @nd linear dual- pol SAR intensity images, were proposed.

The performance of these estimators was then evaluated over

differs from the previous classification context; in particulagynthetic and real multilook polarimetric SAR data, acquired by
transmission towers introduce a preferred direction and thRADARSAT-2 spaceborne and NASA/JPL AirSAR systems.
may be more visible in some dual-pol modes than the othdfgperimental results suggest that ML estimators outperform

because of their alignment. Fig. 17(e) and (f) shows that all BfoM estimators over different terrain types, such as urban,



where X is the covariance matrix, ang- | represents the
determinant. If¢,, &,, ..., §, is a sample ofg-independent
complex-valued vectors from such a distribution, then the sam-
ple Hermitian covariance matrix

q
Se= -3 ge! (27)
et
is the ML estimator ofS¢ [36]. ConsiderA¢ = ¢3¢. The
. . 'S J = 3 = joint distribution of the elements of the matriX, is called a
- - - - complex Wishart distribution whose pdf is expressed as [36,
Th. 5.1]
(c) |Ag|T?
! "" » wE TR g A pw(Ag) = B () exp [—trxglAs} (28)
i '-
ot e S where B(S¢) = 71/22¢-DT(q)---T(q — p+ 1)[¢|9. The
(d) . Laplace transform of such a distribution is expressed as
= La.(©) =E[exp(—tr(@" Ag))] = |I, + 0|79, wherel,
. . - L - r ® is the p x p identity matrix, and® is a p x p complex

Hermitian matrix such thak s, (©) < oo.

MGD: In the literature, MGDs have several nonequivalent
© definitions. In this paper, we consider the definitions provided
in [37]. Letd € N be the set of positive integers. The probability
distribution 1« on R, called an MGD, which is denoted by
Ga(q, P), is defined by its Laplace transform as [37]

Lyu(2) = [P(z)] 1 (29)

Fig. 17. Man-made metallic object detection based on the DoP ML estima- o

tions. (a) Google Earth image of the test area in which eight high-voltagghere the shape parameter satisfies 0, and the scale param-

transmission towers (red boxes) are present. (b) Pauli RGB subimage ofé@rp(z) is an affine polynomial (i.e¥; : 82P/8z2 = 0) with

area derived from the AiIrSAR Flevoland fully polarimetric data set (Rec{h tant t | to 1. Not ,tth th dj' . f

1St — Syl Green, | Sy + Syil; Blue, [Sgn + Syv ). () DoP ML e constant term equal to 1. Note e dimension of

estimation in (HH, HV) mode. (d) DoP ML estimation in (VH, VV) mode.the gamma distribution, i.e., the number of available intensity

(Ae) I%QP ML %S“mation_i“ CS';'%O'_m?de,- v D(;)P ML estimationif4 mode. jmages in this paper. Moreover, not all affine polynomials
siaing window covering PIXEIS 1S used. give rise to a valid Laplace transform. In this paper, we focus

vegetation, and ocean. The estimators of the DoP, based on tmoa particular case of MGD with a quadratic affine poly-

intensity images, deliver better performance in ocean and urbsmial, i.e.,

regions compared with vegetation areas. These estimators sug-

gest that DoP estimates in traditional linear dual-pol modes, i.e., d

(HH, HV) and (VH,VV), better distinguish different regions, P(z) =1+ Zpizi + Z PijZiZj- (30)

compared with other modes. However, it is shown that the DoP =1 lsi<jsd

is robust in hybrid/compact dual-pol modes (i.e., CL-pol and, . . . -
w/4) for detecting man-made metallic objects in a natural enr\I/?h'S family of polynomials and the necessary and sufficient

ronment. The statistics derived in this paper should prove use?;?lnditions under which they give rise to a valid pdf have
. ' . pap b been studied in detail in [37] and [38]. In particular, based on
in the study of hybrid/compact and linear dual- and quad-p L R .

: . . ) and ford = 2, a bivariate gamma distribution (BGD) is
SAR polarimetry. The developed DoP estimators are of inter %to . .
P> Lot ; ; tained WithP(z) = 1 + p121 + pazo + p12z122, Wherepy,
in different applications of hybrid/compact and linear dual-pcﬂ h f of
SAR data, such as image segmentation and object detection.? ~ 0, and0 < p1 < p1p>. The pdf of a random vectar =

' (x1,5)7 following such a BGD is given by [39]

1 1

APPENDIXA
THEORETICAL PROBABILITY DISTRIBUTIONS pBGD(T) = exp (-

P21 +p1$2) 2 el
P12 prilzr(Q)

Complex Wishart Distribution
X fq(cw1mo)lpe ()  (31)

Let us considek as a zero-meap-variate circular complex

Gaussian random vector. The pdféis given by where c= (pips — pi2)/p3es  and  f,(z) = Z;io oy

(T'(¢+4)j!) is related to confluent hypergeometric and

1
_ _ g1
pc(€) = P | X eXp( &% 6) (26) modified Bessel functions [32, p. 374]. The moments of a
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