Decomposition of multihomogeneous polynomials: minimal number of variables - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2013

Decomposition of multihomogeneous polynomials: minimal number of variables

Résumé

In this paper, we generalize Hironaka's invariants, the ridge and the directrix, of homogeneous ideals, to multihomogeneous ideals. These invariants are the minimal number of additive polynomials or linear forms to write a given ideal. We design algorithms to compute both these invariants which make use of the multihomogeneous structure of the ideal and study their complexities depending on the number of blocks of variables, the number of variables in each block and the degree of the polynomials spanning the considered ideal. We report our implementation in Maple using FGb library.
Fichier principal
Vignette du fichier
M-H_Ridge-ISSAC.pdf (199.62 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00778659 , version 1 (21-01-2013)

Identifiants

  • HAL Id : hal-00778659 , version 1

Citer

Jérémy Berthomieu. Decomposition of multihomogeneous polynomials: minimal number of variables. 2013. ⟨hal-00778659⟩
240 Consultations
185 Téléchargements

Partager

More