# INSTITUT D'ELECTRONIQUÉ ET DE TELECOMMUNICATIONS DE RENNES

Séminaire ED S2IM Énergie et technologie de l'information

Les TIC et l'écoradio

Jean-Yves Baudais

Limoges-XLIM 20 novembre 2012









# LE DÉCORS

### Un besoin de définition

- 2010, constat « there is currently no definition of the term "information and communication technologies", which is widely used in documents of the United Nations, ITU and other organizations » et requête pour la constitution d'un groupe pour définir le terme TIC, résolution 140 de ITU
- 2011, création du groupe (correspondance group) au sein de l'ITU
- 2012, 1<sup>ers</sup> résultats
- 2014, rapport final



### Sens communs

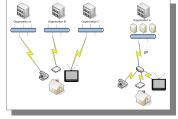
« Ce qui concerne le matériel électronique informatique et logiciels associés pour convertir, stoker, protéger, traiter, transmettre, récupérer des informations pour la plupart numérisées »

### Niveaux de description<sup>1</sup>

- Technique (composant)
  - Électronique, photonique, mécanique
  - Matériel, processus, techniques pour créer les éléments matériels de base
- Équipement (produit)
  - Combinaison matériel, logiciel
  - Systèmes ou dispositifs fonctionnels
- Service (contenu)
  - Applications matériels ou logiciels avec contenu

<sup>1.</sup> Rapport CE « Impacts des TIC sur l'efficacité énergétique », 2008

### Technique (composant)


- Information
  - Traitement : processeurs génériques ou spécifiques (CPU, DSP, GPU)
  - Stockage : semiconducteur, disques optiques, bandes magnétiques
  - Données d'entrée (micro-systèmes) : optiques, acoustiques, températures...
  - Données de sortie : optiques (projection), acoustiques (voix), micro-électro-mécaniques
- Communication
  - Téléphonie filaire (ADSL, IP...)
  - Diffusion (TV, radio)
  - Téléphonie mobile (GSM, GPRS, UMTS)
  - Transmission de données filaires (internet et réseaux locaux)
  - Réseaux sans fil (Wi-Fi, Bluetooth, ZigBee)

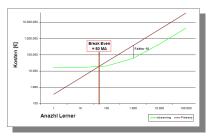
## Équipement (produit)

- Matériel de l'utilisateur final
  - Ordinateurs et périphériques (serveurs, consoles de jeux, ordinateurs portables, équipements vidéos...)
  - Enregistreurs, lecteurs, unités de stockage (DVD, USB, MP3...)
  - Modems (interface réseau à haut ou bas débit)
  - Téléphones filaires, sans fil, mobiles
  - Fax
  - TV et périphériques (récepteurs, antennes)

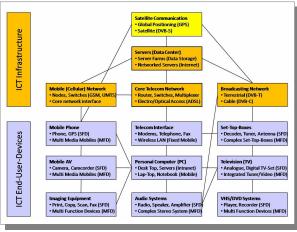
Frontière difficile avec EGP (électronique grand public)

- Convergence TIC-EGP
- Box triple-play (internet, téléphone, TV)




http://www.wikipedia.org/

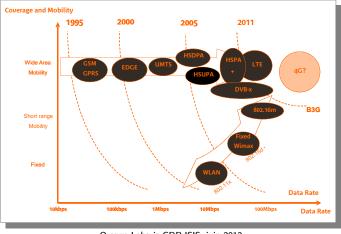
## Équipement (produit)


- Matériel de l'utilisateur final
  - Ordinateurs et périphériques (serveurs, consoles de jeux, ordinateurs portables, équipements vidéos...)
  - Enregistreurs, lecteurs, unités de stockage (DVD, USB, MP3...)
  - Modems (interface réseau à haut ou bas débit)
  - Téléphones filaires, sans fil, mobiles
  - Fax
  - TV et périphériques (récepteurs, antennes)
- Infrastructure
  - Serveurs et centres de données (data center)
  - Réseau filaire téléphonique (routeur, switch...)
  - Réseau cellulaire (station de base GSM ou UMTS, switch...)
  - Réseaux locaux sans fil (Wi-Fi, Bluetooth, ZigBee...)
  - Équipements de diffusion TV ou radio
  - Micro-sytèmes

### Service (contenu)

- Calculateur
  - Traitement de données, traitement multimédia, simulation
- Télécommunication
  - Téléconférence, télétravail, télé-achat...
- Internet
  - Commerce électronique, formation en ligne (*e-learning*)...



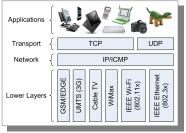

- GPS
  - Navigation, sécurité, contrôle de trafic...



Rapport CE, 2008

TIC = Informatique + internet + télécommunication

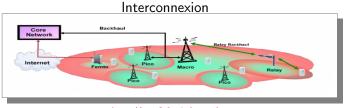
## Les télécommunications mobiles




Orange Labs in GDR-ISIS, juin 2012

- 1893 Tesla ; 1896 télégraphe sans fil de Marconi ; 1980 1G analogique ; 1990 2G numérique
- 1970 premier réseau local; 2000 développement Wi-Fi et Wimax

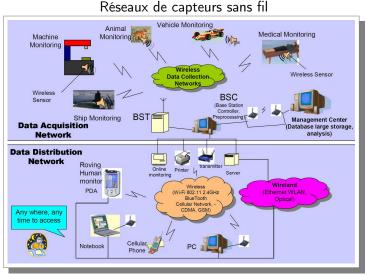
# Évolution des réseaux


#### Convergence, hétérogénéité



http://courses.ischool.berkeley.edu/




Rapport de master, M.L. Camara, 2008



http://www.3glteinfo.com/

... virtuel?

# Évolution des réseaux



W. Seah & Y. Tan, Sustainable wireless sensor network, Intechweb 2010

## LE CONSTAT

## Empreinte carbone TIC

2 à 3 % des émissions de gaz à effet de serre

6% 7% 9% Printers LAN and Office Te-40% lecoms Mobile Telecoms Fixed-Line Telecoms Servers (including 15% cooling) PCs and Monitors (excluding embodied enerav) 23%

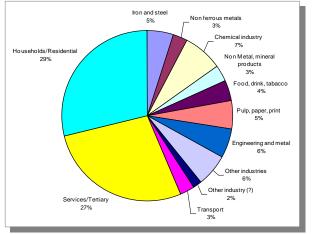
Répartition des émissions hors télédiffusion

Rapport ITU, 2007

> 2 à 10 % de la consommation mondiale d'énergie

## Empreinte carbone TIC

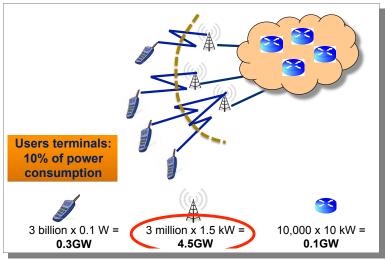
▶ 2 à 3 % des émissions de gaz à effet de serre


6% 7% 9% Printers LAN and Office Te-40% lecoms Mobile Telecoms Fixed-Line Telecoms Servers (including 15% cooling) PCs and Monitors (excluding embodied enerav) 23%

Répartition des émissions hors télédiffusion

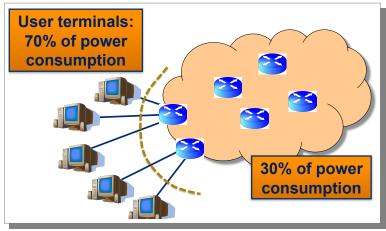
Rapport ITU, 2007

▶ 2 à 10 % de la consommation mondiale d'énergie


## Bilans énergétiques

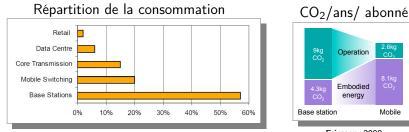


#### Consommation d'électricité par secteur en Europe en 2005


Rapport CE, 2008

### Réseaux mobiles



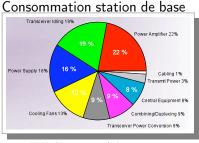

M. Meo, Grenn ICT, 2011

## Réseaux fixes



M. Meo, Grenn ICT, 2011

## Réseaux mobiles

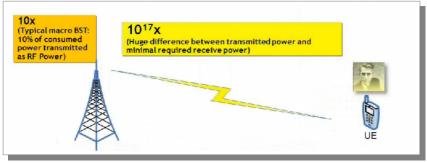



Vodafone, 2008



2.6kg

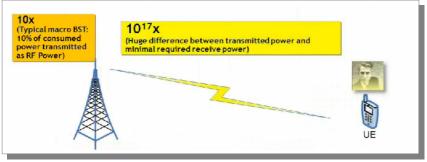
Mobile




H. Karl, rapport technique, 2003

Rendement d'une station 120 W de base : 3800 W

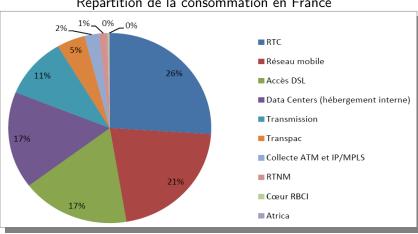
## Réseau mobile


 Besoin de couverture et de débit tout le temps partout pour tous les services



GreenTouch, Alcatel-Lucent, 2011

## Réseau mobile

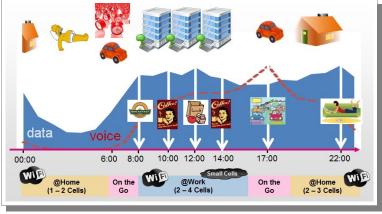

 Besoin de couverture et de débit tout le temps partout pour tous les services ≡ verser 100 km<sup>3</sup> pour un dé à coudre d'eau



GreenTouch, Alcatel-Lucent, 2011

#### Station de base ≡ radiateur

## Bilan d'un opérateur



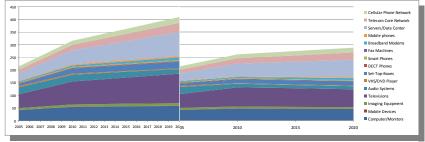

Répartition de la consommation en France

France Telecom. in WWRF 2008

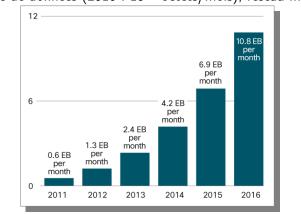
## Trafic

#### Trafic en Europe au cours d'une journée, réseau cellulaire



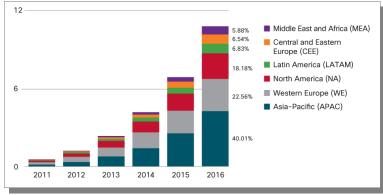


http://techneconomyblog.com/tag/mobile-broadband/

- ▶ 80 % du trafic depuis les bâtiments (habitat, travail)
- Succession pic Wi-Fi, pic téléphonie mobile


Trois scénarios

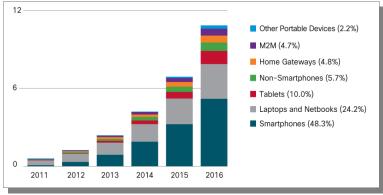
- De base : sans prendre en compte de l'augmentation de l'utilisation des TIC
- Business as usual : développement économique sans révolution, évolution des tendances actuelles (scénario du laisser-faire)
- Éco-scénario (optimiste)






Rapport CE, 2008




Trafic de données (2016 : 10<sup>19</sup> octets/mois), réseau mobile

Cisco, Visual networking index, 2012



#### Trafic de données (2016 : 10<sup>19</sup> octets/mois), réseau mobile

Cisco, Visual networking index, 2012



#### Trafic de données (2016 : 10<sup>19</sup> octets/mois), réseau mobile

Cisco, Visual networking index, 2012



scénario BAU

- 1. Débits
- 2. Consommation d'énergie
- 3. Impact environnemental



scénario BAU

#### Trois augmentations liées

#### 1. Débits

- 2. Consommation d'énergie
- 3. Impact environnemental



scénario BAU

- 1. Débits
- 2. Consommation d'énergie
- 3. Impact environnemental



scénario BAU

- 1. Débits
- 2. Consommation d'énergie
- 3. Impact environnemental



scénario BAU

- 1. Débits ← *contrainte usage*
- 2. Consommation d'énergie ← *contrainte technique*
- 3. Impact environnemental ← *contrainte env*.

Constat

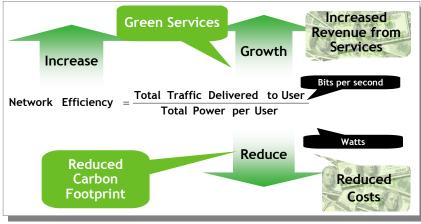


- 1. Débits ← *contrainte usage*
- 2. Consommation d'énergie *contrainte technique*
- 3. Impact environnemental ← contrainte env.

# L'ÉCORADIO

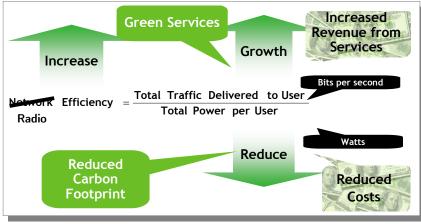
## Une histoire ancienne

- Augmentation des flux de données, des applications, des équipements et maîtrise des coûts associés
- Problème d'optimisation à plusieurs variables
  - Débit, quantité d'information
  - Puissance, énergie
  - Bande de fréquence
  - Délais, retard
  - Taux d'erreur
  - Protocole de communication
  - Configuration réseau
  - Coopération
  - Matériel, technologie
  - Complexité des algorithmes
- Ex. : maximisation du débit et allocation de l'information sous contrainte de puissance (comm. ADSL, coût : complexité)
- Nouveauté : plus avec *beaucoup* moins !


## Une histoire ancienne

- Augmentation des flux de données, des applications, des équipements et maîtrise des coûts associés
- Problème d'optimisation à plusieurs variables
  - Débit, quantité d'information
  - Puissance, énergie
  - Bande de fréquence
  - Délais, retard
  - Taux d'erreur
  - Protocole de communication
  - Configuration réseau
  - Coopération
  - Matériel, technologie
  - Complexité des algorithmes
- Ex. : maximisation du débit et allocation de l'information sous contrainte de puissance (comm. ADSL, coût : complexité)
- Nouveauté : plus avec beaucoup moins !

### Une histoire ancienne


- Augmentation des flux de données, des applications, des équipements et maîtrise des coûts associés
- Problème d'optimisation à plusieurs variables
  - Débit, quantité d'information
  - Puissance, énergie
  - Bande de fréquence
  - Délais, retard
  - Taux d'erreur
  - Protocole de communication
  - Configuration réseau
  - Coopération
  - Matériel, technologie
  - Complexité des algorithmes
- Ex. : maximisation du débit et allocation de l'information sous contrainte de puissance (comm. ADSL, coût : complexité)
- Nouveauté : plus avec beaucoup moins !

## Un problème scientifique et économique



GreenTouch, Alcatel-Lucent, 2012

## Un problème scientifique et économique



GreenTouch, Alcatel-Lucent, 2012









#### IMPACT ENVIRONNEMENTAL NUL

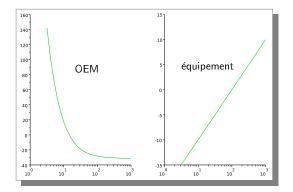
- Conception
- Extraction, transport et transformation de la matière première, fabrication, commercialisation, mise en place
- Utilisation (fonctionnement, maintenance)
  - Support de l'information (OEM, signalisation, voie de retour, retransmission)
  - Traitement de l'information (composants émetteur, récepteur, transducteurs, têtes RF, traitement du signal)
  - Acheminement de l'information (routage, passerelles, relayage, protocoles d'échanges)
- Recyclage
- Choix des technologies
- Prise en compte des usages

#### Approche holistique de l'impact environnemental

#### Conception

- Extraction, transport et transformation de la matière première, fabrication, commercialisation, mise en place
- Utilisation (fonctionnement, maintenance)
  - Support de l'information (OEM, signalisation, voie de retour, retransmission)
  - Traitement de l'information (composants émetteur, récepteur, transducteurs, têtes RF, traitement du signal)
  - Acheminement de l'information (routage, passerelles, relayage, protocoles d'échanges)
- Recyclage
- Choix des technologies
- Prise en compte des usages

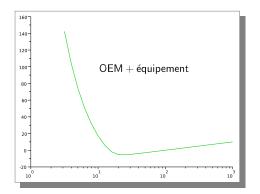
- Conception
- Extraction, transport et transformation de la matière première, fabrication, commercialisation, mise en place
- Utilisation (fonctionnement, maintenance)
  - Support de l'information (OEM, signalisation, voie de retour, retransmission)
  - Traitement de l'information (composants émetteur, récepteur, transducteurs, têtes RF, traitement du signal)
  - Acheminement de l'information (routage, passerelles, relayage, protocoles d'échanges)
- Recyclage
- Choix des technologies
- Prise en compte des usages


- Conception
- Extraction, transport et transformation de la matière première, fabrication, commercialisation, mise en place
- Utilisation (fonctionnement, maintenance)
  - Support de l'information (OEM, signalisation, voie de retour, retransmission)
  - Traitement de l'information (composants émetteur, récepteur, transducteurs, têtes RF, traitement du signal)
  - Acheminement de l'information (routage, passerelles, relayage, protocoles d'échanges)
- Recyclage
- Choix des technologies
- Prise en compte des usages

- Conception
- Extraction, transport et transformation de la matière première, fabrication, commercialisation, mise en place
- Utilisation (fonctionnement, maintenance)
  - Support de l'information (OEM, signalisation, voie de retour, retransmission)
  - Traitement de l'information (composants émetteur, récepteur, transducteurs, têtes RF, traitement du signal)
  - Acheminement de l'information (routage, passerelles, relayage, protocoles d'échanges)
- Recyclage
- Choix des technologies
- Prise en compte des usages

- Conception
- Extraction, transport et transformation de la matière première, fabrication, commercialisation, mise en place
- Utilisation (fonctionnement, maintenance)
  - Support de l'information (OEM, signalisation, voie de retour, retransmission)
  - Traitement de l'information (composants émetteur, récepteur, transducteurs, têtes RF, traitement du signal)
  - Acheminement de l'information (routage, passerelles, relayage, protocoles d'échanges)
- Recyclage
- Choix des technologies
- Prise en compte des usages

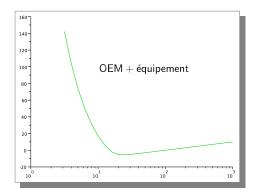
#### Optimisation globale


 Énergie (dBJ) pour transmettre 1 Gbit dans 5 MHz en fonction du temps de transmission



Mise en équation de toutes les étapes (énergie grise)!

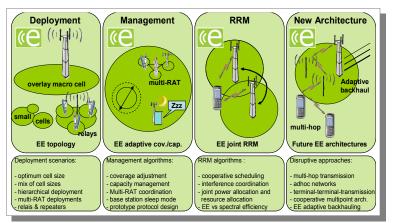
#### Optimisation globale


 Énergie (dBJ) pour transmettre 1 Gbit dans 5 MHz en fonction du temps de transmission



Mise en équation de toutes les étapes (énergie grise)!

#### Optimisation globale

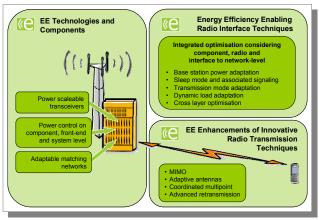

 Énergie (dBJ) pour transmettre 1 Gbit dans 5 MHz en fonction du temps de transmission



Mise en équation de toutes les étapes (énergie grise)!

### Quelques résultats

- Source d'énergie renouvelable
- Mesure d'efficacité énergétique à tous les niveaux

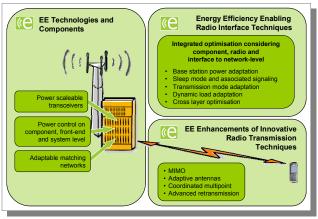



https://www.ict-earth.eu/

Vision global, holistique

### Quelques résultats

- Source d'énergie renouvelable
- Mesure d'efficacité énergétique à tous les niveaux




https://www.ict-earth.eu/

Vision global, holistique

### Quelques résultats

- Source d'énergie renouvelable
- Mesure d'efficacité énergétique à tous les niveaux



https://www.ict-earth.eu/

Vision global, holistique

Shannon 1948<sup>2</sup>

$$R \le B \log_2(1 + SNR)$$
,  $SNR = \frac{P}{N_0 B} = \frac{E_b R}{N_0 B}$ 

- ► Fonction d'efficacité (bénéfice sur coût)<sup>3</sup>  $E(x) = \frac{f(x)}{g(x)}$
- Efficacité spectrale

$$\mathsf{ES} = \frac{f(B)}{B} = \frac{R}{B}$$

$$\mathsf{EE} = \frac{f(P)}{P} = \frac{R}{P} = \frac{1}{E_{H}}$$

- 2. A Mathematical Theory of Communication, The Bell System Technical Journal, vol. 27, 1948.
- 3. E. Belmega et al. A survey on energy-efficient communications, PIMRC, 2010

Shannon 1948<sup>2</sup>

$$R \le B \log_2(1 + \text{SNR}), \text{ SNR} = \frac{P}{N_0 B} = \frac{E_b R}{N_0 B}$$

- Fonction d'efficacité (bénéfice sur coût)<sup>3</sup>  $E(x) = \frac{f(x)}{g(x)}$
- Efficacité spectrale

$$\mathsf{ES} = \frac{f(B)}{B} = \frac{R}{B}$$

$$\mathsf{EE} = \frac{f(P)}{P} = \frac{R}{P} = \frac{1}{E_{H}}$$

- 2. A Mathematical Theory of Communication, The Bell System Technical Journal, vol. 27, 1948.
- 3. E. Belmega et al. A survey on energy-efficient communications, PIMRC, 2010

Shannon 1948<sup>2</sup>

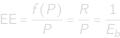
$$R \le B \log_2(1 + \text{SNR})$$
,  $\text{SNR} = \frac{P}{N_0 B} = \frac{E_b R}{N_0 B}$ 

Fonction d'efficacité (bénéfice sur coût)<sup>3</sup>

Efficacité spectrale

$$\mathsf{ES} = \frac{f(B)}{B} = \frac{R}{B}$$




- 2. A Mathematical Theory of Communication, The Bell System Technical Journal, vol. 27, 1948.
- 3. E. Belmega et al. A survey on energy-efficient communications, PIMRC, 2010

Shannon 1948<sup>2</sup>

$$R \le B \log_2(1 + \text{SNR}), \text{ SNR} = \frac{P}{N_0 B} = \frac{E_b R}{N_0 B}$$

- Fonction d'efficacité (bénéfice sur coût)<sup>3</sup>  $E(x) = \frac{f(x)}{g(x)}$
- Efficacité spectrale

$$\mathsf{ES} = \frac{f(B)}{B} = \frac{R}{B}$$



- 2. A Mathematical Theory of Communication, The Bell System Technical Journal, vol. 27, 1948.
- 3. E. Belmega et al. A survey on energy-efficient communications, PIMRC, 2010

Shannon 1948<sup>2</sup>

$$R \le B \log_2 (1 + SNR)$$
,  $SNR = \frac{P}{N_0 B} = \frac{E_b R}{N_0 B}$ 

- Fonction d'efficacité (bénéfice sur coût)<sup>3</sup>  $E(x) = \frac{f(x)}{\sigma(x)}$
- Efficacité spectrale

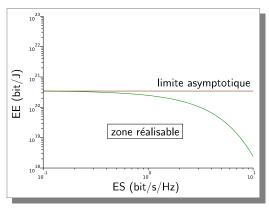
$$\mathsf{ES} = \frac{f(B)}{B} = \frac{R}{B}$$



- 2. A Mathematical Theory of Communication, The Bell System Technical Journal, vol. 27, 1948.
- 3. E. Belmega et al. A survey on energy-efficient communications, PIMRC, 2010

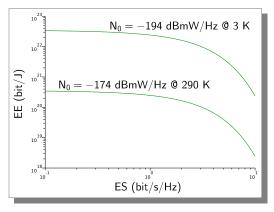
Shannon 1948<sup>2</sup>

$$R \le B \log_2(1 + \text{SNR})$$
,  $\text{SNR} = \frac{P}{N_0 B} = \frac{E_b R}{N_0 B}$ 


- Fonction d'efficacité (bénéfice sur coût)<sup>3</sup>  $E(x) = \frac{f(x)}{g(x)}$
- Efficacité spectrale

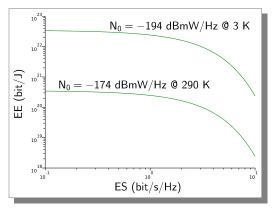
$$\mathsf{ES} = \frac{f(B)}{B} = \frac{R}{B}$$

$$\mathsf{E}\mathsf{E} = \frac{f(P)}{P} = \frac{R}{P} = \frac{1}{E_b}$$


- 2. A Mathematical Theory of Communication, The Bell System Technical Journal, vol. 27, 1948.
- 3. E. Belmega et al. A survey on energy-efficient communications, PIMRC, 2010

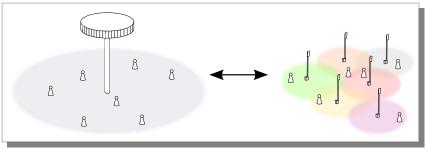





- Limite de  $N_0$ ?
  - Bruit interne : bruit électronique → bruit quantique?
- Limite des puissances émise-reçue, utile-consommée



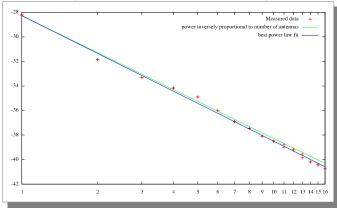



- Limite de N<sub>0</sub>?
  - ▶ Bruit interne : bruit électronique → bruit quantique?
- Limite des puissances émise-reçue, utile-consommée



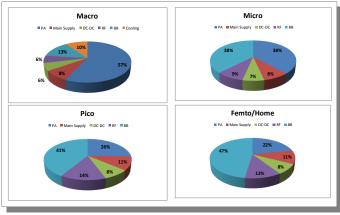


- Limite de N<sub>0</sub>?
  - ▶ Bruit interne : bruit électronique → bruit quantique ?
- Limite des puissances émise-reçue, utile-consommée


- Augmenter le rapport puissance reçue puissance transmise
- Antennes colocalisées ou distribuées

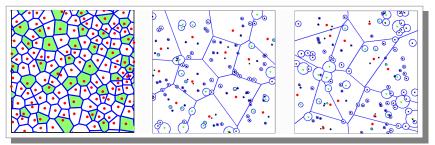


M. Debbah, Green Networks: Small Cells or Massive MIMO, GDR-ISIS 2012


Antennes colocalisées

Puissance transmise en fonction du nombre d'antennes (mesure en chambre anéchoïque)

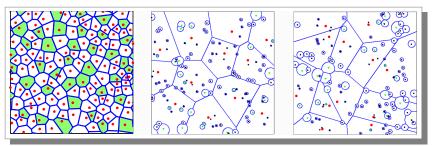



GreenTouch, Alcatel-Lucent, 2012

- Antennes distribuées
  - $\blacktriangleright$  1500 W  $\rightarrow$  150 W  $\rightarrow$  15 W  $\rightarrow$  10 W



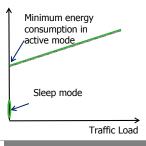
Livrable D2.3 projet EARTH


Réseau hétérogène



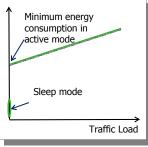
M. Kountouris, Analysis and design of energy-efficient heterogeneous networks using stochastic geometry, GDR-ISI, 2011

Exploiter le mode veille des stations de base

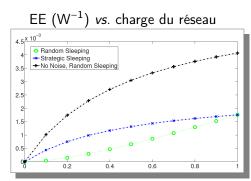

Réseau hétérogène



M. Kountouris, Analysis and design of energy-efficient heterogeneous networks using stochastic geometry, GDR-ISI, 2011

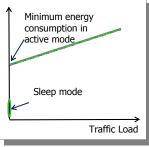

Exploiter le mode veille des stations de base

#### Consommation BS

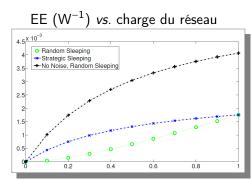



GreenTouch, Alcatel-Lucent, 2012

#### Consommation BS



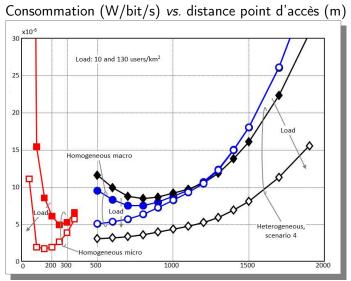

GreenTouch, Alcatel-Lucent, 2012




M. Kountouris, op. cit.

#### Consommation BS

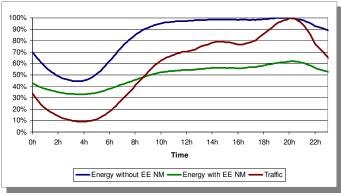






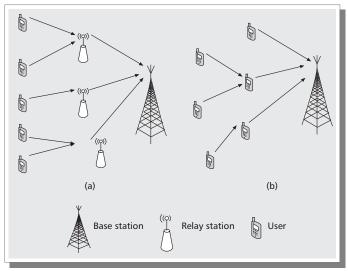

M. Kountouris, op. cit.

- Séparer
  - Données/signalisation
  - Couverture/capacité du réseau
- Optimiser la transmission des signaux de signalisation
- Améliorer la réactivité des réseaux


# Système à grand nombre d'antennes

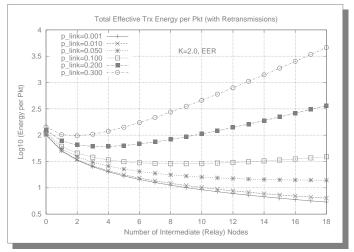


Livrable D3.1 projet EARTH


### Réseau adaptatif

- Adaptation au trafic
  - Partie radio en mode veille lorsque le trafic est nul
  - Ajustement de la bande de fréquence
  - Point de fonctionnement de l'AP adaptatif
  - Taille des cellules adaptative

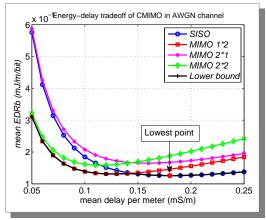



Livrable D3.1 projet EARTH

### Relais



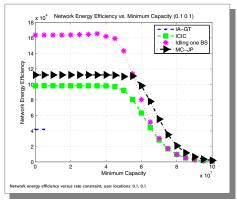
G.Y. LI et al., Energy-efficient wireless communications: Tutorial, survey and open issues, IEEE WC, déc. 2011


### Relais



S. Banerjee, A. Misra, *Minimum energy paths for reliable communication in multi-hop wireless networks*, MobiHoc'02

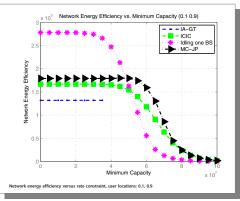
## Relais


- Coopération dans les réseaux de capteurs
- Compromis temps-efficacité énergétique



R. Zhang, Analysis of energy-delay performance in multi-hop wireless sensor networks, rapport de thèse, 2009

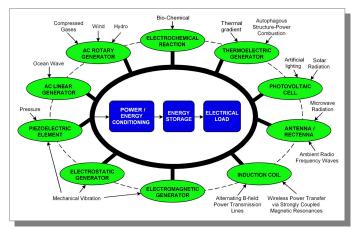
# Coopération


- Gestion des interférences entre cellules
  - Théorie des jeux
  - Annulation d'interférence
  - Traitement multicellulaire
- Veille coopérative



J. Xu et al., Improving network energy efficiency through cooperative idling in the multi-cell systems, EURASIP JWCNC, 2011

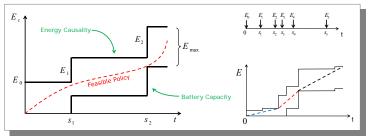
# Coopération


- Gestion des interférences entre cellules
  - Théorie des jeux
  - Annulation d'interférence
  - Traitement multicellulaire
- Veille coopérative



J. Xu et al., Improving network energy efficiency through cooperative idling in the multi-cell systems, EURASIP JWCNC, 2011

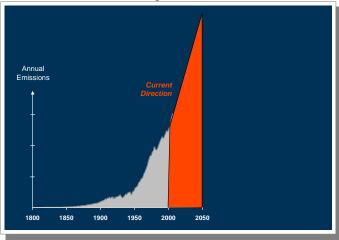
### Récupération d'énergie


- Énergie thermique (corps humain), mécanique (mouvement), lumineuse...
- Réseau de capteurs



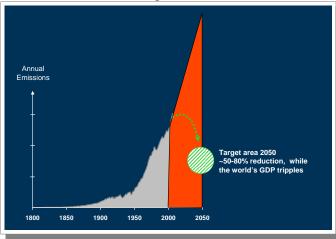
Y.K. Tan et S.K. Panda, Review of Energy Harvesting Technologies for Sustainable Wireless Sensor Network, Chap.2, Wireless sensor network, Intechbook, 2010

### Récupération d'énergie


Prédiction et gestion

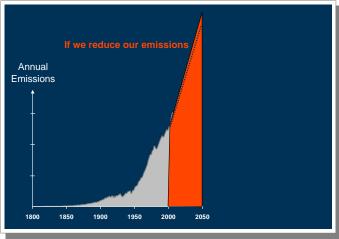


A. Yener, Green wireless networking with energy harvesting nodes, GDR-ISIS, 2012


- Arrivée d'énergie E<sub>i</sub> au temps s<sub>i</sub>
  - Principe de causalité
  - Énergie limité par la capacité de la batterie Emax

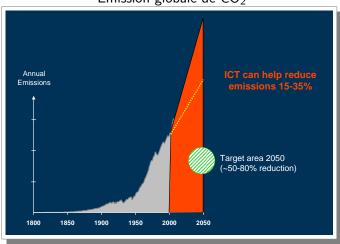
## Conclusion




Ericsson, WWRF 2008

## Conclusion




Ericsson, WWRF 2008

# Conclusion Green IT



Ericsson, WWRF 2008

# Conclusion IT for Green



Ericsson, WWRF 2008

# ANNEXES

## Organisations

- Intergouvernementales
  - ITU, Telecommunication Standardization Advisory Group 5, Joint Coordination Activity, aspect environnemental des phénomènes électromagnétiques et changement climatique
    - ITU-T L.1410, ITU-T L.1420 : méthodes pour évaluer l'impact environnemental des biens, services et organisations des TIC
  - ETSI, Comité technique EE (environmental engineering)
    - EN 300 019, EN 300 132, EN 300 119, EN 300 253 : tests, alimentation, fonctionnement des équipements et des centres de télécommunication
    - ETSI TS 103 199 : spécification pour l'évaluation du cycle de vie des équipements, réseaux et services
  - GHG Protocol, empreinte carbone des organisations, des projets et des produits
  - IEC, CENELEC...
- Consortiums, alliances, forums
  - ATIS, comité STEP Sustainability in Telecom: Energy and Protection, efficacité énergétique équipements
    - ATIS-0600015.06.2011
  - ► GeSI, WWRF, Mobile VCE, GreenTouch

# Projets

- Européen (FP7-ICT, CELTIC)
  - TREND, towards real energy-efficient network design
  - EARTH, energy aware radio and network technologies
  - C2POWER, cognitive radio and cooperative strategies for power saving in multi-standard wireless devices
  - ECONET, low energy consumption networks
  - SACRA, spectrum and energy efficiency through multi-band cognitive radio
  - GREEN-T, green terminals for next generation wireless systems
  - SPECTRA, spectrum and energy efficiency through multi-band cognitive radio
  - OPERA-Net2, optimising power efficiency in mobile radio networks 2
- Nationaux (ANR)
  - EcoSCells, efficient cooperating small cells
  - GRECO, green wireless communicating objects
  - TRIMARAN, communications MIMO OFDM vertes à base d'antennes micro-structurées et de retournement temporel