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DSK: k-mer counting with very low memory usage

Counting all the k-mers (substrings of length k) in DNA/RNA sequencing reads is the preliminary step of many bioinformatics applications. However, state of the art k-mer counting methods require that a large data structure resides in memory. Such structure typically grows with the number of distinct k-mers to count.

We present a new streaming algorithm for k-mer counting, called DSK (disk streaming of k-mers), which only requires a fixed, userdefined amount of memory and disk space. This approach realizes a memory, time and disk trade-off. The multi-set of all k-mers present in the reads is partitioned and partitions are saved to disk. Then, each partition is separately loaded in memory in a temporary hash table. The k-mer counts are returned by traversing each hash table. Lowabundance k-mers are optionally filtered.

DSK is the first approach that is able to count all the 27-mers of a human genome dataset using only 4.0 GB of memory and moderate disk space (160 GB), in 17.9 hours.

INTRODUCTION

Determining the abundance of each distinct k-mer in a set of sequencing reads is a conceptually simple yet fundamental task. It is used in many bioinformatics applications related to sequencing, e.g. genome and transcriptome assembly, variants detection and read error correction. For de novo assembly, one is often interested in counting k-mers to discard those with low abundance, which likely stem from sequencing errors.

State of the art methods for k-mer counting rely on hash tables [START_REF] Marc | A fast, lock-free approach for efficient parallel counting of occurrences of k-mers[END_REF] and/or Bloom filters [START_REF] Melsted | Efficient counting of k-mers in dna sequences using a bloom filter[END_REF]. These structures need to reside in memory for random access. Sequencing errors induce erroneous k-mers, in a volume typically greater or comparable to that of correct k-mers. Hence, counting k-mers for a human dataset with either a hash table or a Bloom filter is a task that requires tens of gigabytes of memory [START_REF] Marc | A fast, lock-free approach for efficient parallel counting of occurrences of k-mers[END_REF][START_REF] Melsted | Efficient counting of k-mers in dna sequences using a bloom filter[END_REF].

In the Methods section, we describe a fixed-memory and fixeddisk space streaming algorithm, DSK, and its worst-case complexity is analyzed in function of the desired memory and disk usage. In the Results section, DSK is used to count all the 27-mers of a wholegenome human dataset (Illumina reads). Furthermore, the trade-off between memory and disk space is analyzed on two smaller datasets. Finally, we discuss some advantages of DSK over related methods, and show a situation where a parallel implementation significantly improved the running time. for each index j = 0..np do 13:

METHODS

Initialize a hash table T with M bits of memory 14:

for each k-mer m in dj do 15:

T [m] ← ( T [m] + 1, if m is present in T 1, otherwise 16: output (m, T [m]) for each m in T 17: Delete T 18: Delete {d0, ..., dn p } function h(•) maps a k-mer to a numeric value in [0; H],
where H is a large integer (typically 2 64 ). In the following analysis, we make a simplifying assumption. Let d be the total number of distinct k-mers in the input, we assume that the number of distinct k-mers having a given hash value x ∈ [0; H] is at most ⌈d/H⌉. In other words, the set of distinct k-mer values can be uniformly partitioned by this hash function. Each k-mer is encoded using the classical 2 bits representation in the smallest available integer type, i.e. using 2 ⌈log 2 (2k)⌉ bits. The abundance of each k-mer is stored as a 32 bits integer. For convenience, let b = 2 ⌈log 2 (2k)⌉ . Each k-mer m present in S is examined n i = ⌈vb/D⌉ times (once per iteration), and written to disk only once, at the (h(m) mod n i )-th iteration. Using the uniform repartition hypothesis, a multi-set of v/n i ≤ ⌈D/b⌉ k-mers are written to disk at each iteration. Since each k-mer is encoded using b bits, the maximal disk usage of the algorithm is D bits.

The maximal memory usage of the algorithm is M bits, since Steps 7-11 require no memory, and Steps 12-17 load a single partition in T which requires exactly M bits. With an open-addressing mechanism, each distinct k-mer occupies exactly (b + 32) bits in T . To prove that the algorithm terminates, it suffices to show that T never overflows, i.e. that strictly c Oxford University Press 2012. expected time with open-addressing, as long as the load factor is strictly below 1 (which was proved above). Hence, the expected time complexity of Steps 12-17 (including the iteration loop) is O(v). Thus, Algorithm 1 runs in expected time O(v 2 b/D). The algorithm runs in expected linear time with respect to v when D = ω(v), e.g. setting D equal to the reads file size. In practice, the simplifying assumption on the uniform repartition of the hash function h does not hold exactly. Some partitions contain a slightly larger number of distinct k-mers than ⌈v/H⌉. Hence, the actual disk usage of the algorithm is slightly above D, and the load factor of T could, in theory, be above 0.7 (due to high k-mer redundancy, this is not the case in practice).
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RESULTS

In Table 1, we compared the execution time and memory usage of DSK with Jellyfish (version 1.1.5) and BFCounter (version 0.2) on a human genome Illumina dataset. The target disk usage of DSK was set to 160 GB, equal to the size of the reads file. Since the algorithm relies heavily on I/O to the disk, we also tested DSK with a solidstate drive (DSK-SSD). The reads file was placed on a standard hard disk drive, and partitions of redundant kmers were written on a 256 GB SSD. In this configuration, we noticed the algorithm is no longer limited by disk I/O and could benefit from multi-threading. The two for loops lines 7 and 12 were parallelized using openMP (4 threads). DSK-SSD ran in 3.5 hours using 4 × 1 GB of memory. Although this experiment required specific hardware, it is worth noting that the running time of DSK can be greatly reduced with a SSD and multi-core parallelism.

To further assess the trade-off between time, memory and disk usage, we executed DSK (using a standard hard drive) on two smaller E. coli and D. ananassae datasets, with various target memory and disk usage parameters. For the executions with 100 MB and 1 GB memory usage, the running time of DSK on both datasets decreases as the target disk space increases. This is a consequence of the decreasing number of iterations ni. The running times reaches a plateau at roughly the reads file size (where ni = 1). memory usage. However, at the smallest tested memory usage (10 MB), the execution time on both datasets is slightly higher, possibly due to consecutive disk writes to a large number of partitions. Note that in practice, the memory usage of DSK cannot be arbitrarily low: it is limited by the number of files that can be simultaneously opened on the system (the partitions {d0, ..., dn p } are all opened simultaneously). In the Drosophilia dataset, DSK failed to run with 10 MB of memory and 6 GB disk space for this reason.

DISCUSSION

Compared to other methods, DSK has three strong points:

• Low memory usage: Only an arbitrarily small subset of kmers is loaded in memory at any time. In contrast, BFCounter stores all the k-mers with count ≥ 2 in a hash table.

In principle, Jellyfish can use arbitrarily small hash tables, however storing the intermediate results requires a prohibitive amount of disk (≥ 1 TB for human genome reads using a hash table of size 5 GB). • Parameters are automatically inferred: the only mandatory argument is the k-mer length. Optionally, target memory and disk usages can be specified. Jellyfish and BFCounter require the user to specify respectively a hash table size and an upperbound on the number of distinct k-mers. • Supports arbitrarily large values of k: as opposed to up to 32 for Jellyfish (unbounded for BFCounter).
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 1 Fig. 1. Execution time of DSK (k = 21) in function of memory and disk usage, on the E. coli (Illumina DNA SRR001665, 20.8•10 6 reads of average length 36 bp) and D. ananassae datasets (Illumina RNA-Seq SRR332538 9.1 • 10 6 reads of average length 150 bp).

  Algorithms 1 describes the DSK k-mer counting algorithm. The hash

	Algorithm 1 The DSK algorithm
	1: Input: The set S of sequences, k-mer length k, target memory
		usage M (bits), target disk space D (bits), hash function h(•)
	2: v ←	P s∈S |s| -k + 1	{Number of k-mers}
	3: ni ← ⌈v • 2 ⌈log 2 (2k)⌉ /D⌉	{Number of iterations}
	4: np ← ⌈ 5: for each iteration i = 0..ni do v(2 ⌈log 2 (2k)⌉ + 32) ⌉ 0.7niM	{Number of partitions}
	6:	Initialize a set of empty lists {d0, ..., dn p } stored on disk
	7:	for each sequence s in S do
	8:		for each k-mer m in s do
	9:		if (h(m) mod ni) = i then
	10:		j ← h(m)/ni mod np
	11:		Write m to disk in dj
	12:		

Table 1 .

 1 Wall-clock time and memory usage for counting 27mers in whole-genome human data of 1.4 billion of reads of average length 100 bp (160 GB file size). Jellyfish used 8 threads, DSK-SSD used 4 threads, DSK and BFCounter are single-threaded. The disk column indicates the temporary amount of disk space used by each method. * Executed on a desktop computer equipped with two hard drives including a SSD. The algorithm creates (n i np) ≤ ⌈v(b + 32)/(0.7M )⌉ temporary hash tables, inserting at most ⌈(0.7M/(b + 32))⌉ elements in each. Hash tables accesses and insertions (Step 15) are done in constant

	Program	Time (hours) Memory (GB) Disk (GB)
	DSK	17.9	4	160
	DSK-SSD *	3.5	4	240
	BFCounter	41.2	56	0
	Jellyfish	3.5	70	211
	The dataset used is the NA18507 human genome (SRX016231),
	unfiltered, consisting		

less than M/(b + 32) distinct k-mers are inserted in T . At each iteration, (v/n i ) k-mers are split into np partitions. Each partition contains at most v/(n i np) ≤ ⌈0.7M/(b + 32)⌉ k-mers. In the worst case, all these kmers are distinct, thus the load factor is upper-bounded by 0.7 (a classical threshold above which hash table performance degrades).

The time complexity of Steps 7-11 (including the iteration loop) is O(v 2 b/D).