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SRB MEASURES FOR ALMOST AXIOM A DIFFEOMORPHISMS

JOSÉ F. ALVES AND RENAUD LEPLAIDEUR

Abstract. We consider a diffeomorphism f of a compact manifold M which is
Almost Axiom A, i.e. f is hyperbolic in a neighborhood of some compact f -invariant
set, except in some singular set of neutral points. We prove that if there exists some
f -invariant set of hyperbolic points with positive unstable-Lebesgue measure such
that for every point in this set the stable and unstable leaves are “long enough”, then
f admits a probability SRB measure.
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1. Introduction

1.1. Background. The goal of this paper is to improve results from [10]. It addresses
the question of SRB measures for non-uniformly hyperbolic dynamical systems. We
remind that SRB measures are special physical measures, which are measures with
observable generic points:

For a smooth dynamical system (M, f), meaning that M is a compact smooth Rie-
mannian manifold and f is a C1+ diffeomorphism acting on M , we recall that the set
Gµ of generic points for a f -invariant ergodic probability measure on M µ, is the set
of points x such that for every continuous function φ,

lim
n→∞

1

n

n−1∑
k=0

φ ◦ fk(x) =

∫
φ dµ. (1.1)

This set has full µ measure. Though holding for a big set of points in terms of µ
measure, this convergence can be actually observed only when this set Gµ has strictly
positive measure with respect to the volume of the manifold, that is with respect to the
Lebesgue measure on M . This volume measure will be denoted by LebM . A measure
µ is said to be physical if LebM(Gµ) > 0.

The conditions yielding the existence of physical measures for non-uniformly hyper-
bolic systems has been studied a lot since the 90’s (see e.g. [3, 7, 4, 1]) but still remains
not entirely solved. The main reason for that is that physical measure are usually pro-
duced under the form of Sinai-Ruelle-Bowen (SRB) measures and there is no general
theory to construct the particular Gibbs states that are these SRB measures. One of
the explanation of the lack of general theory is probably the large number of ways to
degenerate the uniform hyperbolicity.

In [10], the author studied a way where the loss of hyperbolicity was due to a critical
set S where there was no expansion and no contraction even if the general “hyperbolic”
splitting with good angles was still existing on this critical set. Moreover, the non-
uniform hyperbolic hypotheses was inspired by the definition of Axiom-A (where there
is forward contraction in the stable direction and backward contraction in the unstable
direction) but asked for contraction with a lim sup. The main goal of this paper is to
prove that this assumption can be released and replaced by a lim inf. Such a result is
optimal because this is the weakest possible assumption in the “hyperbolic world”.

We also emphasize a noticeable second improvement: we prove that the SRB measure
constructed is actually a probability measure.

As this paper is an improvement of [10], the present paper has a very similar structure
to [10] and the statements are also similar.

1.2. Statement of results. We start by defining the class of dynamical systems that
we are going to consider.

Definition 1.1. Given f : M → M a C1+ diffeomorphism and Ω ⊂ M a compact f -
invariant set, we say that f is Almost Axiom A on Ω if there exists an open set U ⊃ Ω
such that:
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(1) for every x ∈ U there is a df -invariant splitting (invariant where it makes sense)
of the tangent space TxM = Eu(x) ⊕ Es(x) with x 7→ Eu(x) and x 7→ Es(x)
Hölder continuous (with uniformly bounded Hölder constant);

(2) there exist continuous nonnegative real functions x 7→ ku(x) and x 7→ ks(x)
such that (for some choice of a Riemannian norm ‖ ‖ on M) for all x ∈ U
(a) ‖df(x)v‖f(x) ≤ e−k

s(x)‖v‖x, ∀v ∈ Es(x),

(b) ‖df(x)v‖f(x) ≥ ek
u(x)‖v‖x, ∀v ∈ Eu(x);

(3) the exceptional set, S = {x ∈ U, ku(x) = ks(x) = 0}, satisfies f(S) = S.

From here on we assume that f is Almost Axiom A on Ω. The sets S and U ⊃ Ω
and the functions ku and ks are fixed as in the definition, and the splitting TxM =
Eu(x)⊕ Es(x) is called the hyperbolic splitting.

Definition 1.2. A point x ∈ Ω is called a point of integration of the hyperbolic splitting
if there exist ε > 0 and C1-disks Du

ε (x) and Ds
ε(x) of size ε centered at x such that

TyD
i
ε(x) = Ei(y) for all y ∈ Di

ε(x) and i = u, s.

By definition, the set of points of integration is invariant by f . As usual, having the
two families of local stable and unstable manifolds defined, we define

Fu(x) =
⋃
n≥0

fnDu
ε(−n)(f

−n(x)) and F s(x) =
⋃
n≥0

f−nDs
ε(n)(f

n(x)),

where ε(n) is the size of the disks associated to fn(x). They are called the global stable
and unstable manifolds, respectively.

Given a point of integration of the hyperbolic splitting x, the manifolds Fu(x) and
F s(x) are also immersed Riemannian manifolds. We denote by du and ds the Riemann-
ian metrics, and by Lebux and Lebsx the Riemannian measures, respectively in Fu(x)
and F s(x). If a measurable partition is subordinated to the unstable foliation Fu (see
[11] and [9]), any f -invariant measure admits a unique system of conditional measures
with respect to the given partition.

Definition 1.3. We say that an invariant and ergodic probability having absolutely
continuous conditional measures on unstable leaves Fu(x) with respect to Lebux is a
Sinai-Ruelle-Bowen (SRB) measure.

Definition 1.4. Given λ > 0, a point x ∈ Ω is said to be λ-hyperbolic if

lim inf
n→+∞

1

n
log ‖df−n(x)|Eu(x)‖ 6 −λ and lim inf

n→+∞

1

n
log ‖dfn(x)|Es(x)‖ 6 −λ.

Definition 1.5. Given λ > 0 and ε0 > 0, a point x ∈ Ω is called (ε0, λ)-regular if the
following conditions hold:

(1) x is λ-hyperbolic and a point of integration of the hyperbolic splitting;
(2) F i(x) contains a disk Di

ε0
(x) of size ε0 centered at x, for i = u, s.

An f -invariant compact set Λ ⊂ Ω is said to be an (ε0, λ)-regular set if all points in Λ
are (ε0, λ)-regular.

Theorem A. Let Λ be an (ε0, λ)-regular set. If there exists some point x0 ∈ Λ such
that LebDuε0 (x0)(D

u
ε0

(x0) ∩ Λ) > 0, then f has a SRB measure.
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Note that the hypothesis of Theorem A is very weak. If there exists some probability
SRB measure, µ, then, there exists some (ε0, λ)-regular set Λ of full µ measure such
that for µ-a.e. x in Λ, Lebux(D

u
ε0

(x) ∩ Λ) > 0. On the other hand, a work due to
M. Herman ([6]) proves that there exist some dynamical systems on the circle such
that Lebesgue-almost-every point is “hyperbolic” but there is no SRB measure (even
σ-finite).

The existence of stable and unstable leaves is crucial to define the SRB measures.
These existences are equivalent to the existence of integration points for a hyperbolic
splitting. This is well known when the hyperbolic splitting is dominated, because it
yields the existence of an uniform spectral gap for the derivative. A very close result is
also well known in the Pesin Theory, but only on a set of full measure, and then, the
precise topological characterization of the set of points of integration given by Pesin
Theory depends on the choice of the invariant measure.

In our case the splitting is not dominated and we have no given invariant measure to
use Pesin theory. Nevertheless, using the graph transform, we prove integrability even
in the presence of indifferent points for a set of points whose precise characterization
does not depend on the ergodic properties of some invariant probability measure which
would be given a priori.

Definition 1.6. A λ-hyperbolic point x ∈ Ω is said to be of bounded type if there exist
two increasing sequences of integers (sk) and (tk) with

lim sup
k→+∞

sk+1

sk
< +∞ and lim sup

k→+∞

tk+1

tk
< +∞

such that

lim
k→+∞

1

sk
log ‖df−sk(x)|Eu(x)‖ 6 −λ and lim

k→+∞

1

tk
log ‖df tk(x)|Es(x)‖ 6 −λ.

Observe that the last requirement on these sequences is an immediate consequence
Definition 1.4. We emphasize that the assumption of being of bounded type is weak.
Unless the sequence (sk) is factorial it is of bounded type. An exponential sequence for
instance is of bounded type. Thus, this assumption does not yield that the sequence
(sk) has positive density.

Theorem B. Every λ-hyperbolic point of bounded type is a point of integration of the
hyperbolic splitting.

1.3. Overview. The rest of this paper proceeds as follows: in Section 2 we construct
three different generations of rectangles satisfying some Markov property. The last
generation is a covering of a “good zone” sufficiently far away from the critical zone,
and points there have good hyperbolic behaviors.

In Section 3, we prove Theorem A. Namely we construct a measure for the return
into the cover of rectangles of third generation, and then we prove that this measure
can be opened out to a f -invariant SRB measure.

In Section 4 we prove Theorem B, that is the existence of stable and unstable man-
ifolds.
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The proofs are all based on the same key point: the estimates are all uniformly
hyperbolic outside some fixed bad neighborhood B(S, ε1) of S. We show that a λ-
hyperbolic point cannot stay too long in this fixed neighborhood (see e.g. Lemmas
2.2 and 4.5). Then, an incursion in B(S, ε1) cannot spoil too much the (uniformly)
hyperbolic estimates of contractions or expansions.

Obviously, all the constants appearing are strongly correlated, and special care is
taken in Section 2 in choosing them in the right order.

2. Markov rectangles

2.1. Neighborhood of critical zone. Let Λ be some fixed (ε0, λ)-regular set satis-
fying the hypothesis of Theorem A. The goal of this section is to construct Markov
rectangles covering a large part of Λ and then to use Young’s method; see e.g. [8]. This
type of construction has already been implemented in [10]. We adapt it here and focus
on the steps where the new assumption (namely lim inf instead of lim sup) produces
some changes.

To control the lack of hyperbolicity close to the critical set S we will introduce
several constants. Some are directly related to the map f , some are related to the
set Λ and others depend on previous ones. Their dependence will be established in
Subsection 2.4.

Given ε1 > 0 we define

B(S, ε1) = {y ∈M,d(S, y) < ε1},
and

Ω0 = Ω \B(S, ε1), Ω1 = Ω0 ∩ f(Ω0) ∩ f−1(Ω0) and Ω2 = Ω0 \ Ω1.

Ω1

Ω2

S

B(S, ε1)

Figure 1. The sets Ωi

The main idea is to consider a new dynamical system, which is in spirit equal to the
first return to Ω0. This system will be obtained as the projection of a subshift with
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countable alphabet, this countable shift being obtained via a shadowing lemma. This
will define rectangles of first generation. To deal with these countably many rectangles
we will need to do some extra-work to be able to “cut” them. This will be done by
defining new rectangles qualified of second and third generation.

We assume that ε1 > 0 has been chosen sufficiently small so that for every x in Ω2,

1 ≤ ‖df(x)|Eu(x)‖ < e2λ
3 and 1 ≤ ‖df−1(x)|Es(x)‖ < e2λ

3 .

Then we fix 0 < ε2 < 1 and define Ω3 = Ω3(ε2) as the set of points x ∈ Ω such that

min
(

log ‖df|Eu(x)‖, − log ‖df−1
|Eu(x)‖, − log ‖dfEs(x)‖, log ‖df−1

|Es(x)‖
)
≥ ε2λ. (2.1)

Definition 2.1. Let x in Ω0. If f(x) ∈ B(S, ε1), we define the forward length of stay of
x in B(S, ε1) as

n+(x) = sup
{
n ∈ N : fk(x) ∈ B(S, ε1), for all 0 < k < n

}
.

If f−1(x) ∈ B(S, ε1), we define the backward length of stay of x in B(S, ε1) as

n−(x) = sup
{
n ∈ N : f−k(x) ∈ B(S, ε1), for all 0 < k < n

}
.

Observe that any of these numbers may be equal to +∞.

2.2. First generation of rectangles. A first class of rectangles is constructed by
adapting the classical Shadowing Lemma to our case. As mentioned above, this was
done in [10, Section 3]; see Proposition 3.4. It just needs local properties of f and the
dominated splitting Eu ⊕ Es, not requiring any other hyperbolic properties than the
local stable and unstable leaves. Therefore, the new assumption with lim inf instead
of lim sup in the definition of λ-hyperbolic point does not produce any change in that
construction. We summarize here the essential properties for these rectangles.

There is a subshift of finite type (Σ0, σ) with a countable alphabet A := {a0, a1, . . .}
and a map Θ : Σ0 →M such that the following holds:

(1) Θ(Σ0) contains Λ ∩ Ω0;
(2) the dynamical system (Σ0, σ) induces a dynamical system (Θ(Σ0), F ) commut-

ing the diagram

Σ0
σ−→ Σ0

Θ ↓ ↓ Θ

Θ(Σ0)
F−→ Θ(Σ0);

(3) for each x ∈ Ω0 we have: F (x) = f(x) if x ∈ Ω1; F (x) = fn
+(x)(x) if x ∈

Ω2 ∩ f−1(B(S, ε1)); and F−1(x) = f−n
−(x)(x) if x ∈ Ω2 ∩ f(B(S, ε1)).

Roughly speaking, F is the first return map into Ω0 (actually it is defined on the
larger set Θ(Σ0)) and σ is a symbolic representation of this dynamics.

We define the rectangles of first generation as the sets Tan = Θ([an]), where [an]
is the cylinder in Σ0 associated to the symbol an, i.e. [an] is the set of all sequences
x = (x(k))k∈Z in Σ0 with x(0) = an.

We remind that [y, z] denotes in Σ0 the sequence with the same past than y and
the same future than z. And [y, z] denotes the intersection of W u

loc(y) and W s
loc(z).

Rectangle means that for y and z in Ti, [y, z] is also in Ti.
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We may take the rectangles of first generation with size as small as want, say δ > 0,
and the following additional properties:

(1) they respect the local product structures in M (at least for the points in Λ)
and in Σ0: if we set W u,s(x, Tan) = Du,s

2ρ (x) ∩ Tan for each x ∈ Tan , then for all
y, z ∈ [an],

Θ([y, z]) = [Θ(y),Θ(z)].

(2) they are almost Markov : if x = Θ(x) with x = x(0)x(1)x(2) . . . and x(i) in the
alphabet A, then for every j > 0 we have

F j(W u(x, Tx(0))) ⊂ W u(F j(x), Tx(j))

and
F j(W s(x, Tx(0))) ⊂ W s(F j(x), Tx(j)).

This last item does not give a full Markov property because it depends on the
existence of some code x connecting the two rectangles Tx(0) 3 x and Tx(j) 3 F j(x).

2.3. Second generation rectangles. To get a full Markov property we need to cut
the rectangles of first generation as in [5]. Due to the non-uniformly hyperbolic settings,
we first need to reduce the rectangles to a set of good points with good hyperbolic
properties.

Roughly speaking, the second generation of rectangles we construct here is based on
the following process: we select points in the rectangles Tj which are

• λ-hyperbolic,
• Lebu density points with this property,

We show in Lemma 2.2 that these points satisfy some good property related to the use
of the Pliss lemma. Then, this set of points is “saturated” with respect to the local
product structure.

The goal of the next lemma is to use Pliss Lemma. A similar version was already
stated in [10] but here, exchanging the assumption lim sup by lim inf plays a role.

Lemma 2.2. There exists ζ > 0 such that for every λ-hyperbolic point x

lim inf
n→∞

1

n

n−1∑
j=0

log ‖df−1
|Eu(fj(x))

‖ < −ζ, (2.2)

Proof. Recall that for 0 < ε2 < 1 we have defined Ω3 as the set of points x ∈ Ω such
that

min(log ‖df|Eu(x)‖,− log ‖df−1
|Eu(x)‖,− log ‖dfEs(x)‖, log ‖df−1

|Es(x)‖) ≥ ε2λ.

Let x be a λ-hyperbolic point. We set

δε2 = lim inf
1

n
#{0 ≤ k < n, fk(x) ∈ Ω3},

where #A stands for the number of elements in a finite set A. As x is λ-hyperbolic,
there exists infinitely many values of n such that

log ‖dfn|Es(x)‖ 6 −
λ

2
n.
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For such an n, #{0 ≤ k < n, fk(x) ∈ Ω3} must be big enough to get the contraction.
To be more precise

δε2 ≥
1− ε2

log κ
λ
− ε2

> 0. (2.3)

This implies that

lim inf
n→∞

1

n

n−1∑
j=0

log ‖df−1
|Eu(fj(x))

‖ < −δε2ε2λ.

�

Remark 2.3. We emphasize that if (2.2) holds for x, then it holds for every y ∈ F s(x).

The main idea of this part is to restrict the F -invariant set
⋃
i∈N Tai (= Θ(Σ0)) to

some subset satisfying some good properties. Using Lemma 2.2 we arrive to the same
conclusion of [10, Proposition 3.8]].

Proposition 2.4. There exists some λ-hyperbolic set ∆ ⊂ Λ such that

(1) Lebu(∆) > 0;
(2) every x ∈ ∆ is a density point of ∆ for Lebux;
(3) there exist some ζ > 0 such that for every x ∈ ∆

lim inf
n→∞

1

n

n−1∑
j=0

log ‖df−1
|Eu(fj(x))

)‖ < −ζ. (2.4)

Proof. Lemma 2.2 gives a value ζ which works for every point in Λ. Defining

∆0 =
⋃
i∈N

{x ∈ Tai : ∃(y, z) ∈ Λ2 such that x ∈ Fu(y) ∩ F s(z)}.

we have that ∆0 is an F -invariant set of λ-hyperbolic points in
⋃
i∈N Tai such that (2.4)

holds for every x ∈ ∆0 ( remind Remark 2.3). Moreover, Lebu(∆0) > 0.
Now, we recall that the stable holonomy is absolutely continuous with respect to

Lebesgue measure on the unstable manifolds. Therefore, if x is a density point of ∆0

for Lebux, every y in F s(x)∩∆0 is also a density point of ∆0 for Lebuy . Let ∆ be the set
of density points in ∆0 for Lebu. This set is F -invariant and stable by intersections of
stable and unstable leaves. Hence, every point y ∈ ∆ is also a density point of ∆ for
Lebuy . �

For each i ∈ N, let Sai be the restriction of the rectangle Tai to ∆, i.e.

Sai = Tai ∩∆.

Given x ∈ Sai we set

W u(x, Sai) = W u(x, Tai) ∩∆ and W s(x, Sai) = W s(x, Tai) ∩∆.

By construction of ∆, if x and y are in Sai , then [x, y] is also in Sai . As before we have

{[x, y]} = W s(x, Sai) ∩W u(y, Sai) = Ds
2β(δ)(x) ∩Du

2β(δ)(y).

These sets Sai are called rectangles of second generation and their collection is denoted
by S.
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2.4. Third generation of rectangles. From the beginning we have introduced sev-
eral constants. It is time now to fix some of them. For that purpose we want first to
summarize how do these constants depend on one another.

2.4.1. The constants. The set Λ is fixed and so the two constants ε0 and λ are also
fixed. Note that ε0 imposes a constraint to define the local product structure for points
in Λ.

We fix ζ as in (2.4) and pick ε > 0 small compared to λ and ζ, namely ε < ζ/10.
We choose ε2 > 0 sufficiently small such that every x ∈ ∆ with log ‖df−1

|Eu(x)‖ <
−ζ/3 necessarily belongs to Ω3. This is possible because the exponential expansion or
contraction in the unstable and stable directions ku and ks vanishe at the same time.

We take ε1 > 0 sufficiently small such that Ω3 is a closed subset of Ω not intersecting
Ω2 ∪B(S, ε1). Therefore, there exists some ρ > 0 such that d(Ω3,Ω2 ∪B(S, ε1)) > ρ.
Then, ε1 being fixed, we choose the size δ > 0 for rectangles of first generation as small
as wanted. In particular, we assume that 2δ < ρ/10.

Each symbol ai is associated to a point ξai ∈ Λ ∩ Ω0 (used for the pseudo-orbit); if
ξai ∈ Ω1, then we say that the rectangle has order 0; if ξai ∈ Ω2 and n+(ξai) = n > 1
or n−(ξai) = n > 1, then we say that the rectangle has order n.

Remark 2.5. We observe that for each n > 0, there are only finitely many rectangles
of order n; the union of rectangles of order 0 covers Λ∩Ω1 and the union of rectangles
of orders > 1 cover Λ ∩ Ω2. The union of rectangles of order 0 can be included in a
neighborhood of size 2δ of Ω1; the union of rectangles of higher order can be included
into a neighborhood of Ω2 of size 2δ.

2.4.2. The rectangles. Remind that each rectangle of second generation Sai ∈ S is
obtained as a thinner rectangle of Tai . It thus inherits the order of Tai . As δ > 0 is
taken small, none of the rectangles of second generation and of order 0 which intersects
Ω3 can intersect some rectangle of order n > 1. We say that a rectangle of order 0 that
intersects Ω3 is of order 00.

Therefore, each rectangle of order 00 intersects only with a finite number of other
rectangles. Hence, we can cut them as in [5]: let Sai be a rectangle of order 00 and Saj
be any other rectangle such that Sai ∩ Saj 6= ∅. We set

S1
aiaj

= {x ∈ Sai : W u(x, Sai) ∩ Saj = ∅ and W s(x, Sai) ∩ Saj = ∅},
S2
aiaj

= {x ∈ Sai : W u(x, Sai) ∩ Saj 6= ∅ and W s(x, Sai) ∩ Saj = ∅},
S3
aiaj

= {x ∈ Sai : W u(x, Sai) ∩ Saj 6= ∅ and W s(x, Sai) ∩ Saj 6= ∅},
S4
aiaj

= {x ∈ Sai : W u(x, Sai) ∩ Saj = ∅ and W s(x, Sai) ∩ Saj 6= ∅}.

Define S0 as the set of points in M belonging to some Sai of order 00. For x ∈ S0 we
set

R(x) = {y ∈M,∀i, j ∈ N, x ∈ Skaiaj ⇒ y ∈ Skaiaj}.
This defines a partition R of S0. By construction this partition is finite and each of
its elements is stable under the map [ . , . ]. In other words, each element of R is a
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rectangle. These sets are called rectangles of third generation. If x ∈ Ri ∈ R, we set

W u(x,Ri) = Du
ε0

(x) ∩Ri and W s(x,Ri) = Ds
ε0

(x) ∩Ri.

By construction, if x is a point in a rectangle of second generation Sai1 , . . . Saip , then

W u,s(x,Ri) = W u,s(x, Saik ) ∩Ri for 1 ≤ k ≤ p.

Moreover, the next result follows as in [10, Proposition 3.9], which means that the
family R is a Markov partition of S0.

Proposition 2.6. Let Ri and Rj be rectangles of third generation, n > 1 be some
integer and x ∈ Ri ∩ f−n(Rj). Then,

fn(W u(x,Ri)) ⊃ W u(fn(x), Rj) and fn(W s(x,Ri)) ⊂ W s(fn(x), Rj).

We also emphasize that, by construction, every point in a rectangle of third gener-
ation R is a density point for R and with respect to the unstable Lebesgue measure
Lebu.

3. Proof of Theorem A

In this section we prove the existence of a finite SRB measure. In the first step we
define hyperbolic times to be able to control de distortion of log Ju along orbits. These
hyperbolic times define an induction into S0 and we construct an invariant measure for
this induction map in the second step of the proof. Here we also need to extend the
construction to S0. In the last step, we prove that the return time is integrable and
this allow to define the f -invariant SRB measure.

3.1. Hyperbolic times. Observe that every point in S0 is a λ-hyperbolic point and
then, it returns infinitely many often in Ω3. Hence, every point in S0 returns infinitely
many often in S0.

Let x ∈ S0 and n ∈ N∗ be such that fn(x) ∈ S0. Then, there exist two rectangles
of third generation Rl and Rk such that x ∈ Rl and fn(x) ∈ Rk. Thus, the Markov
property given by Proposition 2.6 implies

f−n(W u(fn(x), Rk)) ⊂ W u(x,Rl).

To achieve our goal we need some uniform distortion bound on

n−1∏
k=0

Ju(fk(x))

Ju(fk(y))
,

where y ∈ f−n(W u(fn(x), Rk)) and Ju(z) is the unstable Jacobian det df|Eu(z)(z). To
obtain distortion bounds we will use the notion of hyperbolic times introduced in [2].

Definition 3.1. Given 0 < r < 1, we say that n is a r-hyperbolic time for x if for every
1 ≤ k ≤ n

n∏
i=n−k+1

‖df−1
|Eu(f i(x))

‖ ≤ rk.
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It follows from [1, Corollary 3.2] that if

lim inf
n→∞

1

n

n−1∑
j=0

log ‖df−1
|Eu(fj(x))

(f j(x))‖ < 2 log r,

then there exist infinitely many r-hyperbolic times for x. Therefore, by construction
of ∆, taking r0 = e−

1
3
ζ we have that for every x in S0, there exist infinitely many

r0-hyperbolic times for x.

Remark 3.2. Another important consequence we shall use later is that there is a set
with positive density of r0-hyperbolic times.

Lemma 3.3. There exists δ′ > 0 such that, if δ < δ′, then , for every x in S0, for
every r0-hyperbolic times for x, n, and for every y in Bn+1(x, 4δ), the integer n is also
a
√
r0-hyperbolic time for y.

Proof. Pick ε > 0 small compared to ζ. By continuity of df and Eu, there exists some
δ′ > 0 such that for all x ∈ U and all y ∈ B(x, 4δ′), then

e−ε <
‖df−1
|Eu(x)(x)‖

‖df−1
|Eu(y)(y)‖ < eε.

Let us assume that δ < δ′. Take x0 ∈ S0 and n an r0-hyperbolic time for x. Given
y ∈ Bn+1(x, 4δ), then for every 0 ≤ k ≤ n, we have that fk(y) ∈ B(fk(x), 4δ) ⊂
B(fk(x), 4δ′), which means that for every 0 ≤ k ≤ n

e−ε <
‖df−1
|Eu(fk(x))

(fk(x))‖
‖df−1
|Eu(fk(y))

(fk(y))‖ < eε. (3.1)

The real number ε is very small compared to ζ, thus (3.1) proves that for every 0 ≤
k ≤ n,

‖dfk−n
Eu(fk(y))

‖ < (
√
r0)n−k.

This proves that n is a
√
r0-hyperbolic time for every y. �

From here on we assume that δ < δ′.

Lemma 3.4. If x ∈ S0 and n > 1 is an r0-hyperbolic time for x, then fn(x) ∈ S0.

Proof. By definition of r0-hyperbolic time, ‖df−1
|Eu(fn(x))‖ < r0 = e−

1
3
ζ , which implies

that fn(x) ∈ Ω3 (by definition of ε2). Hence, fn(x) ∈ S0. �

Conversely, if x and f(x) belong to S0, then 1 is a r0-hyperbolic time for x. Therefore,
we say that a r0-hyperbolic time for x is a hyperbolic return in S0. Moreover, the Markov
property of R proves that, if n is a r0-hyperbolic time for x, then there exists Rk ∈ R
such that fn(x) is in Rk and we have

f−n(W u(fn(x), Rk)) ⊂ S0.
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3.2. Itinerary and cylinders. For our purpose, we need to make precise what itinerary
and cylinder mean. The rectangles of third generation have been built by intersection
some rectangles of second generations (of type 00). Rectangles of second generation
are restriction of rectangles of first generation. We remind that the set of rectangles of
first generation satisfies an “almost” Markov property.

Then, we say that two pieces of orbits x, f(x), . . . , fn(x) and y, f(y), . . . , fn(y) have
the same itinerary if x and y have the same codes in Σ0 up to the time which represent
n. As the dynamics in Σ0 is semi-conjugated to the one induced by F , this time may
be different to n.

The points in the third generation of rectangles having the same itinerary until some
return time into S0 define cylinders.

3.3. SRB measure for the induced map. For x ∈ S0, we set τ(x) = n if for some
point y in the same cylinder than x, n is a r0-hyperbolic time for y. This allows us to
define a map g from S0 to itself by g(x) = f τ(x)(x).

Remark 3.5. As τ is not the first return time, the map g is a priori not one-to-one.

As usual we set

τ 1(y) = τ(y) and τn+1(y) = τn(y) + τ(gn(y)).

The n-cylinder for x will be the cylinder associated to τn(x).
Due to the construction of S0, we have a finite set of disjoint rectangles Rk, a Markov

map
g : ∪Rk → ∪Rk,

Markov in the sense of Proposition 2.6, and every point in every Rk is a Lebu density
point of Rk. Recall that R(x) means Rk if x ∈ Rk.

The map g can be extended to some points of S0. Note that S0 still have a struc-
ture of rectangle1. More precisely, the extension of g is defined for the closure of
1-cylinders: if x belongs to S0 and g(x) = fn(x), then we can define g for all points y

in f−n
(
W u(fn(x),R(fn(x)))

)
⊂ S0 by

g(y) = fn(y).

By induction, gn is defined for the closure of n-cylinders. These points naturally belong
to S0 but S0 is strictly bigger than the closure of n-cylinders.

We use the method in [8], which uses results from Section 6 in [9]. Let x0 be some

point in S0 and set Lebu0 the restriction and renormalization of Lebux0 to W u(x0,R(x0)).
We define

µn =
1

n

n−1∑
i=0

gi∗(Lebu0).

We want to consider some accumulation point for µn. The next lemma shows they are
well-defined and g-invariant.

Lemma 3.6. There exists a natural way consider an accumulation point µ for µn. It
is a g-invariant measure.

1A local sequence of (un)stable leaves Wu(xn, Rk) converges to a graph.
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Proof. To fix notations, let us assume that there are N rectangles of third generation,
R1, . . . , RN . Each point in S0 produces a code in {1, . . . N}Z just by considering its
trajectory by iterations of g2. Nevertheless, it is not clear that every code in {1, . . . N}Z
can be associated to a true-orbit in M . This can however be done for codes in the
closure of the set of codes produces by S0. This set has for projection the set of points
which are in the closure of n-cylinders for every n.

Now, note that g∗(Lebu0) has support into the closure of the 1-cylinders. Then, the
sequence of measures µn can be lifted in {1, . . . , N}Z and we can consider there some
accumulation point for the weak* topology. Its support belongs to the set of points
belonging to n-cylinders for every n, and the measure can thus be pushed forward in
M . It is g-invariant. �

In the following we consider an accumulation point µ for µn as defined in Lemma 3.6.
We want to prove that µ is a SRB measure. First, let us make precise what SRB

means for µ. We remind that being SRB means that the conditional measures are
equivalent to the Lebesgue measure Lebu on the unstable leaves. This can be defined for
any measure, not necessarily the f -invariant ones, and only requires that the partition
into pieces of unstable manifolds is measurable (see [11]).

To prove that µ is a SRB measure, it is sufficient (and necessary) to prove that there
exists some constant χ, such that for every integer n, for every y ∈ gn(W u(x0,R(x0)))
and y = fm(x) for some x ∈ W u(x0,R(x0)), then for every z ∈ W u(y,R(y))

e−χ ≤
∏m−1

i=0 Ju(f−i(y))∏m−1
i=0 Ju(f−i(z))

≤ eχ. (3.2)

First, recall that we have chosen the map g in relation with hyperbolic times. Hence
we have some distortion bounds.

Lemma 3.7. There is 0 < ω0 < 1 such that for all 0 ≤ k ≤ τ(y), y ∈ S0 and
z ∈ f−τ(y)(W u(g(y),R(g(y))))

du(fk(z), fk(y)) ≤ ω
τ(z)−k
0 du(g(z), g(y)).

Proof. If y ∈ S0 ∩ f−1(S0), then g(y) = f(y) and y ∈ Ω3 (far away from S). If
g(y) = f τ(y)(y) with τ(y) > 1, then by definition of g, there exists y′ such that

(1) τ(y) is a r0-hyperbolic time for y′; and

(2) y′ is in C(y)
def
= f−τ(y)(W u(f τ(y)(y),R(f τ(y)(y)))).

The diameter of R(f τ(y)(y)) is smaller than 2β(δ). Hence, by construction of the third
generation of rectangles, C(y) is included into Bτ(y)+1(y, 4β(δ)), which gives that τ(y)
is a
√
r0-hyperbolic time for every point in C(y). Therefore, the map

fk−τ(y) : W u(f τ(y)(y),R(f τ(y)(y)))→ fk(C(y))

2Actually the backward orbit of g is not well defined. The projection is not a priori one-to-one,
and to get a sequence indexed by Z we have to consider one inverse branch among the several possible
pre-image by g.
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is a contraction and it satisfies

‖dfk−τ(y)
|Eu ‖ ≤ √r0

τ(y)−k
.

Thus,

du(fk(z), fk(y)) ≤ r
τ(y)−k

2
0 du(g(z), g(y)).

�

Lemma 3.8. There exist some constants χ1 > 0 and 0 < ω < 1 such that for every
n ≥ 1, for every gn(y) in gn(W u(x,R(x))), for every z in f−τ

n(y)(W u(gn(y),R(y)))
and for every m ≤ n, we obtain

τm(y)−1∑
j=0

∣∣∣ log(Ju(f j(z)))− log(Ju(f j(y)))
∣∣∣ ≤ χ1 ω

n−m.

Proof. The map x 7→ Ju(x) is Hölder-continuous because the map Eu is Hölder-
continuous; moreover it takes values in [1,+∞[. The map t 7→ log(t) is Lipschitz-
continuous on ]1,+∞[. Thus, there exists some constants χ2 and α, such that

τm(y)−1∑
j=0

∣∣∣ log(Ju(f j(z)))− log(Ju(f j(y)))
∣∣∣ ≤ χ2

τm(y)−1∑
j=0

(du(f j(z), f j(y)))α. (3.3)

Hence, lemma 3.7 and (3.3) give

τm(y)−1∑
j=0

∣∣∣ log(Ju(f j(z)))− log(Ju(f j(y)))
∣∣∣ ≤ χ2

[
+∞∑
j=0

r
jα/2
0

]
(du(gm(z), gm(y)))α.

Lemma 3.7 also yields du(gm(z), gm(y)) ≤ r
(n−m)/2
0 diam(R(gn(y))). �

Lemma 3.8 gives that (3.2) holds for every n, for every y ∈ gn(W u(x0,R(x0))) and
for every z ∈ W u(y,R(y)), with χ := χ1 + 2 log κ.

Lemma 3.9. Let W s
loc(S0) denote the set of local unstable leaf of points in S0. The

measure µ can be chosen so that µ(W s
loc(S0)) = 1.

Proof. Let us pick some rectangle of order 00, say Rk, having positive µ measure.
Due to the Markov property, gn∗ (Leb0)|Rk is given by the unstable Lebesgue measure
supported on a finite number of unstable leaves of the form W u(z,Rk).

Now recall that stable and unstable leaves in Rk are in S0. Recall also that stable
and unstable foliations are absolutely continuous. We can use the rectangle property of
Rk to project all the Lebesgue measures for supp gn∗ Leb0 ∩Rk on a fixed unstable leaf of
Rk, say Fk. All these measure project themselves on a measure absolutely continuous
with respect to Lebesgue, which yields that the projection on Fk of µn can be written
on the form ϕn,kdLebFk . We have to consider the closure Fk to take account the fact
that µ be “escape” from S0.

It is a consequence of the bounded variations stated above (see (3.2)) that all the
ϕn,k are uniformly (in n) bounded LebFk almost everywhere. In other words, all the
ϕn,k belong to a ball of fixed radius for L∞(LebFk) and this ball is compact for the
weak* topology.
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Therefore, we can consider a converging subsequence (for the weak* topology). As
there are only finitely many Rk’s, we can also assume that the sequence converges for
every rectangle Rk. For simplicity we write →n→∞ instead of along the final subse-
quence.

Now, the convergence means that for every ψ ∈ L1(Leb(Fk)),∫
ψϕn,k dLebFk →n→∞

∫
ψϕ∞,k dLebFk .

If πk denote the projection on Fk We can choose for ψ the function 1IFk\Fk . Then for
every n,

0 6
∫
ψϕn,k dLebFk =

∫
ψϕn,k dLebFk 6 µn(Rk \Rk) = 0.

This shows that Fk has full πk∗µ measure, and as this holds for every k, this shows
that W s

loc(S0) has full µ measure. �

Remark 3.10. An important consequence of Lemma 3.9 is that for µ almost every point
x, there exists a point y ∈ S0 in its local stable leaf. Note that every r0-hyperbolic
time for y is a return time for y, and then also for x.

3.4. The SRB measure. The map g satisfies g(z) = f τ(z)(z) for every z in S0. Let
T (i) = {z ∈ S0 : τ(z) = i} be the set of points in S0 such that the first return time
equals i. We set

m̂ =
+∞∑
i=1

i−1∑
j=0

f j∗ (µ|T (i)).

Then m̂ is a σ-finite f -invariant measure and it is finite if and only if τ is µ-integrable;
see [12]. In this case, we may normalize the measure to obtain some probability mea-
sure. This will be an SRB measure.

We define for n > 1 the set

Hn = {x ∈M : n is a r0-hyperbolic time for y in W s
loc(x)} .

Observe that the following properties hold:

(a) if x ∈ Hj for j ∈ N, then f i(x) ∈ Hm for any 1 6 i < j and m = j − i;
(b) there is θ > 0 such that for µ almost every x in S0

lim sup
n→∞

1

n
#{1 ≤ j ≤ n : x ∈ Hj} ≥ θ;

(c) Hn ⊂ {τ 6 n} for each n > 1.

Condition (a) is a direct consequence of the definition for Hn. Condition (b) holds
by construction of S0, by Pliss Lemma (see e.g. [1]) and the property emphasized in
Remark 3.10. Property (c) holds due to Lemma 3.4.

Proposition 3.11. The inducing time τ is µ-integrable.

Proof. Suppose by contradiction that
∫
τdµ =∞. By Birkhoff’s Ergodic Theorem we

have
1

i

i−1∑
k=0

τ(gk(x))→
∫
τdµ =∞,
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for µ-almost every point x ∈ S0. Let x ∈ S0 be a µ-generic point. Define, for every
i ∈ N,

ji = ji(x) =
i−1∑
k=0

τ(gk(x)).

This means that gi(x) = f ji(x). We define

I = I(x) = {j1, j2, j3, ...}.
Given j ∈ N, there exists a unique integer r = r(j) ≥ 0 such that jr < j ≤ jr+1.
Supposing that x ∈ Hj, then gr(x) ∈ Hm, where m = j − jr, by (a) above. For each n
we have

1

n
#{j ≤ n : x ∈ Hj} ≤

r(n)

n
.

By construction, if r(n) = i, that is, ji < n ≤ ji+1, then

ji
i
<

n

r(n)
≤ ji+1

i+ 1

(
1 +

1

i

)
.

Since

ji
i

=
1

i

i−1∑
k=0

τ(gk(x))→∞, as i→ +∞,

it follows that

lim
n→∞

1

n
# {1 ≤ j ≤ n : x ∈ Hj} = lim

n→∞

r(n)

n
= 0.

This contradicts item (b), and so one must have that the inducing time function τ is
µ-integrable. �

4. Proof of Theorem B

Let λ > 0 be fixed. We consider a large positive constant K � 2 whose magnitude
shall be adjusted at the end of the proof of TheoremB. Remember that we defined
above

B(S, ε1) = {y ∈M : d(S, y) < ε1}, and Ω0 = Ω \B(S, ε1).

We pick ε1 > 0 (precise conditions will be stated along the way) small enough so that
in particular B(S, ε1) ⊂ U . By continuity, we can also choose ε1 > 0 small enough
such that for every x ∈ B(S, ε1),

1 ≤ ‖df(x)|Eu(x)‖ < e
λ
K and 1 ≤ ‖df−1(x)|Es(x)‖ < e

λ
K . (4.1)

Moreover, there exist λu > 0 and λs > 0 such that for every x ∈ Ω \B(S, ε1) it holds:

(1) for all v ∈ Eu(x) \ {0}
‖df(x)v‖f(x) > eλ

u‖v‖x and ‖df−1(x)v‖f−1(x) < e−λ
u‖v‖x;

(2) for all v ∈ Es(x) \ {0}
‖df−1(x)v‖f−1(x) > eλ

s‖v‖x and ‖df(x)v‖f(x) < e−λ
s‖v‖x.

4.1. Graph transform.
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4.1.1. Constants to control lack of hyperbolicity. We denote by | . | the Euclidean norm
on RN , where N = dimM . By continuity, we can assume that the maps x 7→ dimE∗(x)
are constant, for ∗ = u, s. From now on, we will denote by Ru the space RdimEu ×
{0}dimEs . In the same way Rs, Bu(0, ρ) and Bs(0, ρ) will denote respectively the spaces
{0}dimEu × RdimEs , BdimEu(0, ρ)× {0}dimEs and {0}dimEu ×BdimEs(0, ρ).

Proposition 4.1. Let ε > 0 be small compared to λ, λu or λs. There are constants
ρ1 > 0, 0 < K1 < K2, a positive function ρ̄, and a family of embeddings φx : Bx(0, ρ1) ⊂
RN →M with φx(0) = x such that3

(1) dφx(0) maps Ru and Rs onto Eu(x) and Es(x) respectively;

(2) if f̂x = φ−1
f(x) ◦ f ◦ φx and f̂−1

x = φ−1
f−1(x) ◦ f−1 ◦ φx, then

(a) if x ∈ Ω \B(S, ε1), then
(i) for all v ∈ Ru \ {0}

|df̂x(0).v| > eλ
u|v| and |df̂−1

x (0).v| < e−λ
u|v|;

(ii) for all v ∈ Rs \ {0}

|df̂−1
x (0).v| > eλ

s|v| and |df̂x(0).v| < e−λ
s|v|;

(b) if x ∈ B(S, ε1), then
(i) for all v ∈ Ru \ {0},

|v| ≤ |df̂x(0).v| < e
λ
K |v| and |v| ≥ |df̂−1

x (0).v| > e−
λ
K |v|;

(ii) for all v ∈ Rs \ {0},

|v| ≤ |df̂−1
x (0).v| < e

λ
K |v| and |v| ≥ |df̂x(0).v| > e−

λ
K |v|;

(3) 0 < ρ̄(x) ≤ ρ1 for every x ∈ B(S, ε1) and ρ̄(x) = ρ1 for every x ∈ Ω \B(S, ε1);

(4) on the ball Bx(0, ρ̄(x)) we have Lip(f̂x−df̂x(0)) < ε and Lip(f̂−1
x −df̂−1

x (0)) < ε;
(5) for every x and for every z, z′ ∈ Bx(0, ρ1),

K1|z − z′| ≤ d(φx(z), φx(z
′)) ≤ K2|z − z′|.

This is a simple consequence of the map exp defined for every Riemannian manifold.
However, it is important for the rest of the paper to understand that the two constants
K1 and K2 do not depend on ε1. They result from the distortion due to the angle
between the two sub-spaces Eu and Es, plus the injectivity radius. These quantities
are uniformly bounded.

Moreover, as Ω is a compact set in U , we can choose ρ1 > 0 such that B(Ω, ρ1) ⊂ U .
As the maps x 7→ Eu(x) and x 7→ Es(x) are continuous, we can also assume that ρ1 is
small enough so that for every x ∈ Ω and y ∈ φx(B(0, ρ1)), the slope of dφ−1

x (y)(Eu(y))
in RN = Ru ⊕ Rs is smaller than 1/2.

3The notation Bx is to remind that the ball defined in RN has its image centered at x.
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4.1.2. General Graph transform. Here, we recall some well known basic statements for
the graph transform. Let E be some Banach space and T : E → E be a linear map
such that there exists a T -invariant splitting E = E1 ⊕ E2. We set Ti = T|Ei and we
assume that the norm on E is adapted to the splitting, i.e. ‖.‖E = max(‖.‖E1 , ‖.‖E2).
We also assume that there exist λ2 < 0 < λ1 such that:

(1) ‖T−1
1 v‖E1 ≤ e−λ1‖v‖E1 , for every v in E1;

(2) ‖T2v‖E2 ≤ eλ2‖v‖E2 , for every v in E2.

Proposition 4.2. Let ρ be a positive number, ε > 0 be small compared to λ1 and −λ2

and F : E → E be a C1 map such that F (0) = 0, Lip(F−T ) < ε and Lip(F−1−T−1) <
ε on the ball B(0, ρ). Then

(1) the image by F of the graph of any map g : B1(0, ρ) → B2(0, ρ) satisfying
g(0) = 0 is a graph of some map Γ(g) : B1(0, ρeλ1−2ε)→ B2(0, ρe−λ2+2ε);

(2) F induces some operator Γ on the set Lip1 of 1-Lipschitz continuous maps
g : B1(0, ρ)→ B2(0, ρ) with g(0) = 0;

(3) Γ is a contraction on Lip1 (with the standard norm on the space of Lipschitz
continuous maps), and thus it admits some unique fixed point.

For the proof of Theorem B, it is important to keep in mind the two key points in
the proof of Proposition 4.2. On the one hand, the fact that Γ is a contraction on Lip1

is essentially due to the spectral gap of dF . This is obtained by the properties of the
Ti’s and Lipschitz proximity of F and T . On the other hand, the fact that the image
by F of any graph (from B1(0, ρ) to B2(0, ρ)) extends beyond the boundary of the ball
B(0, ρ) is essentially due to expansion on E1.

4.1.3. Adaptations to our case. We want to use Proposition 4.2 in the fibered case of

f̂x. If x is in Ω0 ∩ f−1(Ω0) the spectral gap of df̂x(0) is uniformly bounded from below

in Bx(0, ρ1), and so we can apply the result with df̂x(0), f̂x and ρ = ρ1. In B(S, ε1), the
value of ρ̄(x) has to decrease to 0 when x tends to S: the spectral gap of df tends to 0
as x tends to S because ku(x) + ks(x) tends to 0. The idea is to apply Proposition 4.2

for df̂nx (0) and f̂nx for some good n. First, we have to check that the assumptions of
the proposition hold.

Proposition 4.3. Let x ∈ Ω0 and n ≥ 2 be such that fn(x) ∈ Ω0 and fk(x) ∈ B(S, ε1)
for all 1 6 k 6 n−1. There exists some constant C > 0 such that for every 0 < r ≤ 1,

Proposition 4.2 holds for F = f̂nx , T = dF (0) and ρ = Cre−
9nλ
2K , and also for F = f̂−nfn(x),

T = df̂−nfn(x)(0) and ρ = Cre−
9nλ
2K .

Proof. We refer the reader to Proposition 2.3 in [10]. We emphasize that that proof used
d2f to actually get Lipschitz continuity for df . Now, this is a standard computation to
exchange Lipschitz estimates with Hölder estimates. �

Remark 4.4. We checked that the constant 9 that appeared in Proposition 2.3 in [10]
also works if we only use a Hölder continuity condition on df . We point out that these
constants are very common in the Pesin theory and have to be understood “in spirit”:
we take very small fraction of the global minimal expansion ratio.
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Let x ∈ Ω0 and C > 0 be given by Proposition 4.3. We remind that n±(x) were
defined in Definition 2.1. If f(x) ∈ B(S, ε1) and n+(x) < +∞, then we set

lf (x) = Ce−
9λ
2K

n+(x). (4.2)

Analogously, if f−1(x) ∈ B(S, ε1) and n−(x) < +∞, then we set

lb(x) = Ce−
9λ
2K

n−(x). (4.3)

If x ∈ Ω0 ∩ f−1(Ω0), the graph transform due to Proposition 4.2 with F = f̂x, T =

df̂x(0) and ρ = ρ1 will be called the one-step graph transform. If x ∈ Ω0∩f−1(B(S, ε1)),

the graph transform due to Proposition 4.3 with F = f̂
n+(x)
x , T = dF (0) and ρ =

Cre−
9λ
2K

n+(x)will be called the n+(x)-steps graph transform. Both will be denoted by Γx.

4.2. Truncations. We are going to show that if x ∈ Ω0 is a λ-hyperbolic point of
bounded type, then we are able to construct a piece of unstable leaf as some set
φx(graph(gx)), where gx will be some special map from Bu

x(0, l(x)) to Bs
x(0, l(x)) satis-

fying gx(0) = 0 for some l(x) ≤ ρ1. We will use the graph transform along the backward
orbit of x.

The next result shows that every λ-hyperbolic point must return infinitely often
to Ω0, both in the future and in the past.

Lemma 4.5. Let ξ ∈ Ω0 be some λ-hyperbolic point such that f(ξ) /∈ Ω0 (resp.
f−1(ξ) /∈ Ω0). Then n+(ξ) < +∞ (resp. n−(ξ) < +∞).

Proof. Assume that f(ξ) /∈ Ω0 and n+(ξ) = +∞. This means that fn(ξ) ∈ B(S, ε1)
for all n > 1. This implies that for all n ≥ 1 and all v ∈ Es(fn(ξ))

‖df(fn(ξ))v‖ ≥ e−
nλ
K ‖v‖.

Hence we get

lim inf
n→∞

1

n
log ‖dfn|Es(ξ)‖ ≥ −

λ

K
,

which contradicts the fact that ξ is λ-hyperbolic. The other case is proved similarly. �

Let x ∈ Ω0 be a λ-hyperbolic point. Given n > 0, we define xn = f−n(x). By
Lemma 4.5 there exist integers 0 ≤ q0 < p0 ≤ q1 < p1 ≤ . . . such that for all i > 1

• xk ∈ Ω0 for all 0 ≤ k ≤ q0;
• xk ∈ B(S, ε1) for all qi < k < pi;
• xk ∈ Ω0 for all pi−1 ≤ k ≤ qi.

For i > 0 we set

yi = xqi = f−qi(x), zi = xpi = f−pi(x) and mi = pi − qi. (4.4)

We define Γnx as the composition of the graph transforms along the piece of orbit
xn, . . . , x1, where we take the one-step graph transform Γxk if xk and xk−1 lie in Ω0,
and the mi-steps graph transform if xk is one of the zi’s.

Our goal is to prove that the sequence of maps Γnx(0̂xn) converges to some map,

where 0̂x denotes the null-map from Bu
x(0, ρ1) to Bs

x(0, ρ1). This is well known for
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uniformly hyperbolic dynamical systems, but here the critical set S influences the
graph transform: by construction, Γnx is a contraction of ratio smaller than

exp

(
−
(
n−

∑
i,pi≤n

(mi − 1)

)
(λu + λs − 4ε)

)
.

But it is not clear that the length of the graph associated to Γnx(0̂xn) is uniformly (in
n) bounded away from 0.

Let us now explain how S influences the graph transform and specially the length of
the graphs associated to the Γnx(0̂xn)’s. Given xn ∈ Ω0, there exists an integer k such
that pk ≤ n ≤ qk+1. For pk + 1 ≤ i ≤ n we just apply the one-step graph transform,
and so we get in Bzk(0, ρ1) some graph. At this moment we apply the mk-steps graph
transform to the graph restricted to the ball Bzk(0, l

f (zk)), and we get some graph in
Byk(0, l

b(yk)). We call this phenomenon a truncation.

Truncations

yk

xp0
= z0 xzk

∈ S1∈ S1

xq0
= y0

Figure 2. Truncations due to excursions close to S1. The vertical rep-
resents the size of the graphs.

For pk−1 ≤ i ≤ qk, we can again apply the one-step graph transform, but to the
small piece of graph with length lb(yk). However, the length increases along this piece
of orbit (as long as it is smaller than 2ρ1) because, at each (one-)step, we can take the
whole part of the image-graph. For i = pk−1 three cases may occur:

(i) the length of the graph is 2ρ1 and so, there is a new truncation;
(ii) the length of the graph is strictly smaller than 2ρ1, but is bigger than 2lf (zk−1):

again, there is a new truncation;
(iii) the length of the graph, 2l, is strictly smaller than 2lf (zk−1): we apply the

mk−1-steps graph transform with ρ = l, and we obtain some graph in Byk−1
(0, l).

From x, we can see the truncation due to Γzk .

We proceed this way along the piece of orbit yk−1, . . . , x−1. Hence, the length of the
graph Γnx(0̂xn) is (at least) equal to 2lf (zj), where j is such that pj is the smallest
integer where a truncation occurs. We set i(n) := j.

The main problem we have to deal with, is to know if the sequence i(n) may go
to +∞ or if it is bounded. In the first case, this means that the sequence of graphs
Γnx(0̂xn) converges to a graph with zero length in any ball B(x, ρ). On the contrary,
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the later case produces a limit graph with positive length. In Proposition 4.8 below we
show that, for λ-hyperbolic points of bounded type, it is possible to have the sequence
(i(n))n bounded. For its proof we need two preliminary lemmas.

Let A = maxx∈M ‖df(x)‖ and define

γ =

(
logA− λ

2

)(
λ

2
− λ

K

)−1

.

We emphasize that γ converges to some finite positive number when K grows to infinity.

Lemma 4.6. Given a λ-hyperbolic x, let m be an integer such that f j(x) ∈ B(S, ε1)
for all 0 6 j 6 m− 1.

(1) If m > γq for some integer q > 1, then

‖dfm+q
|Eu(x)‖ 6 e(m+q)λ/2.

(2) If ‖df q|Eu(fm(x))‖ 6 eqλ/2, then for every 0 6 j 6 m− 1

||df q+j(x)|| 6 e(q+j)λ/2.

Proof. Let w be a vector in Eu(x). Using that f j(x) ∈ B(S, ε1) for 0 6 j 6 m− 1 and
also (4.1), we deduce

‖dfm+q(x).w‖ = ‖df q(fm(x))dfm(x).w‖
6 Aqem

λ
K ‖w‖

6 eq logA+m λ
K ‖w‖.

Now, using that m > γq, we obtain

m

(
λ

2
− λ

K

)
> q

(
logA− λ

2

)
and so

q logA+m
λ

K
< (m+ q)

λ

2
.

This concludes the proof of the first item.
Let us now prove the second item. We set xl := f l(x). df(xj) expands every vector

in the unstable direction for 0 < j 6 m by a factor lower than e
λ
K < e

λ
2 . Hence, the

expansion in the unstable direction for df q+j(x) is strictly smaller than

eq
λ
2

+j λ
K < e+(q+j)λ

2 .

�

Lemma 4.7. Given a λ-hyperbolic point x, let yk, qk, pk and mk be as in (4.4). Given
0 < ε < 1, let 0 6 s 6 qk be the largest integer such that log ‖df−s(x)|Eu(x)‖ 6
−sλ(1− ε). If

log ‖df qk(yk)|Eu(yk)‖ <
9mkλ

2K
,

then

mk >
2K

9
s(1− ε).
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Proof. If s = 0, then nothing has to be proved. Assume now that s > 1. As we are
assuming that log ‖df qk(yk)|Eu(yk)‖ < 9mkλ

2K
and s 6 qk, then

log ‖df s(xs)|Eu(xs)‖ <
9mkλ

2K
,

because df always expands in the unstable direction. Also, by the choice of s, we have
log ‖df−s(x)|Eu(x)‖ 6 −sλ(1− ε), and so

sλ(1− ε) < 9mkλ

2K
.

�

4.3. Proof of Theorem B. We can now state the key proposition to construct the
local unstable manifolds.

Proposition 4.8. There is a constant K > 0 such that if x is a λ-hyperbolic of bounded
type, then the sequence of truncations (i(n))n is bounded.

Proof. We consider an increasing sequence of integers (sn)n such that

lim
n→∞

1

sn
log ‖df−sn(x)|Eu(x)‖ 6 −λ.

We also consider 0 < ε < 1
3

and N sufficiently big such that for every n > N ,

1

sn
log ‖df−sn(x)|Eu(x)‖ < −λ(1− ε) and

sn+1

sn
< L,

for some real number L (which exits by definition of λ-hyperbolic of bounded type).

Let us pick K. Several conditions on K are stated along the way. First we assume

that K is sufficiently big such that
1

K
< 1− ε holds.

Consider k such that qk > sN and let 0 6 s 6 qk be as in Lemma 4.7. Note that we
necessarily have s > sN . Then, consider the biggest n such that sn 6 s. Note that
n > N , as (sn)n is an increasing sequence.

Assume now, by contradiction, that

log ‖df qk(yk)|Eu(yk)‖ <
9mkλ

2K
. (4.5)

In such case, by Lemma 4.7 we have

mk >
2K

9
s(1− ε). (4.6)

Now we distinguish the two possible cases:

(1) s < qk.

We claim that, in this case, sn+1 is bigger than pk. Indeed, by definition of s
and n, we cannot have sn < sn+1 6 qk . Therefore, sn+1 is bigger than pk and
we get
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sn+1

sn
>
qk +mk

s
> 1 +

2K

9
(1− ε)

which can be made bigger than L if K is chosen sufficiently big.
(2) s = qk.

It may happen that the contraction of df−qk(x) in the unstable direction is so
strong that sn+1 = qk + 1. Actually, this property may endure for several iter-
ates. In other words, there may be several sj between qk and pk. Nevertheless,
we can show that there will always be a (too) big gap between some of them.

Consider K sufficiently big so that

2K

9
(1− ε) > γ2 + 2γ > γ.

Using (4.6) and also that we are considering the case s = qk, we obtain mk >
γqk. Then, we apply Lemma 4.6 with m = mk and q = qk, and this shows that
(γ + 1)qk is not one of the sj. Note that

mk >
2K

9
(1− ε)qk > (γ2 + 2γ)qk,

holds if K is sufficiently big (remember that γ is bounded). This yields mk −
γ.qk > γ(1 + γ)qk. Now, we are back to the case (1) with (γ + 1)qk instead of
qk and mk − γ.qk instead of mk. Thus, there are no sj’s between (γ + 1)qk and
qk +mk. Observe that this last interval has length bigger than(

2K

9
(1− ε)− 1− γ

)
qk.

If sj is the biggest term of the sequence (sl) smaller than (γ+ 1)qk, then sj+1 >
pk = mk + qk and we get

sj+1

sj
>

pk
(1 + γ)qk

=
mk + qk
(1 + γ)qk

>

(
2K(1− ε)

9
+ 1

)
(1 + γ)−1 ,

which can again be made bigger than L by a convenient choice of K > 0.

Both cases yield a contradiction, which means that the assumption (4.5) does not
hold. This shows that for every k such that qk > sN ,

i(pk) 6 max{i(n), n 6 sN}.
As truncation only occurs for integers of the form pk, the proposition is proved. �

With the previous notations, the length ln of the graph associated to Γnx(0̂xn) is
smaller than 2ρ1 and is actually fixed by the finite number of truncations max{i(n), n 6
sN}, where N appears in the proof of Proposition 4.8. This proves that the sequences

of lengths (ln) is bounded away from 0. The family of maps Γnx(0̂xn) converges to some
map

gx : Bu
x(0, l(x))→ Bs

x(0, l(x)),

with gx(0) = 0, where l(x) is such that 0 < l(x) ≤ ln for every n. We define

Fuloc(x) = φx(graph(gx)).
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Furthermore, Lemma 4.5 proves that the backward orbit of x returns infinitely often
to Ω0. Therefore, if f−k(x) belongs to B(S, ε1) we set

Fuloc(f
−k(x)) = fn(Fuloc(f

−(n+k)(x))),

where n is the smallest positive integer such that f−(n+k)(x) belongs to Ω0. Then, we
set

Fu(x) =
⋃

n, f−n(x)∈Ω0

fn(Fuloc(f
−n(x))).

The uniqueness of the map gx and its construction prove that Fu(x) is an immersed
manifold.

To complete the proof of Theorem B, we must check that the C1-disks that have been
constructed are tangent to the correct spaces. Let y be in Fuloc(x). By construction
of Fuloc(x) we have for every n such that f−n(x) ∈ Ω0, f−n(y) ∈ Fuloc(f

−n(x)). For
such an integer n, we pick some map gn,y : Bu(0, ρ1) → Bs(0, ρ1) such that f−n(y) ∈
φf−n(x)(graph(gn,y)) and Tf−n(y)φf−n(x)(graph(gn,y)) = Eu(f−n(y)). As the map gx is
obtained as some unique fixed-point for the graph transform, the sequence Γnx(gn,y)
converges to gx. By df -invariance of Eu (until the orbit of y leaves U) we must have
TyFu(x) = Eu(y).

We also can do the same construction with f−1 to obtain some immersed manifolds
F s(x). Then, x ∈ Fu(x) ∩ F s(x). It might be important to have an estimate for the
length of Fuloc(x) or Fu(x). However, we are not able to give a lower bound for such
estimates.
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