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Abstract
The semantics of standardized Dimensioning and

Tolerancing (D&T), that is to say its meaning by
relationship to actual surfaces, on one hand renders
difficult the synthesis of a functional D&T and on other
hand can not be correctly inspected, in particular with the
Coordinate Measuring Machines (CMM).

We suggest a new semantics for the tolerancing
based on the fitting of an envelope surface on the actual
surface.

We define the envelope surface, in a unique and
general way, as being the theoretical surface in contact
with the actual surface on the outside of the material and so
that the volume between them is minimal. In others terms,
we suggest a unique fitting criterion enabling to define the
envelope surface and which we call the criterion of
minimal volume. We show the interesting properties of
this criterion notably from the point of view of its
functional interpretation.

We present then a method, for the software of
CMMs, enabling the calculation of the envelope surface
following the suggested criterion. The performances of
this method and the obtained numeric result are compared
to the two principals fitting criterions used, the least
squares criterion and the minimal form defect criterion
(again called minimax or Tschebyscheff criterion).

Introduction
The semantics of tolerancing standards is inspired

of traditional technologies of verification: Instruments of
measurement (calipers, micrometers), elements of
metrology (surface plates) and of control (gauges).
However it is not very well formalized. The most
significant example is the semantics associated to the
linear size tolerance: Inspired of the measurement by
micrometers, it is based on the ambiguous notion of local
size.

This origin of tolerancing standards renders very
difficult the synthesis of a functional D&T. Moreover, the
standardized semantics cannot be respected by the new
technology of verification that is the CMM.

The object of this paper is to suggest a new
semantics for the standardized tolerancing, based on the
fitting of a theoretical surface on the actual surface. So that
the theoretical surface is representative of the actual
surface, we define a general fitting criterion for any types
of surface and show how it can be calculated by the
software of a CMM.

Principle of standardized tolerancing
The principle of standardized tolerancing is to

tolerancing individually each simple surfaces (plane,
cylinder, cone) composing the surface of the part. 

For every simple surface, the standards
discriminates three types of defects: A form defect, a size
defect and a position defect (in this paper, the term
position means the terms location and orientation used by
the standards).

The object of the D&T is to tolerancing these three
defects. The standards provides two graphic means:

The size tolerancing, represented by a toleranced
dimension, and the geometric tolerancing, represented by
a tolerance frame.

The form and the position are toleranced with the
geometric tolerancing. The linear size (diameter of a shaft)
or angular size (angle between two planes), is toleranced
with the size tolerancing. 

It is necessary to note that these three defects
constitute a model of reality, because nothing doesn't allow
discriminate them naturally on the actual surface. It means
that it is necessary to give them a sense with regard to the
actual surface, which the norm calls the interpretation and
which we prefer to call the semantics. 

Standardized Semantics of the tolerancing

Presentation
For the linear sizes, the size tolerance limit the

actual local sizes (measurements between two opposite
points) of the feature [1] (Fig. 1.a). The feature nominates
a cylindrical surface or a pair of flat parallel surfaces [1].

For the angular sizes, the meaning of the size
tolerancing is very ambiguous. One notices that for the
conical surfaces, the standards [2] doesn't tolerance the
angle but only a form defect.

Fig. 1 : Size and Form

The form defect is the maximal distance between
the actual surface and a theoretical surface in contact with
it on the outside of the material. According to the
standards, the theoretical surface has to be chosen of
manner to minimize this distance. The theoretical surface
is therefore fitted to the actual surface following the
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criterion of minimal form defect, again called minimax
criterion or Tschebyscheff criterion. This is the first fitting
criterion used by the standards.

The standards, in its presentation of form defect,
considers an other theoretical surface, «parallel» to the
previous (coaxial cylinder), in contact with the actual
surface on the inside of the material (Fig. 1.b).

Moreover, the standards offers a means to limit the
form defect of the surface, through the size tolerance,
thanks to the envelope requirement. This requirement
specifies, that in addition of conditions on the local sizes,
the actual surface has to respect a limit theoretical surface
of which the size corresponds to the maximum material
size authorized by the size tolerance.

If the position is toleranced, the tolerance is
expressed by a tolerance zone. The «actual axis» must lie
within this (Fig. 2.a).

Fig. 2 : Toleranced position or datum position

Remark: The notion of «actual axis» is not definite
in the standards. 

If the position serves of datum, the datum axis that
has to be considered is the axis of the envelope cylinder. In
the case of a reaming, the envelope cylinder is the cylinder
of maximal diameter incoming in the reaming (Fig 2.b.).
This is the second criterion used by the standards. It is
operable only for the surfaces characterized by an alone
linear size (Cylinder and sphere). 

Implication on the functional D&T
The difficulty felt by the drawer during the

tolerancing of a part, is bound in the fact that the three
tolerances have some interplays between them: The
position tolerance limit indirectly the form defect of the
surface and the form tolerance limit the size tolerance,
which can not be superior to it (Fig. 1.b). However it is
impossible to determine the accumulated effect of these
interplays because the three defects are not relative to the
same theoretical surface. 

Remark: One notes here that the principle of
independency, presented by the standards as the basic
principle for the interpretation of tolerances, has a very
limited scope!

Moreover, the interpretation of a linear size
tolerance doesn't correspond to any real functional
condition. Sometimes, it can be said that it is useful when
the form is not functional, taking for example the condition
of strength. In fact, for this condition, the variation of the
form is more influential that the variation of the size as it is
underlined by Professor Srinivasan [3].

Implication on the verification
The interpretation in terms of local sizes of a linear

size tolerance presents several problems for the
verification:

- The notion of local size is very difficult to define
simply. Until now, it isn't define by the standards. Some
recent efforts provided definitions; but they are
complicated and haven't got any functional justification.

- The local size cannot be measured when there is
no material (Example of a shaft with a flatlaid).

- The local size is incompatible with the techniques
of verification on CMM.

- Finally, in a more theoretical view of view, it is
impossible to warrant that none actual local size is out of
the tolerance, being given that there is an infinity of it.

The verification of a position tolerance following
the standardized interpretation necessitates the
«construction» of the actual axis. In practices one prefers
verify the position defect of the axis of a measuring rod
adjusted in the reaming, as it is describes in the french
standards relative to the verification, from NF E 10-105 to
E 10-108 [4]. Note that the measuring rod materializes the
envelope of the surface.

In conclusion, the standardized semantics is not
functional and leads to some difficulties in metrology.

Proposition of a new semantics

Presentation
We suggest that the form, the size and the position

are relative to the theoretical envelope surface fitted to the
actual surface. In the continued of this paper, we give an
unique and general definition of the theoretical envelope
surface.

In the case of a shaft, the envelope is the theoretical
cylinder of minimal diameter, outside to the material:

Fig. 3 : New semantics

The semantics that we suggest is the following:
- The size tolerance limit the envelope's size of the

actual surface: The envelope's size has to be in the
tolerance.

Note that this semantics is also applicable to
angular sizes like the angle of a cone because the definition
of the envelope, that we suggest in the continued, is
general.

- The form tolerance limit the maximal deviation of
the actual surface with regard to the envelope.

- The position tolerance applies to the geometric
feature which characterizes the position of the envelope:
Axis of the envelope cylinder, centre of the envelope
sphere, axis and apex of the envelope cone. We name these
features, the positional features. In the case of the plane,
the positional feature is the plane itself. Consequently,
following the suggested semantics, a position tolerance
applied to a flat surface, concerns the envelope plane of
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this (tangent plane).
- Finally, if the surface serves of datum, this is also

the positional feature of the envelope which is considered.
This last point corresponds to the standards.

Remark: The suggested semantics can be used with
other fitting criterions enabling the definition of a
theoretical fitted surface; the least squares criterion for
example. However, the one than we propose to adopt
seems to be the most functional.

Implication on the functional D&T
The three tolerances, the size, the form and the

position, are independent between them while attributing
to the same theoretical surface:

The position tolerance doesn't limit the form defect
of the surface.

The form tolerance doesn't limit the envelope's size.
The size tolerance concerns directly the envelope of

the surface allowing to the drawer to control the maximum
and minimum clearances in the assemblies. 

Remark: If the envelope, which we want to
tolerance the size, must apply just on a restraint length of
the surface (example of a long shaft), the standards [6]
provides a means to limit the zone in which we want that
applies the tolerance:

Fig. 4 : Tolerancing on a restraint zone

This drawing means, that in any premises of the
shaft, the size tolerance and the form tolerance has to be
true on the envelope of length l.

Implication on the verification
With the traditional technologies, these new

interpretations don't lay more difficulties that the
standardized interpretations:

For the position tolerances, the current practices are
more in conformity with the suggested interpretation that
with the one of the standards (except for the plane).

For the form tolerances, the standardized methods
enable the verification of form defect following the
suggested interpretation.

For the linear size tolerances, one could use gauges.
The use of the micrometers doesn't enable to inspect the
envelope.

The CMMs agrees particularly to this new
semantics. However the criterion of the least squares, used
by the software of these machines, leads to a theoretical
surface passing through the sampled points. Some
software shift this last surface toward the most outside
point of the material. But in the two cases the obtained
surface is not the envelope surface.

We present in the next part of this paper, an
algorithm for the software of CMMs enabling the
calculation of the envelope surface.

General definition of the envelope

Suggested definition
The envelope of an actual simple surface is the

theoretical surface, outside to the material, which
minimizes the volume between it and the actual surface.

In others terms, the envelope is the theoretical
surface fitted to the actual surface following the criterion
of Minimal Volume. We present lower its mathematical
form.

Remark: To our knowledge, this criterion is
original and has never been proposed before.

Comparison with the standardized fitting criterions
The standards [7] describes, for every type of

surface, how has to be fitted the theoretical surface to the
actual surface when this has to serve of datum. Alone the
cylindrical surface has got a precisely definition.

We show here that the suggested criterion
generalizes any fitting given by the standards and
formalizes them further.

- For the cylindrical surfaces, the standards
specifies that we have to consider, for a shaft, the axis of
minimal cylinder circumscribes; in others terms, the axis
of the fitted cylinder, outside to the material, of minimal
diameter. The criterion of minimal volume is strictly
equivalent to the criterion of minimal/maximal size
definite by the standards. The demonstration is simple:
Call v1 the interior volume of the shaft and v2 the interior
volume of the circumscribes cylinder of diameter d and of
height corresponding to the one of the shaft. The volume
between the two surfaces is equals to the difference of
these two volumes: v= v2 - v1.

v1 being a constant as the height, to minimize this
volume, it is necessary to minimize the diameter d of the
theoretical cylinder.

- For the spherical surfaces, the standards speaks of
centre of the sphere envelope [7]. The criterion of minimal
volume permits to obtain the sphere of minimal diameter
(or maximal). This is therefore compliant to the standards.

- For the conical surfaces, the criterion is quite
ambiguous: Axis of the cone, the best fitted on the actual
surface [7]. The criterion of minimal Volume enables to
define in a unique way the conical envelope.

- Finally, for the plane surfaces, the criterion is also
quite ambiguous: Plane tangent to the actual surface. If
the plane can have several orientations, the orientation of
reference is the position average which allotted the
deviations (NF E 04-554 [7]). In the previous edition of
this standards, the criterion was the one of minimal form
defect: Tangent plane on the outside of the material which
minimizes the maximal deviation from the actual surface.

In the current cases of flatness defects, the different
fitting criterions lead to surfaces different little. However,
we show on the following figure that, in some case of
particular defects, the criterion of minimal volume allows
to obtain a position of the plane more representative of the
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actual surface than the criterion of minimal form defect.

Fig. 5 : Fitting of a plane

Mathematical expression of the Minimal Volume
criterion

Consider an initial theoretical surface outside to the
material and sufficiently close from the actual surface.

e, the deviation between a point P of the actual
surface and the theoretical surface.

ds, the elementary surface surrounding the point P.
ds generates a elementary volume dv = e ds.

The included volume between the two surfaces is

then:

The CMMs allow to know actual surfaces in a
finished number of points {Pi}. To every point Pi we can
associate an elementary surface ∆si, surrounding it.

The volume is then: 

The suggested fitting criterion consists in
minimizing this volume with the constraint that the
theoretical surface stays on the outside of the material; that
is to say, the deviations ei stays positive: 

It is possible, by an algorithm of «carving», to
computing, for every sampled point Pi, the elementary
surface ∆si surrounding it. However it is more simple to
impose a regular distribution of the sampled points on the
actual surface in a such way that they have all the same
elementary surface. ∆si becomes then a constant that it is
possible to exit of the sign sum.

The obtained criterion is the minimisation of the
sum of the deviations, which are forced to stay positive:

The deviations ei are functions of the variation of
size of the initial theoretical surface and also of its
displacement with regard to the actual surface.

To solve this optimization problem, we use the
«model of small displacements», developped by Professor
Bourdet and Clement [10], which enables to linearize the
expression of the deviation ei in function of the
displacement and size parameters.

Remark: To our knowledge, the obtained criterion,
that would be named criterion of the minimal sum of the
deviations, has never been suggested before. It is
presumably not equivalent in the criterion of the minimal
sum of the absolute values of the deviations which leads to
a surface passing through the sampled points and for which
Professor Shunmugam [8] suggests a method of
calculation.

Mathematical model for the fitting of a theoretical 
surface on a sampled surface

The mathematical model described here is due to
Professors Bourdet and Clement [9][10]. It is named the
«model of small displacements».

The sampled points are expressed in a datum frame
(frame of the CMM).

We define an initial theoretical surface with some
sampled points (for the plane we choose three points
among the set).

For every sampled point Pi, we define the normal to
the theoretical surface (ni), oriented toward the outside of
the material, and the theoretical point Mi belonging to the
surface.

Fig. 6 : Initial position of the theoretical surface

The initial deviation between the theoretical surface
and the point Pi is noted ξi.

To fit the theoretical surface to the actual surface,
represented by the sampled points {Pi}, following a given
criterion, we have to displace the initial theoretical surface
and to vary its size.

The initial situation of the theoretical surface is
very close of its optimal situation; that allows to
characterize its displacement (translation and rotation) by a
screw operator of which the components in a datum frame
are:

 is the vector of rotation and  represents the

displacement of the origin point due to the displacement of
the theoretical surface.

This model of the surface displacement enables to
calculate the displacement of the point Mi by the relation:

With the additional hypothesis that the
displacement of Mi is small with regard to the curvature
radius of the surface in Mi, we can write that the new
deviation between the sampled point Pi and the theoretical

surface is: 

It is necessary to complete this model in order to
take into account of the small size variation of the initial
theoretical surface.

The size variation, noted r, is represented locally at
the point Pi by the «shift» of the theoretical surface of a
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small algebraic quantity equals to: 

In the case of the fitting of a cylinder, if r represents
the variation of its radius, then ρi is constant for every
points and is worth 1.

The equation of the deviation becomes then:

In noting the coordinates of ni and of Mi in the
following way,

The development of ei deal the linear following
expression:

Where Li, Mi and Ni are the coordinates of the

vector: 

Remark: In reason of the equiprojection theorem,

the quantity  is equals also to the quantity  

This property is advantageous because it allows to
avoid the calculation of the coordinates of theoretical point
Mi, in taking directly those of sampled point Pi to calculate
the deviation ei.

The authors used first this model for the fitting
following the least squares criterion. The minimal value of
the squared deviations sum is obtained when the partial
derivatives of this sum nullifies. The solution is obtained
by the resolution of a linear equations system.

Then, they used it for the criterion of minimal form
defect and the one of maximal/minimal diameter for the
inscribed/circumscribed cylinders.

In the two last cases, the problem to solve is a
Linear Program.

Calculation of the envelope surface
Starting from the previous expression of ei, the

objective function, corresponding to the criterion of
minimal volume, is:

The problem consists in minimizing this linear
function under the constraints system formed with linear
inequalities . We obtain a linear program to solve.

We developed a resolution algorithm for linear
programs. This algorithm is based on the simplex method.
It was developped for the needs of a more important work
which one will find the ideas in [11].

Numeric comparisons of fitting criterions
The resolution algorithm, that we developed,

enabled us to fit a plane or a cylinder following the four
criterions hereunder:

- Minimal form defect: Minimize eiMax .We have a
linear program with 2N inequalities (N is the number of
sampled points). The fitted surface is outside to the
material.

- Least square: We have a system of Cramer of
order three for the plane and five for the cylinder. This
system is transformed in linear program (null objective
function) in order to be resolved by the same algorithm
that the other criterions. The surface is shifted toward the
point the most outside of the material.

- Optimal diameter: Minimize r with . We
obtain a linear program with N inequalities. The fitted
cylinder is outside to the material.

- Minimal deviations sum (suggested criterion):

Minimize  with . We have a linear program
with N inequalities. The fitted surface is outside to the
material.

We could verify the exactness of the numeric result
given by the resolution algorithm in using some fictional
surfaces of size envelope and of form defect knew in
advance.

From the different tests that we conducted on a
dozen of actual surfaces (8 to 16 points by surface having
sizes inferior to 50mm), it stands out that:

- The criterion of minimal form defect is very long
to compute (more iterations on more constraints: One
second on a PC DX2-66 for a cylinder in 16 points). The
obtaining of a minimal form defect is often done in the
detriment of a smaller diameter for the reamings, or larger
for the shafts, that the envelope diameter.

- The criterion of the least squares is very fast to
compute. The obtained fitting is quite close from the
criterion of minimal form defect, but the diameter of the
«shifted» cylinder is smaller, for a reaming, or larger, for a
shaft, that the one obtained by this last criterion. The
deviation by relationship to the envelope diameter is
therefore larger.

- The criterion of the minimal deviations sum
(suggested criterion) is faster that the one of minimal form
defect (Some tenths of second for the cylinder in 16
points). The obtained diameter corresponds to the
envelope diameter.

- The criterion of Optimal diameter is lightly faster
that the suggested criterion. But it leads to a form defect
too large (larger than any others criterions). This results of
the fact that it only takes into account of the highest points.

In conclusion, the suggested criterion leads to the
numeric results which are the nearest of reality (envelope
diameter, form defect) with a time of calculation
completely acceptable.

Conclusion
The standardized semantics is based on the

traditional practices of verification.
The consequence of this origin is that it is very

difficult to formalize this semantics. One notes moreover
the complexity of the definitions suggested in this goal, in
particular for the notion of local size.
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The standardized semantics is not adapted to the
functional tolerancing.

Moreover, the verification on CMM following this
semantics is difficult.

We suggested in this paper a new semantics for the
tolerancing, based on the fitting of a theoretical envelope
on the actual surface.

It is perfectly adapted to the verification on
Coordinate Measuring Machine, especially if one uses the
criterion of «minimal volume» definite in this paper in the
place of the least squares criterion.

Finally, the suggested semantics simplifies cleanly
the analysis and the synthesis of the tolerancing, without
any modification of the D&T syntax, that is to say its
graphic representation.

Simpler and more coherent, it constitutes one
rigorous basis for the development of methods of
functional D&T.
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