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SOPHIE, AN FDTD CODE ON THE WAY TO MULTICORE,

GETTING RID OF THE MEMORY BANDWIDTH BOTTLENECK

BETTER USING CACHE.

OLIVIER CESSENAT∗

Abstract. FDTD codes, such as Sophie developed at CEA/DAM, no longer take advantage of
the processor’s increased computing power, especially recently with the raising multicore technology.
This is rooted in the fact that low order numerical schemes need an important memory bandwidth
to bring and store the computed fields. The aim of this article is to present a programming method
at the software’s architecture level that improves the memory access pattern in order to reuse data
in cache instead of constantly accessing RAM memory. We will exhibit a more than two computing
time improvement in practical applications. The target audience of this article is made of computing
scientists and of electrical engineers that develop simulation codes with no specific knowledge in
computer science or electronics.
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1. Introduction. At CEA, the French Nuclear Agency, we develop yet an-
other FDTD (Finite Difference in Time Domain) code, called Sophie, for electro-
magnetics simulations of the Laser MegaJoule (LMJ) device. To achieve realistic
three-dimensional simulations, we need to be able to make computations on tens of
billions of cells. This challenging goal not only demands a massively parallel machine
(Tera 10, see www.top500.org), but also a very efficient implementation to reduce the
computation time on an always very busy High Performance Computing centre. Cur-
rent major LMJ simulations cost roughly 500 Euros in electric power consumption.
Improving the computing’s efficiency is an economic issue.

FDTD codes date back to the late sixties with their numerical scheme first pre-
sented in [30], becoming very popular in the eighties with the appearance of the first
Cray vector super-computers that made three dimensional simulations affordable [26].
Those codes were very fast due to a perfect vectorization level, particularly efficient
on large problems [1].

Nowadays, very large simulations are performed using many mass market personal
computers (PCs) components. On those hardware platforms, FDTD codes, as well
as all low order solvers, are not able to take advantage of the still up-to-date Moore’s
law that applies to the processors peak’s computing power. This is rooted in the fact
that low order solvers need an important bytes to flops ratio (the program balance as
described in [8]), typically 4 for an FDTD code in single precision. Ever since thirty
years, whereas CPU speed doubles in average every 18 months, memory bandwidth
takes around 33 months to double according to [7]. Moore’s law validity in the future
will probably rely on increasing the number of cores per processor whereas there seems
to be no plan to make cores manage the memory accesses independently.

Since the mid-nineties, memory bandwidth bottleneck is seen as the major obsta-
cle to scientific computing generally made of sparse matrix to vector products where
modern processors spend more than 80% of their time waiting for data [1]. This is vis-
ible to the scientific kernels included in the Specfp benchmarks (www.spec.org) such
as GemsFDTD for the 3D FDTD. Much work is being performed to overcome this
memory bandwidth bottleneck through very clever cache hierarchies and compiler’s
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1 INTRODUCTION

optimizations (refer to [8] and [29] for cache use optimizations and to [21] for register
pressure in multidimensional loops). These optimizations provide a real benefit on
many basic linear algebra applications, but their essential weakness is that they lack
a global view of the scientific application (they are very often limited to a procedural
optimization).

Another possibility is to use specific hardwares such as FGPAs where data band-
width is provided in parallel as in [27]. But specific VLSI programming is far too com-
plicated for computing scientists with no knowledge in electronics. Another drawback
of specific electronics is that simulation code’s lifetime often exceeds twenty years,
whereas electronic devices cannot last more than two years. CPUs life cycle is around
four years, but high level programming languages such as FORTRAN limit the cost
of porting codes from a CPU to another. Recently, using GPUs (Graphics Processing
Units) is seen as an alternative or a complement to general CPUs with the develop-
ment of CUDA, an NVIDIA C-styled language [22]. Even though NVIDIA’s products
lifetime is typically two years, the CUDA language is expected to be supported during
generations of products. Depending on the application’s computing kernel’s features,
a speed gain of 10 to 50 can be reached. For instance, on the FDTD kernel, a factor
of 10 is obtained in [22]. The drawbacks are that GPUs typically provide more than
an order of magnitude less storage than the system’s RAM and that the kernel’s ef-
ficiency is masked by the other parts of the application, making the use of a GPU
inefficient if the output of the device’s computation has to be transfered into RAM
through the PCI bus too often.

On the long run however, vendor independent environments, such as HMPP
developed by “CAPS entreprise”, aiming at providing standard directives, as with
OpenMP, seem very attractive. Instead of providing a low level API to GPUs pro-
gramming, HMPP takes advantage of the high level features related to the program.
It then generates optimized GPU code using the low level vendor’s API. It is further
described in [28] and [3]. It also provides a resource manager which is very useful in
an SMP multi-GPU environment.

When optimization both at the hardware and at the compiler’s level fail, com-
puting scientists need to review their algorithms so that maximizing the processor’s
data cache use (and, if possible, data cache hierarchies) is taken into account at the
software’s design step preceding the implementation. This is not the first time that
numerical schemes or computing algorithms must be reviewed to better suit the avail-
able underlying computing platforms. The Cray vector computers in the eighties
gave a boost to linear algebra and the standard Galerkin methods such as the Finite
Elements and the FDTD. The parallel machines era in the nineties demanded break-
throughs in the field of implicit solvers with domain decomposition methods. Today,
high order methods with more flops per byte such as the Discontinuous Galerkin
Method should address the broadening hardware’s gap between CPU and memory
bandwidth [2], at least on Cartesian meshes.

The aim of this article is to present techniques at the application’s architecture
level to naturally optimize the cache use as in [11] and [14], giving a computing
scientist’s point of view. These techniques apply on todays multicore processors that
have enough cache. We believe our approach is original since we consider the algorithm
as a whole, not merely one time step. Even though we focus on a time explicit scheme,
the method can be adapted to domain decomposition iterative implicit solvers where
the iterative steps play the role of the time steps.

Since optimization at the application level needs an insight on the application’s
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features, section 2 presents the basic framework for any FDTD code. The puzzling
practical experiment is a parallel efficiency superior to 1 on mid-sized problems. A
simplified (considering only one cache level with infinite bandwidth to processor’s reg-
isters) theoretical analysis is presented section 3, with major expected speed gains.
Confrontation with numerical experiments is shown section 4, first on the FDTD ker-
nel then on the whole FDTD production code Sophie for electro-magnetics simulations
at CEA. It demonstrates an enhancement of the computation speed by a factor two.

2. Basic framework issues. Section 2.1 presents the basics of the FDTD
scheme. In section 2.2, we explain why FDTD codes struggle against the memory
bandwidth bottleneck. The processor’s peak computing power is only available when
problem is small enough so that it’s fields fit in cache as explained section 2.3. In
today’s era of massive parallel machines, FDTD codes bear the advantage to be able
to fit in cache when the number of computation nodes increases, as we see section 2.4.
Thus, a parallel efficiency superior to 1 can be estimated and actually encountered on
practical problems.

2.1. FDTD scheme overview. The Finite Difference in Time Domain is the
discrete scheme, leapfrog in time and space, of the Maxwell equations in vacuum. Let
∇× denote the curl operator, ε0 be the permittivity of vacuum, µ0 the permeability
of vacuum. The Maxwell equations write:

ε0∂tE −∇×H = 0 [Maxwell-Ampere] (2.1)

for the electric field evolution, and

µ0∂tH +∇×E = 0 [Maxwell-Faraday] (2.2)

for the magnetic field evolution.

These equations can be made fully antisymmetric with variables Ẽ = ε0E and
H̃ = H/c as follows:

∂tẼ − c∇× H̃ = 0 (2.3)

∂tH̃ + c∇× Ẽ = 0 (2.4)

The Yee space discretization is the integral form of these equations using Green’s for-
mula (refer to [4] for the mathematical framework) on faces of the mesh for Faraday’s
equation, on the edges for Ampere’s equation, as detailed in [30]. Time discretization
is a leapfrog scheme. Thus, updating the magnetic field in direction x is (refer to [26]
or [1] for the other fields):

H
n+ 1

2

i,j+ 1

2
,k+ 1

2

(x) = H
n− 1

2

i,j+ 1

2
,k+ 1

2

(x) +
c∆t

∆zk+ 1

2

(

En
i,j+ 1

2
,k+1

(y)− En
i,j+ 1

2
,k(y)

)

−

c∆t

∆yj+ 1

2

(

En
i,j+1,k+ 1

2

(z)− En
i,j,k+ 1

2

(z)
)

.

The problem’s numerical stability requires a perfect antisymmetry on the discrete
equations which is true when solving equations 2.3 and 2.4 on a Cartesian mesh [10].
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2.2. FDTD codes and memory bandwidth issues. Processor to memory
throughput nowadays is typically 6.4 GB/s with DDR2-800 (JEDEC standard PC2-
800, see www.jedec.org) or up to 12.8 GB/s with the latest DDR3 modules (JEDEC
standard PC3-1600, abusively referred to as PC3-12800).

In FDTD codes, the maximum number of cells that we can compute with DDR2-
800 is in practice typically 50 MC/s with 32 bits precision. This computing power is
quasi independent of the processor’s frequency and of the processor’s number of cores.

This fact is well known from the Specfp 2006 benchmark with the GemsFDTD
test module from the “Center for Parallel Computers” (PDC) at the Royal University
of Stockholm, Sweden. In the bench description [1], many numerical experiments on
different hardwares (IBM, Fujitsu, SGI, Intel) and an extensive analysis detail which
is the best implementation for each platform. Apart from the Fujitsu vector super-
computer, all machines have poor performance on large problems, poor related to the
processor’s peak speed. We strongly recommend the reader to refer to this article [1]
to better understand facts that shall not be re-explained here.

The reader should not confuse Gems from PDC (that includes GemsFDTD) with
the FDTD leading commercial software, massively parallel software as proven by tests
on Blue Gene/L that targets petaflopic computations [17].

Let us explain why FDTD codes demand a high number of bytes to flops ratio,
considering one of the six FDTD triple loops implemented in the standard way as
given in A. Taflove’s handbook [26] p. 547 following Yee’s numerical scheme [30]:
do k=1, nz; do j=1, ny; do i=1, nx-1

hx(i,j,k)=hx(i,j,k)+ &

& dz(k)*(ey(i,j,k+1)-ey(i,j,k))+dy(j)*(ez(i,j+1,k)-ez(i,j,k))

end do; end do; end do

To compute hx(i,j,k) we need to fetch four electric field values and the magnetic
field value itself, then store the result. This makes 6 memory accesses.

We do not deal with the geometrical coefficients dz(k) and dy(j) since we as-
sume they fit in registers. Concerning the dx(i) array used for the computation of
hy(i,j,k) and hz(i,j,k), we assume it fits in cache. This is an important specific
point of the Cartesian programming: the sparse matrix that updates the field is stored
in one-dimensional arrays.

FDTD computations are most of the time performed in single precision, but not
always. This is why we shall consider both single and double precision. A real float
size in single precision is 4 bytes wide (32 bits), a double takes 8 bytes (64 bits).

Thus, using 6400 MB/s memory throughput, we compute in single precision (4
bytes), knowing there are 6 fields per cell and 6 data access per field:

6400

4× 6× 6
= 44 (2.5)

million cells per second (MC/s). In double precision, we can compute 22 MC/s. Of
course, this analysis does not take into account the cache effect, which reduces the
memory requirement. This is why, in practice, even for very large domains where
cache benefits are reduced, computing speed is slightly higher.

On an Itanium II dual core processor at 1600 MHz, we can perform 4 floating
point operations per cycle and per core, thus 12800 MFlops. In the above FDTD
scheme, we need to perform 6 operations per field. We could expect to compute,
knowing there are 6 fields per cell:

12800

6× 6
= 355 MC/s.
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Indeed, Itaniums can actually perform 4 operations per cycle when we need to compute
a product then an addition. This is not true in the FDTD algorithm where we
essentially need to compute an addition then a product. This is why the algorithm
can benefit from only half the Itanium’s II amazing computing power.

Making the ratio between the number of cells that the processor can compute to
the number of cells that memory can feed, we find that the compute power of the
processor is used at 44

355/2 ≈ 25% only: a four times less powerful processor would

do the job as well, such as a monocore at 800 MHz. In double precision, a 400 MHz
processor would make it...

From that point, we can take three decisions in order to increase our computing
power:

• purchase slower processors that use less electricity, investing in a larger par-
allel machine with more compute nodes,

• give up the low order FDTD scheme and develop high order schemes such as
Discontinuous Galerkin Method (refer to [15] and [19] for the mathematical
framework and to [2] for the high order computing benefits shown in table
2 p. 754) that demand more operations per byte (when computing dense-
block-matrix products on a Cartesian mesh),

• reconsider the FDTD implementation on machines with large enough data
cache.

The first point (increasing the number of compute nodes) is investigated in sub-section
2.3 and tested in sub-section 2.4. On average size problems, it is worth making parallel
computations in a row rather than sequential computations altogether at once.

The last point, which is the essence of this article, is discussed section 3 and tested
section 4, focusing on techniques that reduce the memory bandwidth requirements
through better using the cache than in the above standard FDTD implementation.

2.3. Data cache benefits to the FDTD technique. In the above introduc-
tion, we drastically simplified the memory to processor data access, assuming no cache
hierarchy (or problem too large to take care of cache). Modern processors no longer
possess tiny data caches. We can easily purchase processors with 2 MB data cache
per core (shared or not). A 2 MB cache can handle a cubic domain made of

(

2× 10242

4× 6

)

1

3

= 44

cells per direction in single precision (4 bytes per data, 6 fields per cell). Same formula
applied to double precision gives 35 cells per direction. When problem is small enough
to fit in processor’s data cache, system’s memory is no longer used and we actually
benefit from the processor’s increased computing power.

In order to be able to compute larger problems, we can increase the number of
nodes (a way to increase the number of memory controllers to multiply the available
bandwidth) so that the elementary problem on each node fits in cache.

Let us consider a cubic problem made of 3523 cells. On only one node, data

(4 × 6× 352
3

10242
= 998 MB) does not fit in cache. Using the 44 MC/s memory limited

speed with DDR2-800 RAM provided by relation 2.5, we need 352
3

44
× 10−3 = 991

milliseconds per time step.

When using 512 nodes, data per node fits in cache (352
3

512
= 443). In case the work

between the nodes is well balanced and assuming a typical computing speed of 2400
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MFlops per core (i.e. 2400

6×6
= 67 MC/s), a time step requires 36×44

3

2400
× 10−3 = 1.28

milliseconds.
The limiting factor may become the network’s bandwidth for communicating

the inter-domains fields. To parallelize an FDTD solver, one needs to provide 2
fields per face on all the interfaces. In a domain with 6 neighbours, there are 2 ×

6 × 442 = 23232 field values per time step to communicate, i.e. 91 kB per time
step. On a 10 Gb/s network (point to point with full duplex), this requires around
70 microseconds assuming a perfect communication and computation overlap (since
memory bandwidth is not used for computation).

So, on a perfect network as assumed above, computation time would be more
than 768 times faster with 512 nodes: it would take 1.5 less time to make 512 par-
allel computations on 512 nodes the one after the other than to make 512 sequential
computations at the same time.

2.4. Experimental parallel efficiency superior to one. Let us now deal
with a real 3203 problem spread among 512 processors (the number of cells is slightly
lower to make sure to actually fit in cache). On the Tera 10 machine at the CEA’s
supercomputing centre in Ile de France, CC-Numa nodes are made of four SMP blocks
(called QBB from Bull) each with independent system bus, each block is made of two
1.6 GHz Itanium II dual core processors. We assume that communication times inside
a node are negligible compared to inter-nodes communication times. In our example,
network connections are to be performed on 32 nodes. Let the domain be split so that
nodes deal with domains of size 40× (8

2
, 8

4
, 8

4
) i.e. (160, 80, 80) so that the inter-nodes

communications are fairly minimized. This hypothesis can be enforced by an MPI
Cartesian three-dimensional split, or by mixing shared memory programming (to be
handled with care on a Non Uniform Memory Access node) with distributed memory
programming. Figure 2.1 shows on a two-dimensional example how to map the do-

Fig. 2.1. Minimizing network and NUMA communications: logically identify sub-domains to
nodes, QBBs, processors and cores.
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mains (D) onto the Tera 10 hardware, minimizing inter-nodes communications first,
then intra-nodes communications across the QBB crossbar interconnect, then intra-
processors communications. In the figure, we put 4 domains per core to generalize
the approach presented and further discussed in section 3.

Using single precision real fields, the number of bytes to communicate per time
step amounts to

4× 2×
(

802 + 2× 80× 160
)

= 250 kB.
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The network is based on very low latency Quadrics Elan 4 cards, meaning we can
assume a sustainable speed of 900 MB/s across all nodes. So, it seems realistic to
assume we need

250

900× 1024
× 103 = 0.27

milliseconds per time step for the communications. At a peak computing speed of 67
MC/s per core (lower than the Itanium’s II theoretical speed), we need

403

67
× 103−6

≈ 1

milliseconds per time step for the per core computing time.
There, the parallel efficiency, defined as the time for a computation made by one

core divided by the number of cores N times the time of the computation with the
N cores is at least

3403

44
× 10−3

×

1

512× (1 + 0.27)
≈ 1.4

when the communication time is not overlapped by the computation time at all.
The reader may note that, to manage a computing centre, even though cores are

usually dedicated to only one computation at a time, we may not reserve the complete
processor to a single sequential application. Thus, in practice, when sequential FDTD
computations are run simultaneously on a multicore processor, the memory bandwidth
is divided by the number of simultaneous sequential computations.

Let us now confront our estimates to an experiment on the Tera 10 machine.
Table 2.1 shows, on the example of a 3203 cube, the performance that we actually

Table 2.1

Practical efficiency on Tera 10 machine, 1000 time steps.

Cores Computations CPU Time(s) MC/s/core MPI Wait(s)
1 16 2400 13.6 -
1 1 722 45.4 -

512 1 1.87 34.2 0.85

obtained with 32 nodes of 16 cores on Tera 10. First column indicates the number
of cores used for the computation. Second column indicates the number of different
computations performed on the associated nodes. First line stands for a standard use
of the machine, where the sequential code runs alone on a reserved core, but the other
15 cores of the node are used for other numerical simulations. Available bandwidth
is shared among 4 cores and actual performance is reduced by a factor 3.3 when
comparing with second line where the full node is reserved to only one busy core.
Last column in table 2.1 provides the MPI waiting time whereas the third column
provides the total CPU time composed of computation and communication times.

The big disappointing result of this practical test is the sustained communication
time that actually amounts to 3 times more time than expected. Another disappoint-
ment is that even though fields fit in cache, communications are not overlapped by
computations.

The in cache computing speed is around 2400 MFlops. The out of cache speed
is around the expected one of 44 MC/s when only one core is busy, around 11 MC/s
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when all cores are busy. In this table, we have an apparent efficiency of 2.5 for the user
who does not use a multicore machine as a monocore one. It takes two and a half less
time to perform 512 parallel computations on 512 cores the one after the other than
to make 512 sequential computations at the same time. It is then obvious to state
that half the results will be brought back to the user within five times less time. This
advocates that parallel computing can be energy efficient and very suitable to design
optimization where parallelizing on fully independent problems is paradoxically not
always the best technical solution.

3. Theoretical improvements. In this section, we present basic ideas to better
use data in cache in order to reduce the stress on the memory bandwidth. We base
our thoughts upon simplified hypotheses that are:

• processor’s data cache to processor’s registers throughput is infinite with no
latency,

• system’s RAM latency is fully hidden by prefetching performed by the com-
piler.

Fig. 3.1. Simplified computer system model with infinite Cores to Cache Bandwidth
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(MFlops)

FPU
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Core
#2

Core
#1

System

RAM

Memory

(MB/s)

Processor

DataFPU

Figure 3.1 shows the simplified data flow and compute engine models that lie behind
our theoretical performance analysis.

In section 3.1 we present the idea that consists in emulating the parallel operating
mode in a sequential code, so that elementary sub-domains handled by the code fit in
cache. Thus, the memory access can be viewed globally on every sub-domain instead
of being performed (with the hypothesis of a very large simulation size) field by field,
leading to a potential halving of the required memory bandwidth.

Section 3.2 further takes advantage of the sub-domains decomposition, overlap-
ping the Ampere and Faraday solvers, computing the global update domain per do-
main the one after the other instead of solving the Ampere equation on all the domains,
then solving the Faraday equation on all the domains. Potential gain is another 50%.

Under specific assumptions on the sub-domain’s physics, we can further optimize
the per domain solver, overlapping the electric and the magnetic fields update plane
by plane as presented in section 3.3. This technique helps take advantage of the two
first ones even when cache size is reduced.

Then, the final enhancement that consists in solving two or more time steps
together per sub-domain is presented section 3.4. This idea originates to D. Orozco,
PhD student of Pr. Guang R. Gao, University of Delaware. A potential doubling
of the computation speed is expected. Do note that the first hypothesis no longer
applies when memory bandwidth is optimized with this cache reuse algorithm; a finer
analysis should consider the whole data access hierarchy.

8



3 THEORETICAL IMPROVEMENTS3.1 Decomposing the problem into smaller problems as in parallel

3.1. Decomposing the problem into smaller problems as in parallel. As
we saw section 2.4, parallel computations make the problem smaller per core and
induce more cache hits.

So, our idea here is to split the problem into smaller problems, as done by domain
decomposition solvers. Figure 3.2 shows an example where we split the computation

Fig. 3.2. Decomposing the large computation domain into many small domains
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domain made of many cells into four domains, each with four times less cells. We
may notice that this decomposition is similar to what can be naturally performed for
parallel processing: introducing a domain split in a sequential code brings the same
programming difficulties as the ones bound to parallelism. This is a great advantage
for designing a parallel code: most of the bugs will be encountered in the sequential
code where it is usually easier to detect and correct them.

In the FDTD method, the domain decomposition technique is not a numerical
scheme but merely a modified implementation design with no impact at all on output
values, such as loop tiling does. Operations performed to compute the fields are
exactly the same, in the same order, it is only the order in which we compute the
updated values which differs. This is a general feature for explicit solvers.

So, instead of making triple loops on the whole domain, we make triple loops
in sub-domains, not forgetting to perform double loops at interfaces to complete the
computation. This technique has already been used in [23] and [24].

Splitting the domain into sub-domains is done so that every sub-domain fits in
cache, taking care of the actual available cache size for the multicore case in parallel.

The number of data accesses, when cache conflicts do not occur, is reduced to

2×
3 + 3 + 3

6
= 3 (3.1)

per field update, instead of 6 as seen previously in relation 2.5 section 2.2. Let us
explain that. For the electric field update, we need to load the magnetic field, the
electric field, and then write the electric field. Without cache conflict, we may compute
twice as many values inside domains as in the monolithic case, but there remains to
compute the values at the interfaces of the domains. The extra-cost becomes negligible
if the sub-domains size is large... which is not possible if the cache size is too small.
In practice, a 2 MB data cache size is required to really improve performance.

If this article could be read by processors makers, let us ask them for more cache
per core, not only more cores. In any case, we prefer more cache than higher clock
frequencies.
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3.2 Optimizing the leapfrog time scheme implementation3 THEORETICAL IMPROVEMENTS

3.2. Optimizing the leapfrog time scheme implementation. We may go
further than merely splitting the problem into sub-domains. The FDTD time scheme
is a leapfrog one where we solve the Maxwell-Ampere (2.1) then the Maxwell Faraday
(2.2) equations as follows:
do d=1,ndomains

call volAmpere(d) ! Computes the internal edges in domain d

enddo

call surfAmpere() ! Computes the edges at domains interfaces

do d=1,ndomains

call volFaraday(d) ! Computes the internal faces in domain d

enddo

call surfFaraday() ! Computes the faces at domains interfaces

Fig. 3.3. Internal DoFs to a domain of the leapfrog time scheme
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The improvement consists in solving Ampere and Faraday in a row using the internal
degrees of freedom (DoFs):
do d=1,ndomains

call volAmpere(d)

call volFaraday(d) ! Internal faces that use internal edges only

enddo

call surfAmpere()

call surfFaraday() ! Adds computation at faces using edges on interfaces.

Figure 3.3 shows in a two-dimensional space the internal degrees of freedom that
are updated with the modified time scheme: the electrical field is located at cells (“+”)
and the magnetic field is located at faces (“×”). We no longer update the magnetic
field values that need an electric value at the sub-domain’s boundary. This technique
can be applied to the heat diffusion equation, not only to the waves equation.

With the inter-leaved scheme, assuming there is no cache conflict, we perform

2×
3 + 3

6
= 2 (3.2)

memory accesses per field update: we load the electric and the magnetic fields, then
we write them. This number is to be compared to the data access count of relation
3.1 section 3.1.

As compared with the initial standard FDTD implementation (relation 2.5 section
2.2), the computation speed we forecast is

6400

4× 6× 2
= 133 MC/s. (3.3)
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3 THEORETICAL IMPROVEMENTS3.3 Overlapping the leapfrog time scheme plane by plane

So, slightly altering the time scheme implementation, after decomposing the prob-
lem into sub-problems, leads to a theoretical 50% increase in computing efficiency.
When designing a parallel code, this brings a strong impact on the code’s architec-
ture since no communication at all must be done between the Ampere and the Faraday
updates on the contrary to what is generally performed such as in [25] or [12].

Making only one communication per time step can also be profitable to the code’s
parallel performance avoiding an inconvenient superfluous network latency.

3.3. Overlapping the leapfrog time scheme plane by plane. In an FDTD
code, the basic vacuum equations may not be the only ones to solve between the
electric field update and the magnetic field update. To take account of boundary
conditions, for instance on a PEC (Perfectly Electric Conductor) we need to zero the
electric field values on the PEC before entering the Faraday solver. In materials, we
may need to take into account some recursive accumulators as in the JEC technique
(see [5]) for linear dispersive media, we may need an absorbing boundary layer to
emulate the infinite radiation condition (see [9]), or simply need to add a current to
Ampere’s equation. Materials and PML layers optimization is not dealt with in this
article for the sake of conciseness, but basing the solver on one-dimensional geometrical
coefficients as presented section 2.2 instead of easier to implement three-dimensional
ones is essential not to increase the memory bandwidth stress.

We consider domains where there is nothing else to do but solve the Maxwell
equations in vacuum. This assumption is not useless when the problem is split in many
sub-domains, since there probably will exist many sub-domains where the assumption
will be true. The reader may notice that this holds for a parallel code, but the gain
shall be limited by the difficulty to make larger or smaller domains according to
the associated processing speed. When using many sub-domains, even in a parallel
computation, we may expect the load balancing to be naturally correct, especially if
we layout the domains onto the processors using a balanced cost function.

So, in that vacuum case, the electric field and the magnetic field updates can be
done plane by plane along with index k representing the z axis discretization. In the
case of a 2 MB cache in single precision, this technique provides a good cache reuse
for cubic domains of size up to

(

2× 10242

4× (3 + 3 + 3 + 3)

)
1

2

= 209

cells per direction, which is far more than the value of 44 found in section 2.3. More-
over, this is independent of the z direction size.

The algorithm becomes:
do d=1,ndomains

call planeAmpere(d,1)

do k=2, nz

call planeAmpere(d,k); call planeFaraday(d,k-1)

enddo

call planeFaraday(d,nz)

enddo

call surfAmpere(); call surfFaraday()

Of course, programming becomes rather more complicated than the one presented in
Taflove’s handbook [26]. This may become a drawback for the compiler’s ability to
perform optimizations. In particular, compiler-assisted cache replacement [13] may
be less efficient.

11



3.4 Getting rid of the memory bandwidth bottleneck with limited cache stress3 THEORETICAL IMPROVEMENTS

3.4. Getting rid of the memory bandwidth bottleneck with limited

cache stress. In vacuum, with the same assumption as in the above section, we may
get rid of the memory bandwidth bottleneck using a very simple idea from Daniel
Orozco [18].

Instead of performing the sub-domains updates step by step, we gather time steps.
For the start, we use two steps as given by the following pseudo-code:
do n=1,ntimesteps/2

! Compute first and second time steps altogether inside domains:

do d=1,ndomains

call planeAmpere(d,1,nx,ny)

call planeAmpere(d,2,nx,ny)

call planeFaraday(d,1,nx,ny)

! Compute the internal DoFs by plane for two time steps in a row

do k=3, nz

call planeAmpere(d,k,nx,ny)

call planeFaraday(d,k-1,nx,ny)

call planeAmpere(d,k-1,nx-1,ny-1)

call planeFaraday(d,k-2,nx-1,ny-1)

enddo

call planeFaraday(d,nz,nx,ny)

enddo

! Terminate the first time step:

call surfAmpere(); call surfFaraday()

! Terminate the missing volume computations for the second time step:

do d=1,ndomains

call surfAmpere(d,nx-1,ny-1,nz-1)

call surfFaraday(d,nx-1,ny-1,nz-1)

enddo

! Terminate the second time step:

call surfAmpere(); call surfFaraday()

enddo

Figure 3.4 shows the very internal DoFs that are computed over two time steps every
even time step and the intermediate internal DoFs that need be computed at every
time step. These intermediate DoFs form a surface layer of one cell width next to the
sub-domain’s boundary.

Fig. 3.4. Internal DoFs to a domain with the two steps cache reuse algorithm
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If we neglect the cost of terminating the computation for the internal DoFs of
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the domains near the boundaries, we use half the memory bandwidth as long as the
double plane problem fits in cache, thus for cubic domains of size up to

(

2× 10242

4× (3× 6)

)
1

2

= 170

cells per direction.
Doing that, assuming there is no cache conflict, we need only one memory access

per field update, theoretically doubling the speed of the FDTD code.
Theoretical performance due to memory bandwidth in case of cache fitting and

under the assumption there is no cache conflict thus should reach:

6400

4× 6× 1
= 267 (3.4)

million cells per second. At this speed level, assuming cache to processor’s throughput
is infinite no longer holds.

The drawbacks of this technique are of course a very complicated programming
which may limit the compiler’s efficiency, but also merely outputting a field at a pin
point becomes tricky to handle. So, instead of not performing this optimization, the
right way to do when a pin point value is requested at a time step, is to avoid starting
the two time steps the time step before the output is needed. When dealing with a
computation over hundreds of thousands time steps, the user shall rarely ask for a
print every time step.

4. Numerical experiments. We make numerical experiments benchmarking
the various optimizations suggested section 3. Section 4.1 tests the kernel’s speed on
sub-domains, not taking the inter-domains over-cost into account. Section 4.2 presents
two complete simulation tests and the obtained overall gains on the production’s code
Sophie that mixes up the different algorithms of section 3.

4.1. Experimental performance analysis. In this section, we analyze per-
formance results in million cells computed per second (MC/s) obtained on an Intel
Q6600 quadcore processor at 2.4 GHz with two 4 MB cache shared by pair. In mono-
core mode, the available cache shall be 4 MB, in quadcore mode it will decrease down
to 2 MB. In this article, we shall not discuss the effects of shared or dedicated cache.

The memory is made of four 2 GB DDR2-1066 dual channel modules. We in-
vestigate, for single or double precision, for monocore or quadcore being active, the
performance variations along with the problem’s size N , N being the equal number
of cells per direction. Computer implementation is done in FORTRAN and compiled
using “Intel 10.1.018 FORTRAN compiler for 64 bits applications”.

The operating system is Mandriva Spring 2008.1 with Linux 64 bits kernel 2.6.24
and MPI is OpenMPI release 1.2.

Figure 4.1 indicates that performance per core in single precision is close to 2400
MFlops (67 MC/s), the theoretical performance peak of a 2.4 GHz Core 2 processor
family. This performance is sustained oscillating around 1800 MFlops in single preci-
sion with only one core being busy. When all cores are busy, performance exceeds the
4 × 2400 MFlops peak processor’s speed (267 MC/s), which is a measuring artefact.
Performance drops for problems of size 44 as expected since data no longer fit in
cache. When problem’s size becomes larger and larger, the global performance of the
four cores working altogether or only one core being active get closer and closer. This
means that standard FDTD codes do not benefit from multicore, apart from the very
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4.1 Experimental performance analysis 4 NUMERICAL EXPERIMENTS

Fig. 4.1. Standard FDTD programming, multicore of limited interest
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academic cases where the simulation domain is small enough to fit in the processor’s
data cache. In single precision computing, the asymptotic performance value for large
domains drops down to below 62 MC/s (million cells per second). In double precision,
the asymptotic value seems to be reached at around 30 MC/s. The theoretical value,
on single precision code, is given by equation 2.5 for a 1066 MHz RAM:

1066

800
×

6400

4× 6× 6
= 59 MC/s.

This is very close to the value provided by the numerical experiment.
Figure 4.2 shows the benefit of splitting the problem into sub-domains (section

3.1) using the modified time scheme (section 3.2). In this figure, instead of using one
large problem of size N , we use 512 domains of size N/8 per axis. The figure indicates
the global problem size N . The problem, as decomposed, fits in cache for very small
sub-domains, so we start at N = 48. We observe that the multicore is now useful,
bringing a doubling of the computation speed even for rather large problems. The
optimal sub-domains size is around 27 in single precision and 22 in double precision
to fully benefit from multicore. This value, lower than the expected value of 44 is
probably due to cache conflicts. When using adequate sub-domains size, we get a
throughput of around 120 MC/s (million cells per second) in single precision. This is
twice the speed of the standard FDTD implementation, but when using equation 3.3
of section 3.2, we expect a throughput of

1066

800
×

6400

4× 6× 2
= 178 MC/s

instead of 120. Instead of a factor 3 that could be theoretically expected, we only get
a factor 2. In double precision, we get a speed at around 58 MC/s instead of 30 with
the standard FDTD implementation. In the monocore mode, speed increases with the
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4 NUMERICAL EXPERIMENTS 4.1 Experimental performance analysis

Fig. 4.2. Splitting into sub-domains, multicore rather interesting
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problem’s size up to 40 MC/s which shows that the data access pattern is improved.
The double precision code speed is tightly controlled by the memory bandwidth and
thus better benefits from this kind of loop tiling.

Fig. 4.3. Plane solver on sub-domains, enlarging the range for multicore interest
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Figure 4.3 shows the interest of solving the Ampere and Faraday equations to-
gether plane by plane (section 3.3). This leads to less cache conflicts and performance
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4.1 Experimental performance analysis 4 NUMERICAL EXPERIMENTS

increases beyond sub-domains of size 50 in multicore. In monocore, performance is
very stable. So, the interest of this technique is not to increase the computation
speed related to the performance observed in the previous figure 4.2, but to make this
performance sustainable on a larger domain size range, especially useful if the cache
size per core were to decrease in the future with ever growing number of cores but
not necessarily growing data cache size per core. Let us note that the compiler did a
good job since the monocore 32 bits performance curve is maintained at the previous
level of figure 4.2. The double precision monocore speed is lower than before, but not
significantly.

Fig. 4.4. Cache reuse, quadcore two and a half as fast as monocore
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Figure 4.4 shows the tremendous advantage of the cache reusing technique solv-
ing two time steps at once (section 3.4). Multicore performance increases with the
problem’s size, optimal sub-domains size exceeding the value N = 50. We obtain
a performance gain in multicore of more than two and a half as compared with the
monocore performance, indicating that we are on the way to get rid of the memory
bandwidth constraint. Nevertheless, in the monocore mode, this technique does not
bring much benefit for small domains: the source code becomes difficult to optimize
for the compiler and there is no benefit unless the bottleneck is actually the memory
bandwidth. Performance on quadcore peaks at 160 MC/s in single precision and 80
MC/s in double precision. When using formula 3.4 with DDR2-1066, we ought to get
a single precision speed of

1066

800
×

6400

4× 6× 1
= 355 MC/s

which is more than twice the experimental speed of figure 4.4. But there, the lim-
iting factor would no longer be the memory bandwidth, since the peak processor’s
performance, being four times 2400 MFlops, limits the computation throughput to a
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4 NUMERICAL EXPERIMENTS4.2 Global performance observed on real simulations using Sophie

maximum of

4×
2400

36
= 266 MC/s.

Thus, the practical performance drops only by a 1.6 factor. This can be justified
by cache conflicts and reduced code optimization due to compiler’s failure to perfectly
optimize a much more complicated source code. Nevertheless, when comparing with
the standard FDTD code of figure 4.1, we obtain a 2.7 gain in computation speed, both
in double and in single precision. This explains why this article in entitled “getting
rid of the memory bandwidth bottleneck” with an apparent equivalent bandwidth of

160

59
× 6400×

1066

800
= 22.5 GB/s.

4.2. Global performance observed on real simulations using Sophie.

The Sophie code is a house made CEA/DAM software for electro-magnetics simu-
lations solving Yee’s [30] or Yee’s dual scheme (inverting the locations of the fields
between edges and faces) with an FDTD solver. The code’s first developments date
back to mid 2005 and production’s first release dates back to end 2006. It is a general
purpose solver that can model any linear dispersive medium (according to [5] with
slight unpublished improvements), represent the infinite radiation condition (from [9]
with an implementation that minimizes memory bandwidth’s demand), approximate
thin layers by impedance conditions (following [20]), approximate thin wires (using
Holland’s model [16] improved in [6]) and compute their coupling with simple elec-
tronic circuits. A basis for Sophie’s implementation is found in C. Guiffaut’s PhD
Thesis [12] with further improvements orally provided by it’s author.

Sophie is a massively parallel code designed to run on thousands of multicore
SMP nodes targeting tera-cells computations by the end of the decade on the Tera
100 machine. Sophie is made of 200 thousand lines of FORTRAN, most of them
being related to the multi-domain feature initially brought in for both multi-physics
load balancing and easier parallel debugging. A key feature for easing maintenance is
that parallel and sequential runs provide exactly the same output, with no machine
round-off difference. This tremendously helps eliminating the parallel bugs, making
automatic non-regression parallel tests prove the code’s validity on a huge number
of parallel configurations. Sophie is accompanied by an incredible ten thousand non-
regression parallel tests that graph proof the code’s integrity.

For this article, we considered two cavity test cases:
1. a sphere included in a domain of size 4023 with a diameter made of 400 cells,
2. a cubic domain of size 4023 with no internal object.

In both cases, the problem amounts to around 64 million cells, and we perform 1300
time steps, i.e. 108% of the domain’s diagonal. We set a current at a pin point inside
the sphere, we choose the same pin point for the cube. We also output 6 points at
various positions every 20 time steps (not too often, in order not to stop the cache
reuse algorithm too many times). We make various domain’s splits to see the impact
on global performance.

Table 4.1, for double precision computation, shows for the sphere (S) and cube
(C) cases the performance observed at the last time step in million cells per seconds
(MC/s), as well as the total elapsed time in seconds (over all the time steps).

These numbers are not linearly deducible the one from the other except for the
mono-domain case. In the case of sub-domains, we do not perform computations on
sub-domains with all zeroed fields on their boundary as in the plane case of section
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Table 4.1

Sophie production code’s performance table, 64 bits.

Case Split Cores MC/s Time (s) Vol. Time (s) V/T %
S 1 1 27 3160 3160 100
S 1,2,2 4 30 2836 2836 100
S A 1 38 1927 1303 72
S A 4 58 1264 776 66
S P2 4 58 1298 661 56
S P3 4 37 2075 1063 57
S P4 4 55 1314 919 75
S P5 4 56 1296 877 73
C 1 1 27 3103 3103 100
C 1,2,2 4 30 2810 2810 100
C A 1 31 2292 1668 77
C A 4 59 1227 765 66
C P2 4 49 1486 861 63
C P3 4 37 2020 1011 54
C P4 4 67 1082 702 71
C P5 4 67 1080 683 69

3.3. This is a rather trivial optimization, which is particularly interesting at the
beginning of the simulation. Do note that for the sphere case, if the sub-domains are
small enough, there will always remain some domains entirely with zeroed fields.

After the total CPU time column, the following column in table 4.1 indicates the
total CPU time spent in the sub-domains volume update routines. In multi-domain,
a large part of the CPU time may be spent in the inter-domains routines surfAmpere
and surfFaraday (as seen in section 3.2). Last column indicates, at the last time
step, the percentage ratio of the time spent in the volume computations to the total
CPU time.

Performance varies according to the number of cores we use, and, above all,
according to the problem’s split that is performed. The (1, 2, 2) split builds four
domains cut in the y and z planes. The “A” split is the automatic split in (6, 16, 16)
performed by the code, as a result of the study of the preceding section. The “P2”
split is a manual dense split in (10, 24, 12). The “P3” split is a manual dense split in
(2, 40, 20) that favours the x axis length, which is supposed to be good for vectorization
and thus performance. The “P4” split is a manual standard symmetric split in (8, 8, 8).
The “P5” split is a manual coarse split in (6, 12, 8).

Since the cache reuse technique cannot be performed on the sphere’s PEC (Per-
fectly Electric Conductor) boundary, a coarse split limits the number of cells that are
efficiently performed. Furthermore, too large domains are not suitable for fitting in
cache. This is why the P5 split is not suitable for the sphere. The P3 split inhibits
the cache reuse algorithm on all domains and is even worse.

Nevertheless, we have seen section 4.1 that larger domains are computed faster
with the cache reusing technique. Thus, for the cube case where all sub-domains can
benefit from that programming, we obtain a 2.3 times speed increase to the initial
standard FDTD code in parallel. This follows the performance laws presented in
section 4.1 for the inside volumes computations.

Table 4.2 is identical to table 4.1 for single precision computation. Same remarks
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Table 4.2

Sophie production code’s performance table, 32 bits.

Case Split Cores MC/s Time (s) Vol. Time (s) V/T %
S 1 1 43 1953 1953 100
S 1,2,2 4 62 1376 1376 100
S A 1 61 1183 817 74
S A 4 112 658 367 62
S P2 4 102 724 342 51
S P3 4 76 990 468 51
S P4 4 105 694 450 72
S P5 4 107 679 425 69
C 1 1 44 1905 1905 100
C 1,2,2 4 62 1358 1358 100
C A 1 51 1376 1012 78
C A 4 109 670 380 64
C P2 4 85 852 456 60
C P3 4 73 1023 503 54
C P4 4 118 615 371 67
C P5 4 120 602 364 67

can be made, with slightly smaller gains since the memory bandwidth is less the
major limiting factor than in double precision. The performance is nevertheless nearly
doubled.

5. Conclusion and outlooks. We have dealt with the performance bottleneck
that limits the computing efficiency of FDTD codes. Using ideas borrowed to the
computer scientists community (in particular discussing with D. Orozco), we have
exhibited a technique to start getting rid with the memory constraint on multicore
processors with large data caches. This technique has been implemented in a produc-
tion code where it demonstrates a gain by a factor two on real applications.

A perspective to this cache reuse technique could be to gather more and more
time steps together. The practical gain would decrease as a function of the sub-
domains size, making high number of time steps gathering inefficient. For a limited
number of time steps, say for instance 6, the difficulty (apart from programming the
6 elementary update functions) would be to manage the pin points prints and the
fields images prints. For an industrial code that must be able to cope with 6 steps
gathering as well as 2 (for smaller domains), mixing the steps would be difficult. In a
multi-physics code, the interest might also be reduced.

Even though we limited ourselves to an FDTD code, this cache reuse technique
can be applied to any low order solver on Cartesian meshes. It can also be applied
to solvers based upon free meshes, despite it’s efficiency shall be more limited by the
available cache size since fields indirect addresses and sparse update matrix coefficients
must also fit in cache, not only the fields values.

Last, but not least, conceiving applications keeping in mind the cache to RAM
data transfers is suitable to general purpose GPU implementation where (from a
high level software’s architecture point of view) GPU’s RAM plays the role of the
processor’s cache and where the limiting factor is the memory transfers to system’s
RAM through the PCI bus.
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de Maxwell. Le modèle de holland revisité., Tech. Report 3472, INRIA-Roquencourt, CER-
FACS, 42 avenue G. Coriolis, F-31057 Toulouse, August 1998.

[7] C. Ding, Improving Effective Bandwidth through Compiler Enhancement of Global and Dy-
namic Cache Reuse, PhD thesis, Rice University, Texas, 01 2000.

[8] Chen Ding and Ken Kennedy, The memory bandwidth bottleneck and it’s amelioration by a
compiler, in International Parallel and Distributed Processing Symposium, Cancun, Mex-
ico, 05 2000.

[9] S. Gedney, Convolution PML (CPML): An efficient FDTD implementation of the CFS-PML
for arbitrary media, Microwave and Optical Technology Letters, 27 (2000), pp. 334–339.

[10] Stephen D. Gedney and J. Alan Roden, Numerical stability of nonorthogonal FDTD meth-
ods, IEEE Transactions on Antennas and Propagation, 48 (2000), pp. 231–239.

[11] F. Guenther, M. Mehl, M. Poegl, and C. Zenger, A cahe-aware algorithm for PDEs on
hierarchical data structures based on space-filling curves, SIAM J. Sci. Computing, 28
(2006), pp. 1634–1650.
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