
HAL Id: hal-00778136
https://hal.science/hal-00778136

Submitted on 18 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simultaneous computation of the row and column rank
profiles

Jean-Guillaume Dumas, Clément Pernet, Ziad Sultan

To cite this version:
Jean-Guillaume Dumas, Clément Pernet, Ziad Sultan. Simultaneous computation of the row and col-
umn rank profiles. ISSAC 2013 - 38th International Symposium on Symbolic and Algebraic Compu-
tation, Jun 2013, Boston, MA, United States. pp.181-188, �10.1145/2465506.2465517�. �hal-00778136�

https://hal.science/hal-00778136
https://hal.archives-ouvertes.fr

Simultaneous computation of the row and column

rank profiles

Jean-Guillaume Dumas∗‡, Clément Pernet†‡and Ziad Sultan∗†‡

January 18, 2013

Abstract

Gaussian elimination with full pivoting generates a PLUQ matrix de-
composition. Depending on the strategy used in the search for pivots, the
permutation matrices can reveal some information about the row or the
column rank profiles of the matrix. We propose a new pivoting strategy
that makes it possible to recover at the same time both row and column
rank profiles of the input matrix and of any of its leading sub-matrices.
We propose a rank-sensitive and quad-recursive algorithm that computes
the latter PLUQ triangular decomposition of an m × n matrix of rank r
in O

(
mnrω−2

)
field operations, with ω the exponent of matrix multipli-

cation. Compared to the LEU decomposition by Malashonock, sharing a
similar recursive structure, its time complexity is rank sensitive and has
a lower leading constant. Over a word size finite field, this algorithm also
improveLs the practical efficiency of previously known implementations.

1 Introduction

Triangular matrix decomposition is a fundamental building block in com-
putational linear algebra. It is used to solve linear systems, compute the
rank, the determinant, the nullspace or the row and column rank profiles
of a matrix. The LU decomposition, defined for matrices whose leading
principal minors are all nonsingular, can be generalized to arbitrary di-
mensions and ranks by introducing pivoting on sides, leading e.g. to the
LQUP decomposition of [6] or the PLUQ decomposition [5, 8]. Many al-
gorithmic variants exist allowing fraction free computations [8], in-place
computations [2, 7] or sub-cubic rank-sensitive time complexity [11, 7].
More precisely, the pivoting strategy reflected by the permutation matri-
ces P and Q is the key difference between these PLUQ decompositions.

∗Université de Grenoble. Laboratoire LJK, umr CNRS, INRIA, UJF, UPMF, GINP. 51,
av. des Mathématiques, F38041 Grenoble, France.
†Université de Grenoble. Laboratoire LIG, umr CNRS, INRIA, UJF, UPMF, GINP. 51,

av. J. Kuntzmann, F38330 Montbonnot St-Martin, France.
‡Jean-Guillaume.Dumas@imag.fr, Clement.Pernet@imag.fr, Ziad.Sultan@imag.fr.

1

mailto:Jean-Guillaume.Dumas@imag.fr
mailto:Clement.Pernet@imag.fr
mailto:Ziad.Sultan@imag.fr

In numerical linear algebra [5], pivoting is used to ensure a good numer-
ical stability, good data locality, and reduce the fill-in. In the context of
exact linear algebra, the role of pivoting differs. Indeed, only certain piv-
oting strategies for these decompositions will reveal the rank profile of the
matrix. The latter is crucial in many applications using exact Gaussian
elimination, such as Gröbner basis computations [4] and computational
number theory [10].

The row rank profile of an m×n matrix with rank r is a lexicographi-
cally smallest sequence of r row indices such that the corresponding rows
of the matrix are linearly independent. Similarly the column rank profile
is a lexicographically smallest sequence of r column indices such that the
corresponding rows of the matrix are linearly independent.

The common strategy to compute the row rank profile is to search for
pivots in a row-major fashion: exploring the current row, then moving to
the next row only if the current row is zero. Such a PLUQ decomposition
can be transformed into a CUP decomposition (where C = PL is in col-
umn echelon form) and the first r values of the permutation associated to
P are exactly the row rank profile [7]. A block recursive algorithm can be
derived from this scheme by splitting the row dimension [6]. Similarly, the
column rank profile can be obtained in a column major search: exploring
the current column, and moving to the next column only if the current
one is zero. The PLUQ decomposition can be transformed into a PLE
decomposition (where E = UQ is in row echelon form) and the first r
values of Q are exactly the column rank profile [7]. The corresponding
block recursive algorithm uses a splitting of the column dimension.

Recursive elimination algorithms splitting both row and column di-
mensions include the TURBO algorithm [3] and the LEU decomposi-
tion [9]. No connection is made to the computation of the rank profiles
in any of them. The TURBO algorithm does not compute the lower tri-
angular matrix L and performs five recursive calls. It therefore implies
an arithmetic overhead compared to classic Gaussian elimination. The
LEU decomposition aims at reducing the amount of permutations and
therefore also uses many additional matrix products. As a consequence
its time complexity is not rank-sensitive.

We propose here a pivoting strategy following a Z-curve structure and
working on an incrementally growing leading sub-matrix. This strategy is
first used in a recursive algorithm splitting both rows and columns which
recovers simultaneously both row and column rank profiles. Moreover, the
row and column rank profiles of any leading sub-matrix can be deduced
from the P and Q permutations. We show that the arithmetic cost of
this algorithm remains rank sensitive of the form O(mnrω−2) where ω is
the exponent of matrix multiplication. The best currently known upper
bound for ω is 2.3727 [12]. As for the CUP and PLE decompositions,
this PLUQ decomposition can be computed in-place. We also propose an
iterative variant, to be used as a base-case.

Compared to the CUP and PLE decompositions, this new algorithm
has the following new salient features:

• it computes simultaneously both rank profiles at the cost of one,

• it preserves the squareness of the matrix passed to the recursive calls,

2

thus allowing more efficient use of the matrix multiplication building
block,

• it reduces the number of modular reductions in a finite field,

• a CUP and a PLE decompositions can be obtained from it, with row
and column permutations only.

Compared to the LEU decomposition,

• it is in-place,

• its time complexity bound is rank sensitive and has a better leading
constant,

• a LEU decomposition can be obtained from it, with row and column
permutations.

In Section 2 we present the new block recursive algorithm. Section 3
shows the connection with the LEU decomposition and section 4 states
the main property about rank profiles. We then analyze the complexity of
the new algorithm in terms of arithmetic operations: first we prove that it
is rank sensitive in Section 5 and second we show in section 6 that, over a
finite field, it reduces the number of modular reductions when compared
to state of the art techniques. We then propose an iterative variant in
Section 7 to be used as a base-case to terminate the recursion before the
dimensions get too small. Experiments comparing computation time and
cache efficiency are presented in section 8.

2 A recursive PLUQ algorithm

We first recall the name of the main sub-routines being used: MM stands
for matrix multiplication, TRSM for triangular system solving with matrix
unknown (left and right variants are implicitly indicated by the param-
eter list), PermC for matrix column permutation, PermR for matrix row
permutation, etc. For instance, we will use:

MM(C,A,B) to denote C ← C −AB,

TRSM(U,B) for B ← U−1B with U upper triangular,

TRSM(B,L) for B ← BL−1 with L lower triangular.

We also denote by Tk,l the transposition of indices k and l and by L\U ,
the storage of the two triangular matrices L and U one above the other.
Further details on these subroutines and notations can be found in [7]. In
block decompositions, we allow for zero dimensions. By convention, the
product of any m× 0 matrix by an 0×n matrix is the m×n zero matrix.

We now present the block recursive algorithm 1, computing a PLUQ
decomposition.

3

Algorithm 1 PLUQ

Input: A = (aij) a m× n matrix over a field
Output: P,Q: m×m and n× n permutation matrices
Output: r: the rank of A

Output: A ←
[
L\U V
M 0

]
where L is r × r unit lower triangular, U is r × r

upper triangular, and

A = P

[
L
M

] [
U V

]
Q.

if m=1 then
if A =

[
0 . . . 0

]
then P ←

[
1
]
, Q← In, r ← 0

else
i← the col. index of the first non zero elt. of A
P ←

[
1
]

;Q← T1,i, r ← 1
Swap a1,i and a1,1

end if
Return (P,Q, r,A)

end if
if n=1 then

if A =
[
0 . . . 0

]T
then P ← Im;Q←

[
1
]
, r ← 0

else
i← the row index of the first non zero elt. of A
P ←

[
1
]
, Q← T1,i, r ← 1

Swap ai,1 and a1,1
for j = i + 1 . . .m do aj,1 ← aj,1a

−1
1,1

end for
end if
Return (P,Q, r,A)

end if
. the trailing parts of the algorithm are shown on next pages

It is based on a splitting of the matrix in four quadrants. A first recur-
sive call is done on the upper left quadrant followed by a series of updates.
Then two recursive calls can be made on the anti-diagonal quadrants if
the first quadrant exposed some rank deficiency. After a last series of
updates, a fourth recursive call is done on the bottom right quadrant.
Figure 1 illustrates the position of the blocks computed in the course of
algorithm 1, before and after the final permutation with matrices S and T .

This framework differs from the one in [3] by the order in which the
quadrants are treated, leading to only four recursive calls in this case
instead of five in [3]. We will show in section 4 that this fact together with
the special form of the block permutations S and T makes it possible to
recover rank profile information. The correctness of algorithm 1 is proven
in appendix A.

Remark 1. Algorithm 1 is in-place (as defined in [7, Definition 1]): all

4

. Splitting A =

[
A1 A2

A3 A4

]
where A1 is bm2 c × b

n
2 c.

Decompose A1 = P1

[
L1

M1

] [
U1 V1

]
Q1 . PLUQ(A1)[

B1

B2

]
← PT

1 A2 . PermR(A2, P
T
1)[

C1 C2

]
← A3Q

T
1 . PermC(A3, Q

T
1)

Here A =

 L1\U1 V1 B1

M1 0 B2

C1 C2 A4

.

D ← L−1
1 B1 . TRSM(L1, B1)

E ← C1U
−1
1 . TRSM(C1, U1)

F ← B2 −M1D . MM(B2,M1, D)
G← C2 − EV1 . MM(C2, E, V1)
H ← A4 − ED . MM(A4, E,D)

Here A =

 L1\U1 V1 D
M1 0 F
E G H

.

Decompose F = P2

[
L2

M2

] [
U2 V2

]
Q2 . PLUQ(F)

Decompose G = P3

[
L3

M3

] [
U3 V3

]
Q3 . PLUQ(G)[

H1 H2

H3 H4

]
← PT

3 HQT
2 . PermR(H,PT

3); PermC(H,QT
2)[

E1

E2

]
← PT

3 E . PermR(E,PT
3)[

M11

M12

]
← PT

2 M1 . PermR(M1, P
T
2)[

D1 D2

]
← DQT

2 . PermR(D,QT
2)[

V11 V12

]
← V1Q

T
3 . PermR(V1, Q

T
3)

5

Here A =


L1\U1 V11 V12 D1 D2

M11 0 0 L2\U2 V2

M12 0 0 M2 0
E1 L3\U3 V3 H1 H2

E2 M3 0 H3 H4

.

I ← H1U
−1
2 . TRSM(H1, U2)

J ← L−1
3 I . TRSM(L3, I)

K ← H3U
−1
2 . TRSM(H3, U2)

N ← L−1
3 H2 . TRSM(L3, H2)

O ← N − JV2 . MM(N, J, V2)
R← H4 −KV2 −M3O . MM(H4,K, V2); MM(H4,M3, O)

Decompose R = P4

[
L4

M4

] [
U4 V4

]
Q4 . PLUQ(R)[

E21 M31 0 K1

E22 M32 0 K2

]
← PT

4

[
E2 M3 0 K

]
. PermR

D21 D22

V21 V22

0 0
O1 O2

←

D2

V2

0
O

QT
4 . PermC

Here A =


L1\U1 V11 V12 D1 D21 D22

M11 0 0 L2\U2 V21 V22

M12 0 0 M2 0 0
E1 L3\U3 V3 I O1 O2

E21 M31 0 K1 L4\U4 V4

E22 M32 0 K2 M4 0

.

S ←


Ir1+r2

Ik−r1−r2

Ir3+r4

Im−k−r3−r4



T ←


Ir1

Ir2
Ir3

Ir4
Ik−r1−r3

In−k−r2−r4


P ← Diag(P1

[
Ir1

P2

]
, P3

[
Ir3

P4

]
)S

Q← TDiag(

[
Ir1

Q3

]
Q1,

[
Ir2

Q4

]
Q2)

A← STATT . PermR(A,ST); PermC(A, TT)

Here A =


L1\U1 D1 V11 D21 V12 D22

M11 L2\U2 0 V21 0 V22

E1 I L3\U3 O1 V3 O2

E21 K1 M31 L4\U4 0 V4

M12 M2 0 0 0 0
E22 K2 M32 M4 0 0


Return (P,Q, r1 + r2 + r3 + r4, A)

6

Figure 1: Block recursive Z-curve PLUQ decomposition and final block permu-
tation.

operations of the TRSM, MM, PermC, PermR subroutines work with O(1) extra
memory allocations except possibly in the course of fast matrix multipli-
cations. The only constraint is for the computation of J ← L−1

3 I which
would overwrite the matrix I that should be kept for the final output. Hence
a copy of I has to be stored for the computation of J . The matrix I has di-
mension r3×r2 and can be stored transposed in the zero block of the upper
left quadrant (of dimension (m

2
− r1)× (n

2
− r1), as shown on Figure 1).

3 From PLUQ to LEU

We now show how to compute the LEU decomposition of [9] from the
PLUQ decomposition. The idea is to write

P

[
L
M

] [
U V

]
Q = P

[
L 0
MIm−r

]
PT

︸ ︷︷ ︸
L

P

[
Ir

0

]
Q︸ ︷︷ ︸

E

QT

[
U V
In−r

]
Q︸ ︷︷ ︸

U

and show that L and U are respectively lower and upper triangular. This
is not true in general, but turns out to be satisfied by the P,L,M,U, V
and Q obtained in algorithm 1.

Theorem 1. Let A = P

[
L
M

] [
UV

]
Q be the PLUQ decomposition com-

puted by algorithm 1. Then for any unit lower triangular matrix Y and

any upper triangular matrix Z, the matrix P

[
L
MY

]
PT is unit lower tri-

angular and QT

[
UV
Z

]
Q is upper triangular.

Proof. Proceeding by induction, we assume that the theorem is true on all
four recursive calls, and show that it is true for the matrices P [L

M Y]PT

and QT [U V
Z]Q. Let Y =

[
Y1

Y2Y3

]
where Y1 is unit lower triangular of

7

dimension k − r1 − r2. From the correctness of algorithm 1 (see e.g.

Equation A), S

[
L
MY

]
ST =


L1

M11 L2

M12M2Y1

E1 I L3

E21K1 M31 L4

E22K2Y2M32M4Y3


Hence P

[
L
MY

]
PT equals

[
P1

P3

]Ir1P2

Ir3
P4



L1

M11 L2

M12M2Y1

E1 I L3

E21K1 M31 L4

E22K2Y2M32M4Y3

×

Ir1
PT
2

Ir3
PT
4

[PT
1

PT
3

]

By induction hypothesis, the matrices L2 = P2

[
L2

M2Y1

]
PT
2 , L4 = P4

[
L4

M4Y3

]
PT
4

, P1

[
L1

M1L2

]
PT
1 and P3

[
L3

M3L4

]
PT
3 are unit lower triangular. Therefore

the matrix P [L
M Y]PT is also unit lower triangular.

Similarly, let Z =

[
Z1Z2

Z3

]
where Z1 is upper triangular of dimension

k − r1 − r2. The matrix TT

[
UV
Z

]
T equals

TT


U1V11V12D1D21D22

0 0 U2 V21 V22

U3 V3 0 O1 O2

0 U4 V4

Z1 Z2

Z3

=


U1V11V12D1D21D22

U3 V3 O1 O2

Z1 Z2

0 0 U2 V21 V22

0 U4 V4

Z3


Hence QT

[
UV
Z

]
Q equals

[
QT

1

QT
2

]
Ir1
QT

3

Ir2
QT

4



U1V11V12D1D21D22

U3 V3 O1 O2

Z1 Z2

0 0 U2 V21 V22

0 U4 V4

Z3

×
Ir1Q3

Ir2
Q4

[Q1

Q2

]
.

8

By induction hypothesis, the matrices U3 = QT
3

[
U3V3

Z1

]
Q3, U4 = QT

4

[
U4V4

Z3

]
PT
4

, QT
1

[
U1V1

U3

]
Q1 and QT

2

[
U2V2

U4

]
Q2 are upper triangular. Consequently

the matrix QT [U V
Z]Q is upper triangular.

For the base case with m = 1. The matrix L has dimension 1× 1 and
is unit lower triangular. If r = 0, then U = ITn ZIn is upper triangular.
If r = 1, then Q = T1,i where i is the column index of the pivot and is
therefore the column index of the leading coefficient of the row

[
UV

]
Q.

Applying QT on the left only swaps rows 1 and i, hence row
[
UV

]
Q is

the ith row of QT

[
UV
Z

]
Q. The latter is therefore upper triangular. The

same reasoning can be applied to the case n = 1.

Corrolary 1. Let L = P

[
L
MIm−r

]
PT , E = P

[
Ir

0

]
Q and U = QT

[
UV

0

]
Q.

Then A = LEU is a LEU decomposition of A.

Remark 2. The converse is not always possible: given A = L,E,U , there
are several ways to choose the last m− r columns of P and the last n− r
rows of Q. The LEU algorithm does not keep track of these parts of the
permutations.

4 Computing the rank profiles

We prove here the main feature of the PLUQ decomposition computed
by algorithm 1: it reveals the row and column rank profiles of all leading
sub-matrices of the input matrix. We recall in Lemma 1 basic properties
verified by the rank profiles.

Lemma 1. For any matrix,

1. the row rank profile is preserved by right multiplication with an in-
vertible matrix and by left multiplication with an invertible upper
triangular matrix.

2. the column rank profile is preserved by left multiplication with an
invertible matrix and by right multiplication with an invertible lower
triangular matrix.

Lemma 2. Let A = PLUQ be the PLUQ decomposition computed by al-
gorithm 1. Then the row (resp. column) rank profile of any leading (k, t)
submatrix of A is the row (resp. column) rank profile of the leading (k, t)

submatrix of P

[
Ir

0

]
Q.

Proof. With the notations of corollary 1, we have:

A = P

[
L
MIm−r

] [
Ir

0

] [
U V
In−r

]
Q = LP

[
Ir

0

]
QU

Hence [
Ik0
]
A

[
It
0

]
= L1

[
Ik0
]
P

[
Ir

0

]
QU1,

9

where L1 is the k × k leading submatrix of L (hence it is an invertible
lower triangular matrix) and U1 is the t× t leading submatrix of U (hence
it is an invertible upper triangular matrix). Now, Lemma 1 implies that

the rank profile of
[
Ik0
]
A

[
It
0

]
is that of

[
Ik0
]
P

[
Ir

0

]
Q

[
It
0

]
.

From this lemma we deduce how to compute the row and column rank
profiles of any (k, t) leading submatrix and more particularly of the matrix
A itself.

Corrolary 2. Let A = PLUQ be the PLUQ decomposition of a m × n
matrix computed by algorithm 1. The row (resp. column) rank profile of
any (k, t)-leading submatrix of a A is the sorted sequence of the row (resp.
column) indices of the non zero rows (resp. columns) in the matrix

R =
[
Ik0
]
P

[
Ir

0

]
Q

[
It
0

]
Corrolary 3. The row (resp. column) rank profile of A is the sorted se-
quence of row (resp. column) indices of the non zero rows (resp. columns)
of the first r columns of P (resp. first r rows of Q).

5 Complexity analysis

We study here the time complexity of algorihtm 1 by counting the number
of field operations. For the sake of simplicity, we will assume here that
the dimensions m and n are powers of two. The analysis can easily be
extended to the general case for arbitrary m and n.

For i = 1, 2, 3, 4 we denote by Ti the cost of the i-th recursive call to
PLUQ, on a m

2
× n

2
matrix of rank ri. We also denote by TTRSM(m,n) the

cost of a call TRSM on a rectangular matrix of dimensions m × n, and by
TMM(m, k, n) the cost of multiplying an m× k by an k × n matrix.

Theorem 2. Algorithm 1, run on an m × n matrix of rank r, performs
O
(
mnrω−2

)
field operations.

Proof. Let T = TPLUQ(m,n, r) be the cost of algorithm 1 run on a m × n
matrix of rank r. From the complexities of the subroutines given, e.g.,

10

in [2] and the recursive calls in algorithm 1, we have:

T=T1 + T2 + T3 + T4 + TTRSM(r1,
m

2
) + TTRSM(r1,

n

2
)

+TTRSM(r2,
m

2
) + TTRSM(r3,

n

2
) + TMM(

m

2
− r1, r1,

n

2
)

+TMM(
m

2
, r1,

n

2
− r1) + TMM(

m

2
, r1,

n

2
)

+TMM(r3, r2,
n

2
− r2) + TMM(

m

2
− r3, r2,

n

2
− r2 − r4)

+TMM(
m

2
− r3, r3,

n

2
− r2 − r4)

≤T1 + T2 + T3 + T4 +K
(m

2
(rω−1

1 + rω−1
2) +

n

2
(rω−1

1

+rω−1
3) +

m

2

n

2
rω−2
1 +

m

2

n

2
rω−2
2 +

m

2

n

2
rω−2
3

)
≤T1 + T2 + T3 + T4 +K′mnrω−2

for some constants K and K′ (we recall that aω−2 + bω−2 ≤ 23−ω(a+
b)ω−2 for 2 ≤ ω ≤ 3).

Let C = max{ K′

1−24−2ω ; 1}.Then we can prove by a simultaneous in-

duction on m and n that T ≤ Cmnrω−2.
Indeed, if (r = 1,m = 1, n ≥ m) or (r = 1, n = 1,m ≥ n) then

T ≤ m − 1 ≤ Cmnrω−2. Now if it is true for m = 2j , n = 2i, then for
m = 2j+1, n = 2i+1, we have

T≤C
4
mn(rω−2

1 + rω−2
2 + rω−2

3 + rω−2
4) +K′mnrω−2

≤C(23−ω)2

4
mnrω−2 +K′mnrω−2

≤K′ 24−2ω

1− 24−2ω
mnrω−2 +K′mnrω−2 ≤ Cmnrω−2.

In order to compare this algorithm with usual Gaussian elimination
algorithms, we now refine the analysis to compare the leading constant
of the time complexity in the special case where the matrix is square and
has a generic rank profile: r1 = m

2
= n

2
, r2 = 0, r3 = 0 and r4 = m

2
= n

2

at each recursive step.
Hence we have

TPLUQ=2TPLUQ(
n

2
,
n

2
,
n

2
) + 2TTRSM(

n

2
,
n

2
) + TMM(

n

2
,
n

2
,
n

2
)

=2TPLUQ(
n

2
,
n

2
,
n

2
) + 2

Cω

2ω−1 − 2

(n
2

)ω
+ Cω

(n
2

)ω
Writing TPLUQ(n, n, n) = αnω, the constant α satisfies:

α = Cω
1

(2ω − 2)

(
1

2ω−2 − 1
+ 1

)
= Cω

2ω−2

(2ω − 2)(2ω−2 − 1)
.

which is equal to the constant of the CUP and LUP decompositions [7,
Table 1]. In particular, it equals 2/3 when ω = 3, Cω = 2, matching the
constant of the classical Gaussian elimination.

11

6 Number of modular reductions over a
prime field

In the following we suppose that the operations are done with full delayed
reduction for a single multiplication and any number of additions: opera-
tions of the form

∑
aibi are reduced only once at the end of the addition,

but a · b · c requires two reductions. In practice, only a limited amount
of accumulations can be done on an actual mantissa without overflowing,
but we neglect this in this section for the sake of simplicity. See e.g. [2]
for more details. For instance, with this model, the number of reductions
required by a classic multiplication of matrices of size m × k by k × n is
simply: m · n. We denote this by RMM (m, k, n) = mn. This extends e.g.
also for triangular solving:

Theorem 3. Over a prime field modulo p, the number of reductions mod-
ulo p required by TRSM(m,n) with full delayed reduction is:

RUnitTRSM(m,n)=mn if the triangular matrix is unitary,
RTRSM(m,n) =2mn in general.

Proof. If the matrix is unitary, then a fully delayed reduction is required
only once after the update of each row of the result. In the generic case,
we invert each diagonal element first and multiply each element of the
right hand side by this inverse diagonal element, prior to the update of
each row of the result. This gives mn extra reductions.

Next we show that the new pivoting strategy is more efficient in terms
of number of integer division.

Theorem 4. Over a prime field modulo p and on a full-rank square m×
m matrix with generic rank profile, and m a power of two, the number
of reductions modulo p required by the elimination algorithms with full
delayed reduction is:

RPLUQ(m,m) =2m2 + o
(
m2
)
,

RPLE(m,m) = RCUP(m,m)=
(
1 + 1

4
log2(m)

)
m2 + o

(
m2
)

Proof. If the top left square block is full rank then PLUQ reduces to one
recursive call, two square TRSM (one unitary, one generic) one square ma-
trix multiplication and a final recursive call. In terms of modular reduc-
tions, this gives: RPLUQ(m) = 2RPLUQ(

m
2

)+RUnitTRSM(
m
2
, m

2
)+RTRSM(

m
2
, m

2
)+

RMM(
m
2
, m

2
, m

2
). Therefore, using theorem 3, the number of reductions

within PLUQ satisfies T (m) = 2T (m
2

) + m2 so that it is RPLUQ(m,m) =
2m2 − 2m if m is a power of two.

For row or column oriented elimination this situation is more com-
plicated since the recursive calls will always be rectangular even if the
intermediate matrices are full-rank. We in fact prove, by induction on m,
the more generic:

RPLE(m,n) = log2(m)(
mn

2
− m2

4
) +m2 + o

(
mn+m2) (1)

First RPLE(1, n) = 0 since [1] × [a1, . . . , an] is a triangular decomposition
of the 1 × n matrix [a1, . . . , an]. Now suppose that Equation 1 holds

12

for k = m. Then we follow the row oriented algorithm of [2, Lemma 5.1]
which makes two recursive calls, one TRSM and one MM to get RPLE(2m,n) =
RPLE(m,n)+RPLE(m,m)+RMM(m,m, n−m)+RPLE(m,n−m) = RPLE(m,n)+
RPLE(m,n−m) +m(n+m). We then apply the induction hypothesis on
the recursive calls to get

RPLE(2m,n)=
1

2
log2(m)mn− 1

4
log2(m)m2 +m2 +

1

2
log2(m)m(n−m)− 1

4
log2(m)m2 +m2 +

m(n+m) + o
(
mn+m2)

=log2(m)(mn−m2) + 3m2 +mn+ o
(
mn+m2) .

The latter is also obtained by substituting k ←↩ 2m in Equation 1 so that
the induction is proven.

This show that the new algorithm requires much less modular reduc-
tions, as soon as m is larger than 32. Over finite fields, since reductions
can be much more expensive than multiplications or additions by elements
of the field, this is a non negligible advantage. We show in the next sec-
tion that this participates to the better practical performance of the PLUQ

algorithm.

7 A base case algorithm

We propose in algorithm 2 an iterative algorithm computing the same
PLUQ decomposition as algorithm 1. The motivation is to offer an alter-
native to the recursive algorithm improving the computational efficiency
on small matrix sizes. Indeed, as long as the matrix fits the cache mem-
ory, the amount of page faults of the two variants are similar, but the
iterative algorithm reduces the amount of row and column permutations.
The block recursive algorithm can then be modified so that it switches
to the iterative algorithm whenever the matrix dimensions are below a
certain threshold.

Unlike the common Gaussian elimination, where pivots are searched
in the whole current row or column, the strategy is here to proceed with
an incrementally growing leading sub-matrix. This implies a Z-curve type
search scheme, as shown on figure 2. This search strategy is meant to
ensure the properties on the rank profile that have been presented in
section 4.

13

Figure 2: Iterative base case PLUQ decomposition

Algorithm 2 PLUQ iterative base case

Input: A a m× n matrix over a field
Output: P,Q: m×m and n× n permutation matrices
Output: r: the rank of A

Output: A ←
[
L\UV
M 0

]
where L is r × r unit lower triang., U is r × r upper

triang. and such that A = P

[
L
M

]
[UV]Q.

r ← 0; i← 0; j ← 0
while i < m or j < n do

. Let v = [Ai,r . . .Ai,j−1] and w = [Ar,j . . .Ai−1,r]
T

if j < n and w 6= 0 then
p← row index of the first non zero entry in w
q ← j; j ← max(j + 1, n)

else if i < m and v 6= 0 then
q ← column index of the first non zero entry in v
p← i; i← max(i + 1,m)

else if i < m and j < n and Ai,j 6= 0 then
(p, q)← (i, j)
i← max(i + 1,m); j ← max(j + 1, n)

else
i← max(i + 1,m); j ← max(j + 1, n)
continue

end if . At this stage, Ap,q is a pivot
for k = p + 1 . . . n do

Ak,q ← Ak,p/Ap,q

Ak,q+1...n ← Ak,q+1...n −Ak,qAp,q+1...n

end for
Ar+1...m,r+1 ↔ Ar+1...m,q . Swap pivot column
Ar+1,r+1...n ↔ Ap,r+1...n . Swap pivot row
P ← Tp,rP ;Q← QTq,r . Tk,l swaps indices k and l
r ← r + 1

end while

14

Remark 3. In order to further improve the data locality, this iterative
algorithm can be transformed into a left-looking variant [1]. We did not
write this version here for the sake of clarity, but this is how we imple-
mented the base case for the experiments of section 8.

8 Experiments

We present here experiments comparing an implementation of algorithm 1
computing a PLUQ decomposition against the implementation of the
CUP/PLE decomposition, called LUdivine in the FFLAS-FFPACK library1.
The new implementation of the PLUQ decomposition is available in this
same library from version svn@346. We ran our tests on a single core of
an Intel Xeon E5-4620@2.20GHz using gcc-4.7.2.

Figures 3 and 4 compare the computation time of LUdivine, and the
new PLUQ algorithm. In figure 3, the matrices are dense, with full rank.
The computation times are similar, the PLUQ algorithm with base case
showing a slight improvement over LUdivine. In figures 4 and 5, the

 0

 50

 100

 150

 200

 250

 300

 350

 0 5000 10000 15000 20000
-50 %

-40 %

-30 %

-20 %

-10 %

0 %

10 %

20 %

30 %

40 %

50 %

ti
m

e
 (

s)

sp
e
e
d
-u

p

matrix dimension

PLUQ no base case
LUdivine with base case

PLUQ with base case
(1-PLUQ/LUdivine) with base case

Figure 3: Computation time with dense full rank matrices over Z/1009Z.

matrices are square, dense with a rank equal to half the dimension. To
ensure non trivial row and column rank profiles, they are generated from
a LEU decomposition, where L and U are uniformly random non-singular
lower and upper triangular matrices, and E is zero except on r = n/2
positions, chosen uniformly at random, set to one. The cutoff dimension
for the switch to the base case has been set to an optimal value of 30 by
experiments. Figure 4 shows how the base case greatly improves the effi-
ciency for PLUQ, presumably for it reduces the number of row and column

1http://linalg.org/fflas-ffpack

15

http://linalg.org/fflas-ffpack

 0

 50

 100

 150

 200

 250

 300

 350

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

ti
m

e
 (

s)

matrix dimension

PLUQ no base case
LUdivine with base case

PLUQ with base case

Figure 4: Computation time with dense rank deficient matrices (rank is half the
dimension)

permutations. With the base case the computation time is comparable
to LUdivine. More precisely, PLUQ becomes faster than LUDivine for
dimensions above 9000. Figure 5 shows that, on larger matrices, PLUQ
can be about 10% faster than LUdivine.

Table 1 summarizes some of the data reported by the callgrind tool
of the valgrind emulator (version 3.8.1) concerning the cache misses. We
also report in the last column the corresponding computation time on
the machine (without emulator). The matrices used are the same as in
figure 4, with rank half the dimension. We first notice the impact of the
base case on the PLUQ algorithm: although it does not change the number
of cache misses, it strongly reduces the total number of memory accesses
(less permutations), thus improving the computation time. Now as the
dimension grows, the total amount of memory accesses and the amount of
cache misses plays in favor of PLUQ which becomes faster than LUdivine.

9 Conclusion and perspectives

The decomposition that we propose can first be viewed as an improve-
ment over the LEU decomposition, introducing a finer treatment of rank
deficiency that reduces the number of arithmetic operations, makes the
time complexity rank sensitive and allows to perform the computation
in-place.

Second, viewed as a variant of the existing CUP/PLE decompositions,
this new algorithm produces more information on the rank profile and has

16

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 20000 40000 60000 80000 100000
-50 %

-40 %

-30 %

-20 %

-10 %

0 %

10 %

20 %

30 %

40 %

50 %
ti

m
e
 (

s)

sp
e
e
d
-u

p

matrix dimension

LUdivine with base case
PLUQ with base case

(1-PLUQ/LUdivine) with base case

Figure 5: Computation time with dense rank deficient matrices of larger dimen-
sion

better cache efficiency, as it avoids calling matrix products with rectan-
gular matrices of unbalanced dimensions. It also performs fewer modular
reductions when computing over a finite field.

Overall the new algorithm is also faster in practice than previous im-
plementations when matrix dimensions get large enough.

Now, in a parallel setting, it should exhibit more parallelism than row
or column major eliminations since the recursive calls in step 2 and 3 are
independent. This is also the case for the TURBO algorithm of [3], but
the latter requires more arithmetic operations. Further experiments and
analysis of communication costs have to be conducted in shared and dis-
tributed memory settings to assess the possible practical gains in parallel.

References

[1] J. J. Dongarra, L. S. Duff, D. C. Sorensen, and H. A. V. Vorst.
Numerical Linear Algebra for High Performance Computers. SIAM,
1998.

[2] J.-G. Dumas, P. Giorgi, and C. Pernet. Dense linear algebra over
prime fields. ACM TOMS, 35(3):1–42, Nov. 2008. URL: http://

arxiv.org/abs/cs/0601133.

[3] J.-G. Dumas and J.-L. Roch. On parallel block algorithms for exact
triangularizations. Parallel Computing, 28(11):1531–1548, Nov. 2002.
doi:10.1016/S0167-8191(02)00161-8.

17

http://arxiv.org/abs/cs/0601133
http://arxiv.org/abs/cs/0601133
http://dx.doi.org/10.1016/S0167-8191(02)00161-8

Matrix Algorithm Accesses L1 Misses LL Misses Relative Timing (s)

A4K
PLUQ-no-base-case 1.319E+10 7.411E+08 1.523E+07 .115 5.84
PLUQ-base-case 8.119E+09 7.414E+08 1.526E+07 .188 2.65
LUdivine 1.529E+10 1.246E+09 2.435E+07 .159 2.35

A8K
PLUQ-no-base-case 6.150E+10 5.679E+09 1.305E+08 .212 28.4
PLUQ-base-case 4.072E+10 5.681E+09 1.306E+08 .321 15.4
LUdivine 7.555E+10 9.693E+09 2.205E+08 .292 15.2

A12K
PLUQ-no-base-case 1.575E+11 1.911E+10 4.691E+08 .298 75.1
PLUQ-base-case 1.112E+11 1.911E+10 4.693E+08 .422 45.7
LUdivine 2.003E+11 3.141E+10 7.943E+08 .396 46.4

A16K
PLUQ-no-base-case 3.142E+11 4.459E+10 1.092E+09 .347 152
PLUQ-base-case 2.302E+11 4.459E+10 1.092E+09 .475 99.4
LUdivine 4.117E+11 7.391E+10 1.863E+09 .452 103

Table 1: Cache misses for dense matrices with rank equal half of the dimension

[4] J.-C. Faugère. A new efficient algorithm for computing Gröbner bases
(F4). Journal of Pure and Applied Algebra, 139(1–3):61–88, June
1999. URL: http://www-salsa.lip6.fr/~jcf/Papers/F99a.pdf.

[5] G. Golub and C. Van Loan. Matrix Computations. The Johns Hop-
kins University Press, third edition, 1996.

[6] O. H. Ibarra, S. Moran, and R. Hui. A generalization of the fast LUP
matrix decomposition algorithm and applications. J. of Algorithms,
3(1):45–56, Mar. 1982.

[7] C.-P. Jeannerod, C. Pernet, and A. Storjohann. Rank profile reveal-
ing Gaussain elimination and the CUP matrix decomposition, Dec.
2011. Tech. report, arXiV cs.SC/1112.5717.

[8] D. J. Jeffrey. LU factoring of non-invertible matrices. ACM Comm.
Comp. Algebra, 44(1/2):1–8, July 2010.

[9] G. I. Malaschonok. Fast generalized Bruhat decomposition. In
CASC’10, volume 6244 of LNCS, pages 194–202. Springer-Verlag,
Berlin, Heidelberg, 2010. doi:10.1007/978-3-642-15274-0_16.

[10] W. Stein. Modular forms, a computational approach. Graduate stud-
ies in mathematics. AMS, 2007. URL: http://wstein.org/books/
modform/modform.

[11] A. Storjohann. Algorithms for Matrix Canonical Forms. PhD the-
sis, Institut für Wissenschaftliches Rechnen, ETH-Zentrum, Zürich,
Switzerland, Nov. 2000. doi:10.3929/ethz-a-004141007.

[12] V. V. Williams. Multiplying matrices faster than Coppersmith-
Winograd. In STOC’12, pages 887–898, New York, NY, USA, 2012.
ACM. URL: http://www.cs.berkeley.edu/~virgi/matrixmult.

pdf.

18

http://www-salsa.lip6.fr/~jcf/Papers/F99a.pdf
http://arxiv.org/abs/1112.5717
http://dx.doi.org/10.1007/978-3-642-15274-0_16
http://wstein.org/books/modform/modform
http://wstein.org/books/modform/modform
http://dx.doi.org/10.3929/ethz-a-004141007
http://www.cs.berkeley.edu/~virgi/matrixmult.pdf
http://www.cs.berkeley.edu/~virgi/matrixmult.pdf

A Correctness of algorithm 1

First note that S
[
L
M

]
=


L1
M11L2
M12M2 0
E1 I L3
E21K1M31L4
E22K2M32M400



Hence P
[
L
M

]
=
[
P1
P3

]
L1

M1P2

[
L2
M2

]
E1 I L3

E2 K M3P4

[
L4
M4

]


Similarly, [UV]T =


U1V11V12D1D21D22

0 0 U2 V21 V22
U3 V3 0 O1 O2

U4 V4
0

 and [UV]Q =

U1 V1 D1 D2
0 U2 V2

[U3V3]Q3 0 O
[U4V4]Q4

[Q1
Q2

]
.

Now as H1 = IU2, H2 = IV2 + L3O,H3 = KU2 and H4 = KV2 +

M3O + P4

[
L4
M4

]
[U4V4]Q4 we have

P
[
L
M

]
[UV]Q=

[
P1
P3

]
L1

M1P2

[
L2
M2

]
E1 I L3

E2 K M3P4

[
L4
M4

]


U1 V1 D1 D2
0 U2 V2

[U3V3]Q3 0 O
[U4V4]Q4

[Q1
Q2

]

=
[
P1
P3

]
L1

M1P2

[
L2
M2

]
E1 Ir3
E2 Im−k−r3


U1 V1 D1D2

0 U2 V2

L3 [U3V3]Q3H1H2

M3 [U3V3]Q3H3H4

[Q1
Q2

]

=
[
P1
Im−k

] [L1
M1

E 0Im−k

][
U1V1D

0 F
GH

]
[
Q1
In−k

]
=
[
P1
Im−k

] [L1U1 L1V1B1
M1U1M1V1B2
C1 C2 A4

] [
Q1
In−k

]
=A

19

	Introduction
	A recursive PLUQ algorithm
	From PLUQ to LEU
	Computing the rank profiles
	Complexity analysis
	Number of modular reductions over a prime field
	A base case algorithm
	Experiments
	Conclusion and perspectives
	Correctness of algorithm 1

