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Abstract

Givenk labelings of a finitel-dimensional cubical grid, define tltembined distance between two
labels to be the sum of thg-distance between the two labels in each labeling. We wacomstruct:
labelings which maximize the minimum combined distancevieen any two labels. Wheh = 1, this
can be interpreted as placimgnon-attacking rooks in &-dimensional chessboard of sizein such a
way to maximize the minimur, -distance between any two rookgook placements are also known as
Latin Hypercube Designsin the literature.

In this paper, we revisit this problem with a more geometppraach. Instead of providing explicit
but complicated formulas, we construct rook placements indimensional chessboard of sizeas
certain lattice-like structures for certain well-chosatues ofn. Then, we extend these constructions to
any values ofi using geometric arguments. With this method, we preseman@nd geometric descrip-
tion of the known optimal rook placements in thalimensional square grid. Furthermore, we provide
asymptotically optimal constructions éflabelings ofd-dimensional cubical grids which maximize the
minimum combined distance.

Finally, we discuss the extension of this problem to lalgiof an arbitrary graph. We prove that
deciding whether a graph has two labelings with combinetddc® at leasi is at least as hard as graph
isomorphism.

1 Introduction

LetLq,...,L; bek bijections from the cells of d-dimensional cubical grid of size to a label sefs of n?
symbols. Then each symbol flabelsk cells, one in each of theelabelings. Define theombined distance
between two symbols andy in S as the sum of thé; -distances between the two cells labeleddmndy

in each labeling. How to arrange the symbols of AHabelings such that the minimum combined distance
between any two symbols is maximized? We refer to Figure afioexample witm = 3 andk = d = 2.

This grid labeling problem was posed at the open problenmsaesf CCCG 2009 [4] by Beléen Palop,
who formulated the problem from her research with Zhenghlaang in wireless communication. It has
many applications to wireless communication, in particyd@rmutation code generation [7, Chapter 9]. A
permutation code uses a grid of symbols for each channel whasmitting data over multiple channels;
transmission errors are more easily detected if the cordliitance between any pair of symbols in the
grids is large.
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Figure 1:Two labelings of & x 3 grid. With the first labeling fixed, the second labeling is @fi@40 solutions for
which the minimum combined distance3is

Throughout the paper, we denote by ) the set{0,1,2,...,n — 1}. A labeling of the d-dimensional
cubical grid of sizen is a bijectionZ : (n)? — (n?) which assigns dabel of (n?) to eachgrid
cell of (n)?. Givenk labelingsLy,..., L of (n)¢, we denote theombined distance between two la-
belsz,y € (n?) by cp(Ly, ..., Ly, z,y) = S.F_ |L7(z) — Ly (y)]|.. Finally, we denote by

v(k,n,d) := L{n&uzk $¢ryrél<r;d> cD(Ly,..., Lk, z,y)
the maximum value, among alttuples of labelings of the&-dimensional cubical grid of size, of the
minimal combined distance between any two distinct labels.

Assume for now that the dimensiaiof the grid is fixed tal, that is, we investigatgé-tuplesLy, ..., Ly
of labelings of thel -dimensional arrayn ). Considering for each symbolthe point ofR* whoseith coor-
dinate is the position of in theith labelingL;, we obtain a set af points in ak-dimensional grid of size,
such that no two points share a coordinate in any dimensioathier words, a set of non-attacking rooks
in a k-dimensional chessboard. We call such a configuratioook placement. Moreover, the combined
distance between two distinct labels in thiabelings of thel-dimensional array is th& -distance between
the two corresponding rooks in the rook placement. Thus,n, 1) is precisely the maximal value, among
all rook placements in &-dimensional chessboard of sizeof the minimal/; -distance between two rooks.

Among results concerning optimal rook placements witheespo different/,,-distances [2], van Dam
et al. proved that(2,n,1) = L\/Qn + 2J. For k-dimensional chessboards, van Dam et al. [3] proved that
the maximal valuey(k,n, 1) is at most[%(n +1)], but observed that this bound is certainly not optimal.
In these two papers and more generally in the operation n&sditerature, rook placements are referred
as Latin Hypercube Designs [2, 3]. LHDs are useful in obtaining approximation models ldack-box
functions that may have too many combinations of input patamns and need to be tested on only a reduced
subset of the combinations. For the sake of understandiegyiW prefer the term rook placement rather
than LHD in this article. A dynamic survey on related topiegyraph labeling can be found in [5].

In this paper, we revisit the optimal rook placement probleith a more geometric approach. We
first provide simple and explicit descriptions for optimabk placements in &-dimensional chessboard
of sizen, but only for certain values at. For these values, our rook placements can be understoed geo
metrically as lattice-like points sets. Then, we use thestqular cases to generate good rook placements
for arbitraryn. This approach enables us to focus on friendly values,@nd thus to avoid unnecessary
technical calculations for general In particular, we present a clean and geometric descniftfdhe opti-
mal rook placements presented in [2]. Furthermore, we oibiei following asymptotically tight bounds for
the maximal value of the minimdl -distance between two rooks of a rook placement inkttEmensional
chessboard of size:

Theorem 1. For any integers k > 2 and n > 2,

k—1
k K%)WJ < ~(kyn,1) < (n/;')%—l
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With the same techniques, we then generalize these bouigdis tabelings of al-dimensional cubical
grid, ford > 2:

Theorem 2. For any integers k > 2,n > 2,andd > 1,

k-1 _
@] s < G

In particular, y(k,n, d) = ©(n'~1/*) if k and d are constants.

Observe that our lower bounds, in conjunction with the ugmemds, yield a very simpl@ (kn)-time
constant-factor approximation algorithm for the optinti@a problem of maximizing the combined distance
of k labelings of al-dimensional grid, for any constahtandd.

On the other hand, the problem becomes much more difficulaialle when generalized to the graph
setting. Now let= be a graph ofi vertices, and lef be a set of: symbols. Define &abeling of the graphz
to be a bijection that assigns a distinct symbabito each vertex iriz, and define thelistance between two
vertices inG as the number of edges in a shortest path between them. Tfiea thee combined distance of
multiple labelings of a graph in a similar way as that for algkiVe obtain the following theorem:

Theorem 3. Deciding whether a graph has two labelings with combined distance at least 3 is at least as
hard as graph isomor phism.

The paper is organized as follows. In Section 2, we presemtaactions of labelings with large min-
imum combined distance. We present two purely combindtooastructions for special values afin
Sections 2.1 and 2.2. Using the point of view of rook placamewe then reinterpret and extend these
special labelings to arbitrary valuesofn Section 2.3 and we obtain in particular Theorem 1. SeQ@idn
generalizes these results to labelingsiafimensional grids. Finally, we discuss in Section 3 theegen
alized problem of maximizing the minimal combined distantgraph labelings, and connect it to graph
isomorphism to prove Theorem 3.

2 Constructions of labelings with large minimum combined dstance

We fix an integerk > 2. The aim of this section is to present some combinatoridirtiegies to construct
k labelings with a large minimum combined distance. We firstifoon labelings of-dimensional arrays,
and present two constructions which are interesting fdewint reasons:

A. Ouir first construction yields, for any integer, ak-tuple of labelings of m* ) with minimum combined
distancem*~! — % Its interest lies in its simple combinatorial description

B. Our second construction yields, for any integer a k-tuple of labelings of( km* ) with minimum
combined distanc&m”*~1. It is our most efficient construction, and it is proved to fmimal when
k= 2.

Our presentation of these two constructions only produsieslings of{ » ) for certain specific values of.
To treat all other values af, we use the interpretation @ftuples of labelings of n) in terms of rook
placements in the hyperculde: )*. In this setting, both our constructions can be thought dhasraces
on (n)* of lattice-like structures iR*, and a simple geometric construction extends these catising
to general values of. For convenience, we will usg, as an alias for; in our descriptions of the two
constructions in Sections 2.1 and 2.2, and refer tditlabelings ad.g, ..., Li_; instead ofL4, ..., L;.



2.1 Construction A

We present our first construction only far= m* andm > 2. Let¢ : (m)*¥ — (m*) be the bijection
defined asp(zg_1,...,x0) = Z?;& xjmj. The reciprocal bijectiop—! associates to an integer its de-
composition in then-ary number system, usingdigits. Observe that we write the least significant digit
to the right to be consistent with the usual conventions.dLet{ m )* — (m)* be the cyclic permutation
defined ar (zy_1, ..., 21, 7o) := (20, Th—1,...,x1). FOr0 < i < k — 1, we define a labelingl; of (m*)
as

Aj:=¢octogp L.

In other words, then-ary decompositions of a label and of its position in the laigeA; are just cyclically
permuted by, Observe that the inverse permutationdgfis given by

A;l — QZSOO'k_i qu—l‘

Proposition 1. The minimum combined distance of the & labelings Ay, .. ., A,_; of (m* ) is bounded by

mk-1 -1
min  CD(Ag, ..., Ap_1,z,y) >mFt - ——— =
zAYE(mF) m—1
Proof. Observe first that for any two elemer(ts,_1, ..., zo) and (ys_1,. .., yo) of (m)*, the distance
between the cellg(zy_1, ..., 7o) andé(yr_1,...,yo) in the array( m* ) is at least
k=2
(k1 w0) = D(Yh1s - 90)| = mF Moy —ypa| = Y mlfay —yyl.
j=0
Consequently, for any two distinct elemerits,_1, ..., zo) and (yr_1,...,y0) of (m)¥, the com-
bined distancecD(A, z,y) := cD(Ay,...,Ar_1,z,y) between the labels := ¢(xp_1,...,20) and
y:= o(yk—1,--.,y0) in thek labelingsAy, ..., Ay is at least
k—1
co(A,z,y) = > |A;7H(z) — AN (y)]
i=0
k—1
= ¢ (@hmiots T Tk -5 Thei) = GWYhmimts - Y0s Yke1s - > Yk
i=0
k—1 k=2
> Z mkfl\xkfzq e Z ™M [T (i) mod k — Y(j—i) mod k|
i=0 j=0
k—1 k—2
(St (-
=0 7=0
- m—1

Example 1. For k = 2 andm = 4, this construction yields the two labelings (@f6 ) with minimum com-
bined distancé shown in Figure 2. Fok = 3 andm = 2, this construction yields the three labelings &f)
with minimum combined distana&shown in Figure 3. The numbers on top are tha@ry decompositions
of the numbers in the array cells.



00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33

01 23_89101112131415
Ap

00 1,0 20 30 01 11 21 31 02 12 22 32 03 13 23 33
0.8 12 1.9 132.1014 3.1115A
1

Figure 2:The two labelingsd, and A; provided by construction A whem = 16, k = 2 andm = 4.

0,0,000101001100101 11011 0,001000011010,1011,00211111 0000,1010011000,10,1,11011,11

o+ I AT= 8T [~ To] - IS Iel [- [alel el

Ag Aq Ao

Figure 3:The three labelingd,, A1, andA; provided by construction A whem = 8, k = 3 andm = 2.

2.2 Construction B

We present our second construction only fore= km* andm > 2. For a fixed integem we constructk
labelingsBy, . .., By_; of the array( km” ). To construct the labeling;, we first assign a colati;(z) to
each cellr of { km* ) such that

a;(z) = {mf—lJ mod m.

Intuitively, for 1 < i < k — 1, the cellx is colored by, (x) according to itgth least significant digit in its
m-ary decomposition. Observe that the calg(x) is always equal t0. The labelingB; is then defined for
all cellsz € (km*) by

Bi(zx) := <x - k:mk_lozi(x)) mod kmF.

In other words, for alll < p < m — 1, the labelingB; cyclically permutes the set of all cells with
color a;(x) = p, and the amplitude of this permutation is proportionalpto In particular, we have
ai(x) = a;(B;(x)) and it is easy to describe the inverse permutatioB.dir all labelsz € (km* ) as

B Yz) = (x + kmkilai(x)) mod kmF.

1

Note thatB, is the identity permutation sinae,(z) = 0 for all z € (kmF*).
Proposition 2. The minimum combined distance of the & labelings By, .. ., Bx_; of { km* ) is bounded by

min  CD(By,...,Bx_1,7,y) > kmFT,
aFye(km” )

Proof. Let2 andy be two distinct labels of km” ). For0 < i < k — 1, write
B Yz) = = + km" Lo (2) + rikm”
and B;l(y) =y + km* la;(y) + sikm”
for some integers; ands;. We consider two cases:

(1) If o(z) = () for all 4, thenz — y is a non-zero multiple of2*—1. Thus, for alli, the difference
B Yz) — B Y (y) = — y + (r; — s;)km”* is also a non-zero multiple of*~!, and
k—1

cD(By,. ., Br1,,y) = Y | B (&) = B M (y)| = km*T.
=0



(2) Otherwiseq;(z) # a;(y) for somej # 0. Then
k—1
cD(By, ..., Be1,3,y) = »_ |B; '(x) = B '(y)| > |B;'(z) — By '(v)| + 1By (x) — By ()
=0

1B @) - B W)+l — 9l = |B @) - B W) — o 4yl

= km*May(x) — a;(y) + (rj — s)m| > km*1.

The last inequality holds sinde< |o;(z) — a;(y)| < m — 1. O
Example 2. For k = 2 andm = 3, this construction yields the two labelings ¢f8) with minimum
combined distancé shown in Figure 4. Fok = 3 andm = 2, this construction yields the three labelings
of (24 ) with minimum combined distanc& shown in Figure 5. The numbers on top are the three least
significant digits of then-ary decompositions of the array cell indices.

0,000,011 00,2 0,1,00,1,1 0,1,2 0,2,00,2,10,2,2 1,00 1,0,1 10,2 1,10 1,1,11,1,2 1,2(®,1 1,2,2

0j1(2|3|4|5|6|7|8]|9|10|11| 12| 13 14 15| 16| 17

By

0,0,00,0,1 0,0,2 0,1,0,1,12 0,1,2 0,2,00,2,10,2,2 1,00 1,0,1 1,0,2 1,10 1,1,11,1,2 1,2(®,1 1,2,2
3 OB 00 0O EE EE of
1

Figure 4:The two labelings3, and B; provided by construction B when= 18, k = 2 andm = 3.

00,000,10,1,00,1,22,00 10,1 1,1,01,1,10,0,0 0,0,1 0,1,0 0,1,11,0,0 1,0,11,1,0 1,10,0 0,0,10,1,00,1,2 1,0,0 1,0,11,1,01,1,1

0O|1(2|3|4|5| 6| 7|8]|9]|10|11| 12| 13| 14 15| 16| 17/ 18| 19| 20| 21 23 23

By

0,0,00,0,10,1,0 0,1,11,0,0 1,0,1 1,1,01,1,10,0,0 0,0,1 0,1,0 0,1,11,0,0 1,0,11,1,0 1,1010,00,0,1 0,1,00,1,1 1,0,0 1,0,11,1,0 1,1,1
BBEDEOBDETE

By
0,0,00,0,10,1,0 0,1,11,0,0 1,0,1 1,1,01,1,10,0,0 0,0,1 0,1,0 0,1,11,0,0 1,0,1 1,1,0 1,10,0,00,0,1 0,1,0 0,1,1 1,0,0 1,0,11,1,0 1,1,1

By

Figure 5:The three labeling®,, B, and B, provided by construction B when= 24, k = 3 andm = 2.

Remark 1. Both constructions A and B can be generalized to arbitnay the next subsection we present
a unified view of the two constructions and provide a concaptsimple meta-method for such generaliza-

tions.

2.3 Rook placements

In this section, we interpret the minimum combined distaofck labelings of al-dimensional arrayn ) as
the minimum distance in a rook placement in thdimensional hypercubgn )*. Let us first state a precise
definition:
Definition 1. A (k,n)-rook placements a subset R of the k-dimensional hypercube ( n )* with precisely
one element in the subspace (n )?~! x {¢} x (n)*Pforeach1 <p<kand0<gq<n— 1.

In other words, dk, n)-rook placement is a maximal set of non-attacking rook&rin®, where a rook
positioned in(x1, . .., ;) can attack the subspacgs )?~! x {z,,} x (n)k~P for 1 < p < k (see Figure 6).



Figure 6:The affine spaces a rook can attack.

There is an immediate correspondence betweguples of labelings of theé-dimensional array n )
and(k, n)-rook placements:

e givenk labelingsLy, ..., Ly of (n), the subseR(Ly, ..., L) == {(L7'(2),..., L, (z)) | z € (n)}
of (n)* is a(k,n)-rook placement;

e reciprocally, a(k, n)-rook placementz hasn rooks, whosesth coordinates are all distinct (for any
fixed1 < p < k). If we arbitrarily label the rooks of? from 0 to n — 1, the order of the rooks
according to theipth coordinate defines a labelitg,(R) of (n ).

Observe that we do not change the rook placement when pegnilite labels of its rooks: for any
permutationd.y, ..., L, andr of (n), we haveR(ro Ly,...,7o L) = R(Ly, ..., L). We can therefore
assume thak; is the identity permutation. Consequently, the numbeikof.)-rook placements ign!)*~1.

Furthermore, the above correspondence betwetrmples of labelings of n) and (k,n)-rook place-
ments preserves metric properties: the combined distapt@ebn two labelse and y in & labelings
Ly, ..., Ly of (n) is precisely the;-distance between the two corresponding rogks' (z), . . . ,L,;l(a:))
and (L (y), ..., Ly '(y)) in the (k,n)-rook placement?(L1, ..., L;). We callminimum distance of a
finite point setS of R* the minimum pairwise, -distance between two points 5f

To illustrate the interest of this geometric point of vieet, Uis first prove the upper bound of Theorem 1.:

Lemma 1. For any integers k& > 2 and n > 2,

n—1
(n/k‘!)l/k -1

Proof. We prove the result in the setting of rook placements by a lsimplume argument. Consider a
(k,n)-rook placemenf?, and leté be the minimum distance between two rookddfThen thel;-balls of
radiusé /2 centered at the rooks @t are disjoint and contained in the cupes/2,n — 1 + 6/2]¥. Since
each ball has volumé” /!, this yields the inequality.5* /k! < (n — 1 + 6)*, and thus the upper bound of
the lemma. O

v(k,n,1) <

To prove the lower bound of Theorem 1, we will use more geramafigurations of integer points iR*
to obtain(k, n)-rook placements with large minimum distance, for all valoén. The principal ingredient
of our constructions is the following proposition:

Proposition 3. If there exists a set of n integer pointsin Z* with minimum distance 6 such that the projection
of these points on each axisisaninterval of consecutive integers (with possible repetitions), then there exists
a (k,n)-rook placement with minimum distance ¢.



Proof. Let S be such a set of integers. We label the points &f arbitrarily from0 to n» — 1. For each
direction, we then construct a labeling; of (n) which respects the order of thth coordinate of the
points ofS, and where points with equéh coordinate are ordered arbitrarily. Since the projectdsS in
each direction covered an interval of integers, the digtdetween two points in each direction can only
increase during this construction, and the minimum distasfc¢he(k, n)-rook placemenf?(Lq, ..., L) is

at least that of. O

A simple way to obtain such point setson which we can easily control the minimum distance is to
use lattices ofR*. Remember that #attice of R¥ is the set of integer linear combinations /ofinearly
independent vectors @”; see [6, Chapter 1]. We call (&, n)-rook lattice any sublatticel, of the integer
lattice Z* whose tracel, N (n )* on the hypercubén )* is a (k,n)-rook placement and which contains
neo (eo is the first vector of the canonical basis®f). Applying Proposition 3, a gootk, )-rook lattice
provides goodk, n)-rook placements not only for = v, but for any larger value af:

Proposition 4. If there exists a (k, v)-rook lattice with minimum distance ¢, then there exists a (k, n)-rook
placement with minimum distance ¢ for all n > v — 1.

Proof. Let L be a(k, v)-rook lattice of minimum distanc& Forn = v — 1, consider the point configuration
LN{1,...,v—1}*: it has minimum distancé and projects bijectively of1, ..., v — 1} in each direction.
Forn > v, consider the trace of on (n) x (v)*~1. Sinceney € L, this trace projects bijectively
on (n) in the first direction and surjectively on ) in all the other directions. The result thus follows from
Proposition 3. O

In the remaining of this section, we first use this result totegpret van Dam et al.'s rook placements in
the square [2] in a neat and geometric way. Our descriptioxiges the same rook placements and avoids
tedious and technical calculations. We then apply Proiposi to extend the constructions of Sections 2.1
and 2.2 to any value of.

Example 3(Rook placements in the squar&ye consider two families of lattices in the plane (see Figlre
(@) The lattice generated fyn, m) and(1,2m + 1) is a(2, 2m?)-rook lattice with minimum distancgm.

(b) The lattice generated kfyn + 1, m) and(1,2m + 1) is a(2, 2m? + 2m + 1)-rook lattice with minimum
distance2m + 1.

Note that the trace of these rook lattices on their corredipgnsquare gives precisely the rook placements
of [2] (up to a reflection with respect to the vertical axis).

From these two families and using Proposition 4, we obtaifinuch simpler way the lower bound on
v(2,n,1) in [2]:

Proposition 5. For any integer n, y(2,n,1) > |v/2n + 2|.

Proof. Letm be any integer. Since there exist§2a2m?)-rook lattice with minimum distancem, Propo-
sition 4 implies for any integen with 2m? — 1 < n < 2m? + 2m — 1 that|v/2n + 2| = 2m < ~(2,n,1).
Similarly, since there exists(@, 2m? + 2m + 1)-rook lattice with minimum distanc2m + 1, Proposition 4
implies for any integen with 2m? + 2m < n < 2m? + 4mthat|v2n + 2| =2m +1 <~v(2,n,1). O

We have seen in Lemma 1 that2, n, 1) is bounded byn — 1)/(1/n/2 — 1). Together with Proposi-
tion 5, this implies that/(2,n,1) ~ v/2n. In fact, using a similar but slightly refined packing argurnas
in our proof of Lemma 1, van Dam et al. [2] proved that the boimroposition 5 is in fact the exact value

of v(2,n,1):
! v(2,n,1) = [V2n+2].
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Figure 7:Examples of two optimal families of rook lattices in the stpuga) Lattice generated by the vectfws, m)
and(1,2m + 1), form = 3. (b) Lattice generated by the vectdgra + 1, m) and(1,2m + 1), form = 3.

Example 4 (Construction A, revisited) Denote by(ey, . . ., e,_1) the canonical basis &*. Consider the
lattice U (k, m) of R* generated by the vectors := S ¥ mU+imod ke, for 0 < j <k —1. In other
words, the matrix whose column vectors agg. . . , ux_1 is a circulant matrix\/ (k, m) whose first row is
(1,m,...,m*1). See Figure 8 for an example.

Lemma 2. The (k, m*)-rook placement R(Ay, ..., A,_1) isformed by the points of U (k, m) located in the
k—1

hypercube (m” — 1)* together with the point (m* — 1) >°%" ' e;.

Proof. Foranyz := ¢(xy_1,...,20) € (m"), the rook labeled by in R(Ay, ..., A,_1) is positioned at

-1 (k-1

k
€; =

k—1
-1 _ ¢ j-+i) mod k
A7 (w)e; = ( Z(¢—i) mod k T ) Zﬂﬁj m ) me €;
i=0 i=0 \{=0 i=0 \ j=0
k—1 k—1 k—1
— . (J+i)mod k. | _ s
= T m e | = Tjuyg,
j=0 i=0 j=

and thus is an element of the latti€&k,m). For anyi, we have0 < A;'(z) < m* — 1 and the last
inequality is an equality if and only if = m* —1 = ¢(m —1,m —1,...,m — 1). Thus, the rook labeled
by z is either inU (k, m) N (m* — 1)*, or equalgm* — 1) Y7 ..

For the reverse inclusion, we use a volume argument. Defénghifted hypercub€' := [—3, m" — %]k
and the corresponding tiling := C + Zf;ol Z (mF — 1)e; of the spac®”. By inversion of the circulant
matrix M (k, m), the vector(m* — 1)e; = MAUi_1) mod k — s IS in the latticel/ (k, m) forall0 <7 < k1.
Consequently, any tile 6f contains the same number of points of the latidé, m). Since the boundary of
C contains no point of/ (k, m), it follows that the number of points ii' is the quotient of its volume by the
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Figure 8:The lattice corresponding to the example in Figure 2 of qoietibn A, forn = 16, k = 2 andm = 4.

volume of the fundamental parallelepiped of the latfiti:, m). The former clearly equalsn® — 1)* while
the later is the determinant of the circulant matki(k, m), that is,(m* — 1)*~1. Consequently, the lattice
U(k,m) has preciselyn® — 1 points inC, hence in{ m* — 1)*. This implies the reverse inclusion. [

In other words[J (k, m) is a(k, m*)-rook lattice whose minimum distance is at leagt ! — 2 -1,
Applying Proposition 4, we obtain that for anyc N,

k—1 Lnl/kafl_l
RS

Example 5 (Construction B, revisited)We finish by reinterpreting our Construction B in terms ofkoo
lattices. Wherk = 2, the rook placemenR (B, B;) is precisely the trace of the rook lattice generated by
(m,m) and(1,2m + 1) which we saw in Example 3(a) (see also Figure 7(a)). As dilipreviously, this
rook lattice provides optimal rook placements in the square

Fork > 3, the (k, km*)-rook placemen(By, ..., Bx_1) produced by construction B is not the trace
of a lattice on{ km* ). However, it is still sufficiently regular to apply Propasit 3.

v(k,n,1) > Lnl/kJ

Lemma 3. For any integers k > 2 and n > 2,
> — .
v(k,n,1) > k {(k) J

Proof. Letm := L(%)URJ Let S denote the set obtained by translations of thekm”)-rook placement
R(By, ..., By_1) by any integer multiple okm”e,. In other words, sincé, is the identity permutation,
S = {(:U,Bfl(x), .. ,Bl;ll(:v)) | T € Z}.

The trace ofS on (n) x (kmF)*~1 projects bijectively on{n) on the first coordinate and surjectively
on (km*) on all other coordinates. A similar analysis as in the prdoPmposition 2 ensures that the

minimum distance of, like the minimum distance aR(By, ..., By_1), is at leastm*~! too. According
to Propositions 2 and 3, we obtain(k, n)-rook placement whose minimum distance is at ldast—'.
Thus,

y(k,n,1) > kmF =k {(%) J . O

10



To summarize, Lemmas 1 and 3 prove Theorem 1 announced intthduction:

Theorem 1. For any integers £ > 2 and n. > 2, the maximal value of the minimum ¢; -distance between two
rooks of a rook placement in a k-dimensional chessboard of size n is bounded by

e
k U%)l/kJ 1 <~(k,n,1) < (n//:l')%—l

2.4 Labelings ofd-dimensional grids

We now extend our results to general dimensipproving Theorem 2 announced in the introduction:

Theorem 2. For any integers k > 2, n > 2, and d > 1, the maximal value of the minimum combined
distance between any two labels for a k-tuple of labelings of the d-dimensional grid of size n is bounded by

k-1 B
g {(E)l/kJ <k m,d) < (nd/(dk)!)l/l(dk) T

In particular, v(k,n,d) = ©(n'~'/*) if k and d are constants.

To generalize the lower bound from a one-dimensional awayd-dimensional grid, we simply treat
the d dimensions independently. The movement of a symbol irkthel labelingsLq, ..., Li_1 in each
direction depends only on the location of the symbol in tHeelamg L, in that particular direction, as
described in the previous Sections. Thus we obtain a lowandbdor thed-dimensional grid that is exactly
the same as the lower bound for the one-dimensional array.

Example 6. Fork = 2, n = 8, andd = 2, construction B yields the two labelings with minimum conmxl
distancet shown in Figure 9.

Figure 9:Two labelingsL, andL; of a square grid, obtained by construction B. For conver@gimcthis example we
label each direction independently by using)? labels, instead ofn? ) labels.

In turn, the upper bound for generkéls obtained by an adapted packing argument. As in the case whe
d = 1, we can represerit labelingsLi, ..., L of ad-dimensional grid{n )¢ by the point configuration
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R(Ly,...,Lg) == {(L7"(2),...,L; ' (2)) | € (n)4} of ((n)4)* ~ (n ). The combined distance be-
tween two labels:, y € (n?) is given by the/;-distance of the corresponding roaks; ! (z), . . . ,L,;l(x))
and (L *(y), ..., Ly ' (y)) of R(Ly,...,Ly). Consequently, ifLy,...,L; arek labelings of(n )¢ with
minimum combined distancé, then the¢;-balls of radiusd/2 centered at the rooks d®(Ly,..., L)
are disjoint and contained in the hypercybei/2,n — 1 + §/2]%. Since each of these balls has volume
5% /(dk)!, this yields the inequality.?6% /(dk)! < (n — 1+ §)?, and thus the upper bound of Theorem 2.

3 Connection to graph isomorphism

In this section, we discuss the generalization of this gnobto labelings of arbitrary graphs. Létbe a
graph onn vertices, and lef' be a set ofx symbols. Define dabeling of the graphG as a bijection that
assigns a distinct symbol il to each vertex iz, and define thelistance between two vertices i as the
number of edges in a shortest path between them.cdimbined distance between two labels,y € S of
thek labelingsLi, ..., L, of G is again defined as the sum of the distance§ iof the vertices labeled by
2 andy in each labeling.

We first prove the following lemma:

Lemma 4. A graph hastwo labelings with combined distance at least 3 if and only if the graph isa subgraph
of its complement.

Proof. We first prove the direct implication. Suppose that a gr&phas two labelingd.; and Ly with
combined distance at lea&t Then any two symbols assigned by one labeling to two adjaegtices inG
must be assigned by the other labeling to two non-adjacetites inG. That is, any two symbols assigned
by one labeling to two adjacent verticesGhmust be assigned by the other labeling to two adjacent esrtic
in the complemen€&’ of G. Thus the two labeling€, and L, specify a bijectionf from the vertices of7

to the vertices of7’ such that two vertices andv are adjacent iii7 only if the corresponding two vertices
f(u) and f(v) are adjacent iri’. ThereforeG is a subgraph of its compleme@t.

We next prove the reverse implication. Supp@sés a subgraph of its compleme6t. Let f be a
bijection from the vertices aff to the vertices ofi’ such that two vertices andv are adjacent g+ only if
the corresponding two verticggwu) and f (v) are adjacent iiiz’. Then in the grapld7, two verticesu andv
are adjacent only if the two verticggw«) and f(v) are non-adjacent. Ldt; and Ly be two labelings of7
such that the symbol assigned to a vertdsy L, is the same as the symbol assigned to the corresponding
vertex f (v) by Lo. Then the combined distance of the two labelidgsand L, is at leas8. O

The problemgraph isomorphism is that of deciding whether two graphs are isomorphic. Twapbs
G1 = (i, Eq) andGe = (Vi, E5) areisomorphic if there is a bijectionf from V3 to V5 such that any
two verticesu andv are adjacent irG; if and only if the corresponding two verticegu) and f(v) are
adjacent inGG,. A graph isself-complementary if it is isomorphic to its complement. It is known that self-
complementary graph recognition is polynomial-time egléwt to graph isomorphism [1]. Observe that a
graph is isomorphic to its complement if and only if

(1) the graph is a subgraph of its complement, and
(2) the graph and its complement have the same number of.edges

Condition (2) can be easily checked in linear time. Togethiéh Lemma 4, this completes the proof of
Theorem 3:

Theorem 3. Deciding whether a graph has two labelings with combined distance at least 3 is at least as
hard as graph isomorphism.
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