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On a dispersion problem in grid labeling

Minghui Jiang∗ Vincent Pilaud‡ Pedro J. Tejada§

July 26, 2011

Abstract

Givenk labelings of a finited-dimensional cubical grid, define thecombined distance between two
labels to be the sum of theℓ1-distance between the two labels in each labeling. We want toconstructk
labelings which maximize the minimum combined distance between any two labels. Whend = 1, this
can be interpreted as placingn non-attacking rooks in ak-dimensional chessboard of sizen in such a
way to maximize the minimumℓ1-distance between any two rooks.Rook placements are also known as
Latin Hypercube Designs in the literature.

In this paper, we revisit this problem with a more geometric approach. Instead of providing explicit
but complicated formulas, we construct rook placements in ak-dimensional chessboard of sizen as
certain lattice-like structures for certain well-chosen values ofn. Then, we extend these constructions to
any values ofn using geometric arguments. With this method, we present a clean and geometric descrip-
tion of the known optimal rook placements in the2-dimensional square grid. Furthermore, we provide
asymptotically optimal constructions ofk labelings ofd-dimensional cubical grids which maximize the
minimum combined distance.

Finally, we discuss the extension of this problem to labelings of an arbitrary graph. We prove that
deciding whether a graph has two labelings with combined distance at least3 is at least as hard as graph
isomorphism.

1 Introduction

LetL1, . . . , Lk bek bijections from the cells of ad-dimensional cubical grid of sizen to a label setS of nd

symbols. Then each symbol inS labelsk cells, one in each of thek labelings. Define thecombined distance
between two symbolsx andy in S as the sum of theℓ1-distances between the two cells labeled byx andy
in each labeling. How to arrange the symbols of thek labelings such that the minimum combined distance
between any two symbols is maximized? We refer to Figure 1 foran example withn = 3 andk = d = 2.

This grid labeling problem was posed at the open problems session of CCCG 2009 [4] by Belén Palop,
who formulated the problem from her research with Zhenghao Zhang in wireless communication. It has
many applications to wireless communication, in particular, permutation code generation [7, Chapter 9]. A
permutation code uses a grid of symbols for each channel whentransmitting data over multiple channels;
transmission errors are more easily detected if the combined distance between any pair of symbols in the
grids is large.
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‡Équipe Combinatoire et Optimisation, Université Pierre et Marie Curie, Paris, France.vpilaud@math.jussieu.fr.
Supported in part by grant MTM2008-04699-C03-02 of the Spanish Ministry of Education and Science.

§Department of Computer Science, Utah State University, Logan, UT 84322, USA.p.tejada@aggiemail.usu.edu.
Supported in part by NSF grant DBI-0743670.

1



Figure 1:Two labelings of a3 × 3 grid. With the first labeling fixed, the second labeling is oneof 840 solutions for
which the minimum combined distance is3.

Throughout the paper, we denote by〈n 〉 the set{0, 1, 2, . . . , n− 1}. A labeling of thed-dimensional
cubical grid of sizen is a bijectionL : 〈n 〉d → 〈nd 〉 which assigns alabel of 〈nd 〉 to eachgrid
cell of 〈n 〉d. Givenk labelingsL1, . . . , Lk of 〈n 〉d, we denote thecombined distance between two la-
belsx, y ∈ 〈nd 〉 by CD(L1, . . . , Lk, x, y) :=

∑k
i=1 ‖L−1

i (x)− L−1
i (y)‖1. Finally, we denote by

γ(k, n, d) := max
L1,...,Lk

min
x 6=y∈〈nd 〉

CD(L1, . . . , Lk, x, y)

the maximum value, among allk-tuples of labelings of thed-dimensional cubical grid of sizen, of the
minimal combined distance between any two distinct labels.

Assume for now that the dimensiond of the grid is fixed to1, that is, we investigatek-tuplesL1, . . . , Lk

of labelings of the1-dimensional array〈n 〉. Considering for each symbolx the point ofRk whoseith coor-
dinate is the position ofx in theith labelingLi, we obtain a set ofn points in ak-dimensional grid of sizen,
such that no two points share a coordinate in any dimension. In other words, a set ofn non-attacking rooks
in a k-dimensional chessboard. We call such a configuration arook placement. Moreover, the combined
distance between two distinct labels in thek labelings of the1-dimensional array is theℓ1-distance between
the two corresponding rooks in the rook placement. Thus,γ(k, n, 1) is precisely the maximal value, among
all rook placements in ak-dimensional chessboard of sizen, of the minimalℓ1-distance between two rooks.

Among results concerning optimal rook placements with respect to differentℓp-distances [2], van Dam
et al. proved thatγ(2, n, 1) =

⌊√
2n+ 2

⌋

. Fork-dimensional chessboards, van Dam et al. [3] proved that
the maximal valueγ(k, n, 1) is at most

⌊

k
3 (n+ 1)

⌋

, but observed that this bound is certainly not optimal.
In these two papers and more generally in the operation research literature, rook placements are referred
as Latin Hypercube Designs [2, 3]. LHDs are useful in obtaining approximation models for black-box
functions that may have too many combinations of input parameters and need to be tested on only a reduced
subset of the combinations. For the sake of understanding, we will prefer the term rook placement rather
than LHD in this article. A dynamic survey on related topics in graph labeling can be found in [5].

In this paper, we revisit the optimal rook placement problemwith a more geometric approach. We
first provide simple and explicit descriptions for optimal rook placements in ak-dimensional chessboard
of sizen, but only for certain values ofn. For these values, our rook placements can be understood geo-
metrically as lattice-like points sets. Then, we use these particular cases to generate good rook placements
for arbitraryn. This approach enables us to focus on friendly values ofn, and thus to avoid unnecessary
technical calculations for generaln. In particular, we present a clean and geometric description of the opti-
mal rook placements presented in [2]. Furthermore, we obtain the following asymptotically tight bounds for
the maximal value of the minimalℓ1-distance between two rooks of a rook placement in thek-dimensional
chessboard of sizen:

Theorem 1. For any integers k ≥ 2 and n ≥ 2,

k

⌊

(n

k

)1/k
⌋k−1

≤ γ(k, n, 1) ≤ n− 1

(n/k!)1/k − 1
.
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With the same techniques, we then generalize these bounds togrid labelings of ad-dimensional cubical
grid, for d ≥ 2:

Theorem 2. For any integers k ≥ 2, n ≥ 2, and d ≥ 1,

k

⌊

(n

k

)1/k
⌋k−1

≤ γ(k, n, d) ≤ n− 1

(nd/(dk)!)1/(dk) − 1
.

In particular, γ(k, n, d) = Θ(n1−1/k) if k and d are constants.

Observe that our lower bounds, in conjunction with the upperbounds, yield a very simpleO(knd)-time
constant-factor approximation algorithm for the optimization problem of maximizing the combined distance
of k labelings of ad-dimensional grid, for any constantk andd.

On the other hand, the problem becomes much more difficult to handle when generalized to the graph
setting. Now letG be a graph ofn vertices, and letS be a set ofn symbols. Define alabeling of the graphG
to be a bijection that assigns a distinct symbol inS to each vertex inG, and define thedistance between two
vertices inG as the number of edges in a shortest path between them. Then define the combined distance of
multiple labelings of a graph in a similar way as that for a grid. We obtain the following theorem:

Theorem 3. Deciding whether a graph has two labelings with combined distance at least 3 is at least as
hard as graph isomorphism.

The paper is organized as follows. In Section 2, we present constructions of labelings with large min-
imum combined distance. We present two purely combinatorial constructions for special values ofn in
Sections 2.1 and 2.2. Using the point of view of rook placements, we then reinterpret and extend these
special labelings to arbitrary values ofn in Section 2.3 and we obtain in particular Theorem 1. Section2.4
generalizes these results to labelings ofd-dimensional grids. Finally, we discuss in Section 3 the gener-
alized problem of maximizing the minimal combined distancein graph labelings, and connect it to graph
isomorphism to prove Theorem 3.

2 Constructions of labelings with large minimum combined distance

We fix an integerk ≥ 2. The aim of this section is to present some combinatorial techniques to construct
k labelings with a large minimum combined distance. We first focus on labelings of1-dimensional arrays,
and present two constructions which are interesting for different reasons:

A. Our first construction yields, for any integerm, ak-tuple of labelings of〈mk 〉 with minimum combined
distancemk−1 − mk−1−1

m−1 . Its interest lies in its simple combinatorial description.

B. Our second construction yields, for any integerm, a k-tuple of labelings of〈 kmk 〉 with minimum
combined distancekmk−1. It is our most efficient construction, and it is proved to be optimal when
k = 2.

Our presentation of these two constructions only produces labelings of〈n 〉 for certain specific values ofn.
To treat all other values ofn, we use the interpretation ofk-tuples of labelings of〈n 〉 in terms of rook
placements in the hypercube〈n 〉k. In this setting, both our constructions can be thought of asthe traces
on 〈n 〉k of lattice-like structures inRk, and a simple geometric construction extends these constructions
to general values ofn. For convenience, we will useL0 as an alias forLk in our descriptions of the two
constructions in Sections 2.1 and 2.2, and refer to thek labelings asL0, . . . , Lk−1 instead ofL1, . . . , Lk.
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2.1 Construction A

We present our first construction only forn = mk andm ≥ 2. Let φ : 〈m 〉k → 〈mk 〉 be the bijection
defined asφ(xk−1, . . . , x0) :=

∑k−1
j=0 xjm

j. The reciprocal bijectionφ−1 associates to an integer its de-
composition in them-ary number system, usingk digits. Observe that we write the least significant digit
to the right to be consistent with the usual conventions. Letσ : 〈m 〉k → 〈m 〉k be the cyclic permutation
defined asσ(xk−1, . . . , x1, x0) := (x0, xk−1, . . . , x1). For0 ≤ i ≤ k− 1, we define a labelingAi of 〈mk 〉
as

Ai := φ ◦ σi ◦ φ−1.

In other words, them-ary decompositions of a label and of its position in the labeling Ai are just cyclically
permuted byσi. Observe that the inverse permutation ofAi is given by

A−1
i = φ ◦ σk−i ◦ φ−1.

Proposition 1. The minimum combined distance of the k labelings A0, . . . , Ak−1 of 〈mk 〉 is bounded by

min
x 6=y∈〈mk 〉

CD(A0, . . . , Ak−1, x, y) ≥ mk−1 − mk−1 − 1

m− 1
.

Proof. Observe first that for any two elements(xk−1, . . . , x0) and (yk−1, . . . , y0) of 〈m 〉k, the distance
between the cellsφ(xk−1, . . . , x0) andφ(yk−1, . . . , y0) in the array〈mk 〉 is at least

|φ(xk−1, . . . , x0)− φ(yk−1, . . . , y0)| ≥ mk−1|xk−1 − yk−1| −
k−2
∑

j=0

mj|xj − yj|.

Consequently, for any two distinct elements(xk−1, . . . , x0) and (yk−1, . . . , y0) of 〈m 〉k, the com-
bined distanceCD(A, x, y) := CD(A0, . . . , Ak−1, x, y) between the labelsx := φ(xk−1, . . . , x0) and
y := φ(yk−1, . . . , y0) in thek labelingsA0, . . . , Ak−1 is at least

CD(A, x, y) =
k−1
∑

i=0

∣

∣A−1
i (x)−A−1

i (y)
∣

∣

=

k−1
∑

i=0

|φ(xk−i−1, . . . , x0, xk−1, . . . , xk−i)− φ(yk−i−1, . . . , y0, yk−1, . . . , yk−i)|

≥
k−1
∑

i=0



mk−1|xk−i−1 − yk−i−1| −
k−2
∑

j=0

mj |x(j−i) mod k − y(j−i) mod k|





=

(

k−1
∑

i=0

|xi − yi|
)



mk−1 −
k−2
∑

j=0

mj





≥ mk−1 − mk−1 − 1

m− 1
.

Example 1. Fork = 2 andm = 4, this construction yields the two labelings of〈 16 〉 with minimum com-
bined distance5 shown in Figure 2. Fork = 3 andm = 2, this construction yields the three labelings of〈 8 〉
with minimum combined distance6 shown in Figure 3. The numbers on top are them-ary decompositions
of the numbers in the array cells.
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1,0 2,2 2,3 3,2

4 5 6 73 8 12 13 14 159 11101 20

2,0 3,33,13,01,20,30,20,10,0 1,31,1 2,1

A0

2,00,0 3,11,1

1 5 9 1312 2 3 7 11 1514104

2,2 3,2 2,3

80 6

1,20,2 3,31,30,1 0,32,13,01,0

A1

Figure 2:The two labelingsA0 andA1 provided by construction A whenn = 16, k = 2 andm = 4.

2

1,0,0

0

1,0,1 1,1,10,0,0 0,0,1 0,1,0 0,1,1 1,1,0

4 5 6 71 3

A0

0,0,0 0,1,0

5 2 6 30 14

1,1,1

7

0,1,11,0,10,0,11,0,0 1,1,0

A1

0,0,1 1,1,1

6 1 3 50 42 7

1,1,01,0,00,1,00,0,0 0,1,1 1,0,1

A2

Figure 3:The three labelingsA0, A1, andA2 provided by construction A whenn = 8, k = 3 andm = 2.

2.2 Construction B

We present our second construction only forn = kmk andm ≥ 2. For a fixed integerm we constructk
labelingsB0, . . . , Bk−1 of the array〈 kmk 〉. To construct the labelingBi, we first assign a colorαi(x) to
each cellx of 〈 kmk 〉 such that

αi(x) :=
⌊ x

mi−1

⌋

mod m.

Intuitively, for 1 ≤ i ≤ k − 1, the cellx is colored byαi(x) according to itsith least significant digit in its
m-ary decomposition. Observe that the colorα0(x) is always equal to0. The labelingBi is then defined for
all cellsx ∈ 〈 kmk 〉 by

Bi(x) :=
(

x− kmk−1αi(x)
)

mod kmk.

In other words, for all0 ≤ p ≤ m − 1, the labelingBi cyclically permutes the set of all cellsx with
color αi(x) = p, and the amplitude of this permutation is proportional top. In particular, we have
αi(x) = αi(Bi(x)) and it is easy to describe the inverse permutation ofBi for all labelsx ∈ 〈 kmk 〉 as

B−1
i (x) =

(

x+ kmk−1αi(x)
)

mod kmk.

Note thatB0 is the identity permutation sinceα0(x) = 0 for all x ∈ 〈 kmk 〉.
Proposition 2. The minimum combined distance of the k labelings B0, . . . , Bk−1 of 〈 kmk 〉 is bounded by

min
x 6=y∈〈 kmk 〉

CD(B0, . . . , Bk−1, x, y) ≥ kmk−1.

Proof. Let x andy be two distinct labels of〈 kmk 〉. For0 ≤ i ≤ k − 1, write

B−1
i (x) = x+ kmk−1αi(x) + rikm

k

and B−1
i (y) = y + kmk−1αi(y) + sikm

k

for some integersri andsi. We consider two cases:

(1) If αi(x) = αi(y) for all i, thenx− y is a non-zero multiple ofmk−1. Thus, for alli, the difference
B−1

i (x)−B−1
i (y) = x− y + (ri − si)km

k is also a non-zero multiple ofmk−1, and

CD(B0, . . . , Bk−1, x, y) =

k−1
∑

i=0

∣

∣B−1
i (x)−B−1

i (y)
∣

∣ ≥ kmk−1.
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(2) Otherwise,αj(x) 6= αj(y) for somej 6= 0. Then

CD(B0, . . . , Bk−1, x, y) =

k−1
∑

i=0

∣

∣B−1
i (x)−B−1

i (y)
∣

∣ ≥ |B−1
j (x)−B−1

j (y)|+ |B−1
0 (x)−B−1

0 (y)|

= |B−1
j (x)−B−1

j (y)|+ |x− y| ≥ |B−1
j (x)−B−1

j (y)− x+ y|
= kmk−1|αj(x)− αj(y) + (rj − sj)m| ≥ kmk−1.

The last inequality holds since1 ≤ |αj(x)− αj(y)| ≤ m− 1.

Example 2. For k = 2 andm = 3, this construction yields the two labelings of〈 18 〉 with minimum
combined distance6 shown in Figure 4. Fork = 3 andm = 2, this construction yields the three labelings
of 〈 24 〉 with minimum combined distance12 shown in Figure 5. The numbers on top are the three least
significant digits of them-ary decompositions of the array cell indices.

17

1,2,1 1,2,20,1,1 0,1,2 0,2,10,0,1 0,0,2 0,1,0 0,2,0 1,1,0 1,1,1 1,2,00,2,2 1,0,0 1,0,1 1,0,2 1,1,20,0,0

3 4 5 60 21 7 11 12 13 148 109 15 16
B0

9 15 57 1013 16

1,2,1 1,2,20,1,1 0,1,2 0,2,10,0,1 0,0,2 0,1,0 0,2,0 1,1,0 1,1,1 1,2,00,2,2 1,0,0 1,0,1 1,0,2 1,1,20,0,0

3 11 60 8 1 17 12 214 4
B1

Figure 4:The two labelingsB0 andB1 provided by construction B whenn = 18, k = 2 andm = 3.

19

0,0,0 0,0,11,0,0 1,0,1 1,1,10,0,1 0,1,1 1,1,0 1,0,0 1,0,1 1,1,10,0,0 0,0,1 0,1,0 0,1,1 1,1,00,0,0 1,1,00,1,1 1,0,0 1,0,10,1,00,1,0 1,1,1

3 4 5 60 21 7 11 12 13 148 109 15 16 17 21 22 2318 20
B0

1021 3 16 5 9 22 1118 207

0,0,0

13

0,0,11,0,0 1,0,1 1,1,10,0,1 0,1,1 1,1,0 1,0,0 1,0,1 1,1,10,0,0 0,0,1 0,1,0 0,1,1 1,1,00,0,0 1,1,00,1,1 1,0,0 1,0,10,1,00,1,0 1,1,1

15 4 17 60 2 19 23 12 1 148
B1

229 3 16 17 21 10 116 207

0,0,0

18

0,0,11,0,0 1,0,1 1,1,10,0,1 0,1,1 1,1,0 1,0,0 1,0,1 1,1,10,0,0 0,0,1 0,1,0 0,1,1 1,1,00,0,0 1,1,00,1,1 1,0,0 1,0,10,1,00,1,0 1,1,1

15 4 50 141 19 23 12 13 28
B2

Figure 5:The three labelingsB0, B1, andB2 provided by construction B whenn = 24, k = 3 andm = 2.

Remark 1. Both constructions A and B can be generalized to arbitraryn. In the next subsection we present
a unified view of the two constructions and provide a conceptually simple meta-method for such generaliza-
tions.

2.3 Rook placements

In this section, we interpret the minimum combined distanceof k labelings of a1-dimensional array〈n 〉 as
the minimum distance in a rook placement in thek-dimensional hypercube〈n 〉k. Let us first state a precise
definition:

Definition 1. A (k, n)-rook placementis a subset R of the k-dimensional hypercube 〈n 〉k with precisely
one element in the subspace 〈n 〉p−1 × {q} × 〈n 〉k−p for each 1 ≤ p ≤ k and 0 ≤ q ≤ n− 1.

In other words, a(k, n)-rook placement is a maximal set of non-attacking rooks in〈n 〉k, where a rook
positioned in(x1, . . . , xk) can attack the subspaces〈n 〉p−1×{xp}×〈n 〉k−p for 1 ≤ p ≤ k (see Figure 6).
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Figure 6:The affine spaces a rook can attack.

There is an immediate correspondence betweenk-tuples of labelings of the1-dimensional array〈n 〉
and(k, n)-rook placements:

• givenk labelingsL1, . . . , Lk of 〈n 〉, the subsetR(L1, . . . , Lk) :=
{

(L−1
1 (x), . . . , L−1

k (x))
∣

∣ x ∈ 〈n 〉
}

of 〈n 〉k is a(k, n)-rook placement;

• reciprocally, a(k, n)-rook placementR hasn rooks, whosepth coordinates are all distinct (for any
fixed 1 ≤ p ≤ k). If we arbitrarily label the rooks ofR from 0 to n − 1, the order of the rooks
according to theirpth coordinate defines a labelingLp(R) of 〈n 〉.

Observe that we do not change the rook placement when permuting the labels of its rooks: for any
permutationsL1, . . . , Lk andτ of 〈n 〉, we haveR(τ ◦L1, . . . , τ ◦Lk) = R(L1, . . . , Lk). We can therefore
assume thatL1 is the identity permutation. Consequently, the number of(k, n)-rook placements is(n!)k−1.

Furthermore, the above correspondence betweenk-tuples of labelings of〈n 〉 and (k, n)-rook place-
ments preserves metric properties: the combined distance between two labelsx and y in k labelings
L1, . . . , Lk of 〈n 〉 is precisely theℓ1-distance between the two corresponding rooks(L−1

1 (x), . . . , L−1
k (x))

and (L−1
1 (y), . . . , L−1

k (y)) in the (k, n)-rook placementR(L1, . . . , Lk). We call minimum distance of a
finite point setS of Rk the minimum pairwiseℓ1-distance between two points ofS.

To illustrate the interest of this geometric point of view, let us first prove the upper bound of Theorem 1:

Lemma 1. For any integers k ≥ 2 and n ≥ 2,

γ(k, n, 1) ≤ n− 1

(n/k!)1/k − 1
.

Proof. We prove the result in the setting of rook placements by a simple volume argument. Consider a
(k, n)-rook placementR, and letδ be the minimum distance between two rooks ofR. Then theℓ1-balls of
radiusδ/2 centered at the rooks ofR are disjoint and contained in the cube[−δ/2, n − 1 + δ/2]k . Since
each ball has volumeδk/k!, this yields the inequalitynδk/k! ≤ (n− 1 + δ)k, and thus the upper bound of
the lemma.

To prove the lower bound of Theorem 1, we will use more generalconfigurations of integer points inRk

to obtain(k, n)-rook placements with large minimum distance, for all values ofn. The principal ingredient
of our constructions is the following proposition:

Proposition 3. If there exists a set of n integer points in Z
k with minimum distance δ such that the projection

of these points on each axis is an interval of consecutive integers (with possible repetitions), then there exists
a (k, n)-rook placement with minimum distance δ.

7



Proof. Let S be such a set ofn integers. We label the points ofS arbitrarily from 0 to n − 1. For each
direction i, we then construct a labelingLi of 〈n 〉 which respects the order of theith coordinate of the
points ofS, and where points with equalith coordinate are ordered arbitrarily. Since the projection of S in
each direction covered an interval of integers, the distance between two points in each direction can only
increase during this construction, and the minimum distance of the(k, n)-rook placementR(L1, . . . , Lk) is
at least that ofS.

A simple way to obtain such point setsS on which we can easily control the minimum distance is to
use lattices ofRk. Remember that alattice of Rk is the set of integer linear combinations ofk linearly
independent vectors ofRk; see [6, Chapter 1]. We call a(k, n)-rook lattice any sublatticeL of the integer
latticeZ

k whose traceL ∩ 〈n 〉k on the hypercube〈n 〉k is a (k, n)-rook placement and which contains
ne0 (e0 is the first vector of the canonical basis ofR

k). Applying Proposition 3, a good(k, ν)-rook lattice
provides good(k, n)-rook placements not only forn = ν, but for any larger value ofn:

Proposition 4. If there exists a (k, ν)-rook lattice with minimum distance δ, then there exists a (k, n)-rook
placement with minimum distance δ for all n ≥ ν − 1.

Proof. LetL be a(k, ν)-rook lattice of minimum distanceδ. Forn = ν−1, consider the point configuration
L∩{1, . . . , ν−1}k: it has minimum distanceδ and projects bijectively on{1, . . . , ν−1} in each direction.
For n ≥ ν, consider the trace ofL on 〈n 〉 × 〈 ν 〉k−1. Sincene0 ∈ L, this trace projects bijectively
on 〈n 〉 in the first direction and surjectively on〈 ν 〉 in all the other directions. The result thus follows from
Proposition 3.

In the remaining of this section, we first use this result to reinterpret van Dam et al.’s rook placements in
the square [2] in a neat and geometric way. Our description provides the same rook placements and avoids
tedious and technical calculations. We then apply Proposition 4 to extend the constructions of Sections 2.1
and 2.2 to any value ofn.

Example 3(Rook placements in the square). We consider two families of lattices in the plane (see Figure7):

(a) The lattice generated by(m,m) and(1, 2m+1) is a(2, 2m2)-rook lattice with minimum distance2m.

(b) The lattice generated by(m+1,m) and(1, 2m+1) is a(2, 2m2+2m+1)-rook lattice with minimum
distance2m+ 1.

Note that the trace of these rook lattices on their corresponding square gives precisely the rook placements
of [2] (up to a reflection with respect to the vertical axis).

From these two families and using Proposition 4, we obtain ina much simpler way the lower bound on
γ(2, n, 1) in [2]:

Proposition 5. For any integer n, γ(2, n, 1) ≥
⌊√

2n+ 2
⌋

.

Proof. Let m be any integer. Since there exists a(2, 2m2)-rook lattice with minimum distance2m, Propo-
sition 4 implies for any integern with 2m2 − 1 ≤ n ≤ 2m2 + 2m− 1 that

⌊√
2n+ 2

⌋

= 2m ≤ γ(2, n, 1).
Similarly, since there exists a(2, 2m2 +2m+1)-rook lattice with minimum distance2m+1, Proposition 4
implies for any integern with 2m2 + 2m ≤ n ≤ 2m2 + 4m that

⌊√
2n+ 2

⌋

= 2m+ 1 ≤ γ(2, n, 1).

We have seen in Lemma 1 thatγ(2, n, 1) is bounded by(n − 1)/(
√

n/2 − 1). Together with Proposi-
tion 5, this implies thatγ(2, n, 1) ∼

√
2n. In fact, using a similar but slightly refined packing argument as

in our proof of Lemma 1, van Dam et al. [2] proved that the boundin Proposition 5 is in fact the exact value
of γ(2, n, 1):

γ(2, n, 1) =
⌊√

2n+ 2
⌋

.
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Figure 7:Examples of two optimal families of rook lattices in the square. (a) Lattice generated by the vectors(m,m)
and(1, 2m+ 1), for m = 3. (b) Lattice generated by the vectors(m+ 1,m) and(1, 2m+ 1), for m = 3.

Example 4 (Construction A, revisited). Denote by(e0, . . . , ek−1) the canonical basis ofRk. Consider the
latticeU(k,m) of Rk generated by the vectorsuj :=

∑k−1
i=0 m(j+i) mod kei, for 0 ≤ j ≤ k − 1. In other

words, the matrix whose column vectors areu0, . . . , uk−1 is a circulant matrixM(k,m) whose first row is
(1,m, . . . ,mk−1). See Figure 8 for an example.

Lemma 2. The (k,mk)-rook placement R(A0, . . . , Ak−1) is formed by the points of U(k,m) located in the
hypercube 〈mk − 1 〉k together with the point (mk − 1)

∑k−1
i=0 ei.

Proof. For anyx := φ(xk−1, . . . , x0) ∈ 〈mk 〉, the rook labeled byx in R(A0, . . . , Ak−1) is positioned at

k−1
∑

i=0

A−1
i (x)ei =

k−1
∑

i=0

(

k−1
∑

ℓ=0

x(ℓ−i) mod k m
ℓ

)

ei =
k−1
∑

i=0





k−1
∑

j=0

xj m
(j+i) mod k



 ei

=
k−1
∑

j=0

xj

(

k−1
∑

i=0

m(j+i) mod kei

)

=
k−1
∑

j=0

xjuj ,

and thus is an element of the latticeU(k,m). For anyi, we have0 ≤ A−1
i (x) ≤ mk − 1 and the last

inequality is an equality if and only ifx = mk − 1 = φ(m− 1,m− 1, . . . ,m− 1). Thus, the rook labeled
by x is either inU(k,m) ∩ 〈mk − 1 〉k, or equals(mk − 1)

∑k−1
i=0 ei.

For the reverse inclusion, we use a volume argument. Define the shifted hypercubeC :=
[

−1
2 ,m

k − 3
2

]k

and the corresponding tilingT := C +
∑k−1

i=0 Z (mk − 1)ei of the spaceRk. By inversion of the circulant
matrixM(k,m), the vector(mk−1)ei = mu(i−1) mod k−ui is in the latticeU(k,m) for all 0 ≤ i ≤ k−1.
Consequently, any tile ofT contains the same number of points of the latticeU(k,m). Since the boundary of
C contains no point ofU(k,m), it follows that the number of points inC is the quotient of its volume by the
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Figure 8:The lattice corresponding to the example in Figure 2 of construction A, forn = 16, k = 2 andm = 4.

volume of the fundamental parallelepiped of the latticeU(k,m). The former clearly equals(mk−1)k while
the later is the determinant of the circulant matrixM(k,m), that is,(mk − 1)k−1. Consequently, the lattice
U(k,m) has preciselymk − 1 points inC, hence in〈mk − 1 〉k. This implies the reverse inclusion.

In other words,U(k,m) is a(k,mk)-rook lattice whose minimum distance is at leastmk−1 − mk−1−1
m−1 .

Applying Proposition 4, we obtain that for anyn ∈ N,

γ(k, n, 1) ≥
⌊

n1/k
⌋k−1

−
⌊

n1/k
⌋k−1 − 1

⌊

n1/k
⌋

− 1
.

Example 5 (Construction B, revisited). We finish by reinterpreting our Construction B in terms of rook
lattices. Whenk = 2, the rook placementR(B0, B1) is precisely the trace of the rook lattice generated by
(m,m) and(1, 2m+1) which we saw in Example 3(a) (see also Figure 7(a)). As discussed previously, this
rook lattice provides optimal rook placements in the square.

Fork ≥ 3, the(k, kmk)-rook placementR(B0, . . . , Bk−1) produced by construction B is not the trace
of a lattice on〈 kmk 〉. However, it is still sufficiently regular to apply Proposition 3.

Lemma 3. For any integers k ≥ 2 and n ≥ 2,

γ(k, n, 1) ≥ k

⌊

(n

k

)1/k
⌋k−1

.

Proof. Let m :=
⌊

(

n
k

)1/k
⌋

. Let S denote the set obtained by translations of the(k, kmk)-rook placement

R(B0, . . . , Bk−1) by any integer multiple ofkmke0. In other words, sinceB0 is the identity permutation,

S =
{

(x,B−1
1 (x), . . . , B−1

k−1(x))
∣

∣ x ∈ Z
}

.

The trace ofS on 〈n 〉 × 〈 kmk 〉k−1 projects bijectively on〈n 〉 on the first coordinate and surjectively
on 〈 kmk 〉 on all other coordinates. A similar analysis as in the proof of Proposition 2 ensures that the
minimum distance ofS, like the minimum distance ofR(B0, . . . , Bk−1), is at leastkmk−1 too. According
to Propositions 2 and 3, we obtain a(k, n)-rook placement whose minimum distance is at leastkmk−1.
Thus,

γ(k, n, 1) ≥ kmk−1 = k

⌊

(n

k

)1/k
⌋k−1

.
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To summarize, Lemmas 1 and 3 prove Theorem 1 announced in the introduction:

Theorem 1. For any integers k ≥ 2 and n ≥ 2, the maximal value of the minimum ℓ1-distance between two
rooks of a rook placement in a k-dimensional chessboard of size n is bounded by

k

⌊

(n

k

)1/k
⌋k−1

≤ γ(k, n, 1) ≤ n− 1

(n/k!)1/k − 1
.

2.4 Labelings ofd-dimensional grids

We now extend our results to general dimensiond, proving Theorem 2 announced in the introduction:

Theorem 2. For any integers k ≥ 2, n ≥ 2, and d ≥ 1, the maximal value of the minimum combined
distance between any two labels for a k-tuple of labelings of the d-dimensional grid of size n is bounded by

k

⌊

(n

k

)1/k
⌋k−1

≤ γ(k, n, d) ≤ n− 1

(nd/(dk)!)1/(dk) − 1
.

In particular, γ(k, n, d) = Θ(n1−1/k) if k and d are constants.

To generalize the lower bound from a one-dimensional array to ad-dimensional grid, we simply treat
thed dimensions independently. The movement of a symbol in thek − 1 labelingsL1, . . . , Lk−1 in each
direction depends only on the location of the symbol in the labeling L0 in that particular direction, as
described in the previous Sections. Thus we obtain a lower bound for thed-dimensional grid that is exactly
the same as the lower bound for the one-dimensional array.

Example 6. Fork = 2, n = 8, andd = 2, construction B yields the two labelings with minimum combined
distance4 shown in Figure 9.

7,03,0

0,7 1,7 2,7 4,7 5,7 6,7 7,73,7

0,6 1,6 2,6 4,6 5,6 6,6 7,63,6

0,5 1,5 2,5 4,5 5,5 6,5 7,53,5

0,4 1,4 2,4 4,4 5,4 6,4 7,43,4

0,3 1,3 2,3 4,3 5,3 6,3 7,33,3

0,2 1,2 2,2 4,2 5,2 6,2 7,23,2

0,1 1,1 2,1 4,1 5,1 6,1 7,13,1

0,0 1,0 2,0 4,0 5,0 6,0

L0

6,6

4,4

0,3 2,3 4,3 1,3 6,3 3,37,3

0,6 5,6 2,6 4,6 1,6 3,67,6

0,1 5,1 2,1 4,1 1,1 6,1 3,17,1

0,4 5,4 2,4 1,4 6,4 3,47,4

0,7 2,7 4,7 6,7 3,77,7

0,2 5,2 2,2 1,2 6,2 3,27,2

0,5 2,5 4,5 1,5 6,5 3,57,5

0,0 5,0 2,0 4,0 1,0 6,0 3,07,0

5,5

5,7

5,3

4,2

1,7

L1

Figure 9:Two labelingsL0 andL1 of a square grid, obtained by construction B. For convenience, in this example we
label each direction independently by using〈n 〉d labels, instead of〈nd 〉 labels.

In turn, the upper bound for generald is obtained by an adapted packing argument. As in the case when
d = 1, we can representk labelingsL1, . . . , Lk of a d-dimensional grid〈n 〉d by the point configuration
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R(L1, . . . , Lk) :=
{

(L−1
1 (x), . . . , L−1

k (x))
∣

∣ x ∈ 〈n 〉d
}

of (〈n 〉d)k ≃ 〈n 〉dk. The combined distance be-
tween two labelsx, y ∈ 〈nd 〉 is given by theℓ1-distance of the corresponding rooks(L−1

1 (x), . . . , L−1
k (x))

and (L−1
1 (y), . . . , L−1

k (y)) of R(L1, . . . , Lk). Consequently, ifL1, . . . , Lk arek labelings of〈n 〉d with
minimum combined distanceδ, then theℓ1-balls of radiusδ/2 centered at the rooks ofR(L1, . . . , Lk)
are disjoint and contained in the hypercube[−δ/2, n − 1 + δ/2]dk . Since each of these balls has volume
δdk/(dk)!, this yields the inequalityndδdk/(dk)! ≤ (n− 1+ δ)dk, and thus the upper bound of Theorem 2.

3 Connection to graph isomorphism

In this section, we discuss the generalization of this problem to labelings of arbitrary graphs. LetG be a
graph onn vertices, and letS be a set ofn symbols. Define alabeling of the graphG as a bijection that
assigns a distinct symbol inS to each vertex inG, and define thedistance between two vertices inG as the
number of edges in a shortest path between them. Thecombined distance between two labelsx, y ∈ S of
thek labelingsL1, . . . , Lk of G is again defined as the sum of the distances inG of the vertices labeled by
x andy in each labeling.

We first prove the following lemma:

Lemma 4. A graph has two labelings with combined distance at least 3 if and only if the graph is a subgraph
of its complement.

Proof. We first prove the direct implication. Suppose that a graphG has two labelingsL1 andL2 with
combined distance at least3. Then any two symbols assigned by one labeling to two adjacent vertices inG
must be assigned by the other labeling to two non-adjacent vertices inG. That is, any two symbols assigned
by one labeling to two adjacent vertices inG must be assigned by the other labeling to two adjacent vertices
in the complementG′ of G. Thus the two labelingsL1 andL2 specify a bijectionf from the vertices ofG
to the vertices ofG′ such that two verticesu andv are adjacent inG only if the corresponding two vertices
f(u) andf(v) are adjacent inG′. ThereforeG is a subgraph of its complementG′.

We next prove the reverse implication. SupposeG is a subgraph of its complementG′. Let f be a
bijection from the vertices ofG to the vertices ofG′ such that two verticesu andv are adjacent inG only if
the corresponding two verticesf(u) andf(v) are adjacent inG′. Then in the graphG, two verticesu andv
are adjacent only if the two verticesf(u) andf(v) are non-adjacent. LetL1 andL2 be two labelings ofG
such that the symbol assigned to a vertexv by L1 is the same as the symbol assigned to the corresponding
vertexf(v) by L2. Then the combined distance of the two labelingsL1 andL2 is at least3.

The problemgraph isomorphism is that of deciding whether two graphs are isomorphic. Two graphs
G1 = (V1, E1) andG2 = (V2, E2) are isomorphic if there is a bijectionf from V1 to V2 such that any
two verticesu andv are adjacent inG1 if and only if the corresponding two verticesf(u) andf(v) are
adjacent inG2. A graph isself-complementary if it is isomorphic to its complement. It is known that self-
complementary graph recognition is polynomial-time equivalent to graph isomorphism [1]. Observe that a
graph is isomorphic to its complement if and only if

(1) the graph is a subgraph of its complement, and

(2) the graph and its complement have the same number of edges.

Condition (2) can be easily checked in linear time. Togetherwith Lemma 4, this completes the proof of
Theorem 3:

Theorem 3. Deciding whether a graph has two labelings with combined distance at least 3 is at least as
hard as graph isomorphism.
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