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On a dispersion problem in grid labeling

Given k labelings of a finite d-dimensional cubical grid, define the combined distance between two labels to be the sum of the ℓ 1 -distance between the two labels in each labeling. We want to construct k labelings which maximize the minimum combined distance between any two labels. When d = 1, this can be interpreted as placing n non-attacking rooks in a k-dimensional chessboard of size n in such a way to maximize the minimum ℓ 1 -distance between any two rooks. Rook placements are also known as Latin Hypercube Designs in the literature.

In this paper, we revisit this problem with a more geometric approach. Instead of providing explicit but complicated formulas, we construct rook placements in a k-dimensional chessboard of size n as certain lattice-like structures for certain well-chosen values of n. Then, we extend these constructions to any values of n using geometric arguments. With this method, we present a clean and geometric description of the known optimal rook placements in the 2-dimensional square grid. Furthermore, we provide asymptotically optimal constructions of k labelings of d-dimensional cubical grids which maximize the minimum combined distance.

Finally, we discuss the extension of this problem to labelings of an arbitrary graph. We prove that deciding whether a graph has two labelings with combined distance at least 3 is at least as hard as graph isomorphism.

Introduction

Let L 1 , . . . , L k be k bijections from the cells of a d-dimensional cubical grid of size n to a label set S of n d symbols. Then each symbol in S labels k cells, one in each of the k labelings. Define the combined distance between two symbols x and y in S as the sum of the ℓ 1 -distances between the two cells labeled by x and y in each labeling. How to arrange the symbols of the k labelings such that the minimum combined distance between any two symbols is maximized? We refer to Figure 1 for an example with n = 3 and k = d = 2.

This grid labeling problem was posed at the open problems session of CCCG 2009 [START_REF] Demaine | Open problems from CCCG 2009[END_REF] by Belén Palop, who formulated the problem from her research with Zhenghao Zhang in wireless communication. It has many applications to wireless communication, in particular, permutation code generation [START_REF] Tse | Fundamentals of Wireless Communication[END_REF]Chapter 9]. A permutation code uses a grid of symbols for each channel when transmitting data over multiple channels; transmission errors are more easily detected if the combined distance between any pair of symbols in the grids is large. the maximum value, among all k-tuples of labelings of the d-dimensional cubical grid of size n, of the minimal combined distance between any two distinct labels.

Assume for now that the dimension d of the grid is fixed to 1, that is, we investigate k-tuples L 1 , . . . , L k of labelings of the 1-dimensional array n . Considering for each symbol x the point of R k whose ith coordinate is the position of x in the ith labeling L i , we obtain a set of n points in a k-dimensional grid of size n, such that no two points share a coordinate in any dimension. In other words, a set of n non-attacking rooks in a k-dimensional chessboard. We call such a configuration a rook placement. Moreover, the combined distance between two distinct labels in the k labelings of the 1-dimensional array is the ℓ 1 -distance between the two corresponding rooks in the rook placement. Thus, γ(k, n, 1) is precisely the maximal value, among all rook placements in a k-dimensional chessboard of size n, of the minimal ℓ 1 -distance between two rooks.

Among results concerning optimal rook placements with respect to different ℓ p -distances [START_REF] Van Dam | Maximin Latin hypercube designs in two dimensions[END_REF], van Dam et al. proved that γ(2, n, 1) = √ 2n + 2 . For k-dimensional chessboards, van Dam et al. [START_REF] Van Dam | Bounds for maximin Latin hypercube designs[END_REF] proved that the maximal value γ(k, n, 1) is at most k 3 (n + 1) , but observed that this bound is certainly not optimal. In these two papers and more generally in the operation research literature, rook placements are referred as Latin Hypercube Designs [START_REF] Van Dam | Maximin Latin hypercube designs in two dimensions[END_REF][START_REF] Van Dam | Bounds for maximin Latin hypercube designs[END_REF]. LHDs are useful in obtaining approximation models for black-box functions that may have too many combinations of input parameters and need to be tested on only a reduced subset of the combinations. For the sake of understanding, we will prefer the term rook placement rather than LHD in this article. A dynamic survey on related topics in graph labeling can be found in [START_REF] Gallian | A dynamic survey of graph labeling[END_REF].

In this paper, we revisit the optimal rook placement problem with a more geometric approach. We first provide simple and explicit descriptions for optimal rook placements in a k-dimensional chessboard of size n, but only for certain values of n. For these values, our rook placements can be understood geometrically as lattice-like points sets. Then, we use these particular cases to generate good rook placements for arbitrary n. This approach enables us to focus on friendly values of n, and thus to avoid unnecessary technical calculations for general n. In particular, we present a clean and geometric description of the optimal rook placements presented in [START_REF] Van Dam | Maximin Latin hypercube designs in two dimensions[END_REF]. Furthermore, we obtain the following asymptotically tight bounds for the maximal value of the minimal ℓ 1 -distance between two rooks of a rook placement in the k-dimensional chessboard of size n:

Theorem 1. For any integers k ≥ 2 and n ≥ 2, k n k 1/k k-1 ≤ γ(k, n, 1) ≤ n -1 (n/k!) 1/k -1 .
With the same techniques, we then generalize these bounds to grid labelings of a d-dimensional cubical grid, for d ≥ 2: Theorem 2. For any integers k ≥ 2, n ≥ 2, and d ≥ 1,

k n k 1/k k-1 ≤ γ(k, n, d) ≤ n -1 (n d /(dk)!) 1/(dk) -1 .
In particular, γ(k, n, d) = Θ(n 1-1/k ) if k and d are constants.

Observe that our lower bounds, in conjunction with the upper bounds, yield a very simple O(kn d )-time constant-factor approximation algorithm for the optimization problem of maximizing the combined distance of k labelings of a d-dimensional grid, for any constant k and d.

On the other hand, the problem becomes much more difficult to handle when generalized to the graph setting. Now let G be a graph of n vertices, and let S be a set of n symbols. Define a labeling of the graph G to be a bijection that assigns a distinct symbol in S to each vertex in G, and define the distance between two vertices in G as the number of edges in a shortest path between them. Then define the combined distance of multiple labelings of a graph in a similar way as that for a grid. We obtain the following theorem: Theorem 3. Deciding whether a graph has two labelings with combined distance at least 3 is at least as hard as graph isomorphism.

The paper is organized as follows. In Section 2, we present constructions of labelings with large minimum combined distance. We present two purely combinatorial constructions for special values of n in Sections 2.1 and 2.2. Using the point of view of rook placements, we then reinterpret and extend these special labelings to arbitrary values of n in Section 2.3 and we obtain in particular Theorem 1. Section 2.4 generalizes these results to labelings of d-dimensional grids. Finally, we discuss in Section 3 the generalized problem of maximizing the minimal combined distance in graph labelings, and connect it to graph isomorphism to prove Theorem 3.

Constructions of labelings with large minimum combined distance

We fix an integer k ≥ 2. The aim of this section is to present some combinatorial techniques to construct k labelings with a large minimum combined distance. We first focus on labelings of 1-dimensional arrays, and present two constructions which are interesting for different reasons: A. Our first construction yields, for any integer m, a k-tuple of labelings of m k with minimum combined distance m k-1 -m k-1 -1 m-1 . Its interest lies in its simple combinatorial description.

B. Our second construction yields, for any integer m, a k-tuple of labelings of km k with minimum combined distance km k-1 . It is our most efficient construction, and it is proved to be optimal when k = 2.

Our presentation of these two constructions only produces labelings of n for certain specific values of n.

To treat all other values of n, we use the interpretation of k-tuples of labelings of n in terms of rook placements in the hypercube n k . In this setting, both our constructions can be thought of as the traces on n k of lattice-like structures in R k , and a simple geometric construction extends these constructions to general values of n. For convenience, we will use L 0 as an alias for L k in our descriptions of the two constructions in Sections 2.1 and 2.2, and refer to the k labelings as L 0 , . . . , L k-1 instead of L 1 , . . . , L k .

Construction A

We present our first construction only for n = m k and m ≥ 2. Let φ : m k → m k be the bijection defined as φ(x k-1 , . . . , x 0 ) := k-1 j=0 x j m j . The reciprocal bijection φ -1 associates to an integer its decomposition in the m-ary number system, using k digits. Observe that we write the least significant digit to the right to be consistent with the usual conventions. Let σ : m k → m k be the cyclic permutation defined as σ(x k-1 , . . . , x 1 , x 0 ) := (x 0 , x k-1 , . . . , x 1 ). For 0

≤ i ≤ k -1, we define a labeling A i of m k as A i := φ • σ i • φ -1 .
In other words, the m-ary decompositions of a label and of its position in the labeling A i are just cyclically permuted by σ i . Observe that the inverse permutation of A i is given by

A -1 i = φ • σ k-i • φ -1 . Proposition 1. The minimum combined distance of the k labelings A 0 , . . . , A k-1 of m k is bounded by min x =y∈ m k CD(A 0 , . . . , A k-1 , x, y) ≥ m k-1 - m k-1 -1 m -1 .
Proof. Observe first that for any two elements (x k-1 , . . . , x 0 ) and (y k-1 , . . . , y 0 ) of m k , the distance between the cells φ(x k-1 , . . . , x 0 ) and φ(y k-1 , . . . , y 0 ) in the array m k is at least

|φ(x k-1 , . . . , x 0 ) -φ(y k-1 , . . . , y 0 )| ≥ m k-1 |x k-1 -y k-1 | - k-2 j=0 m j |x j -y j |.
Consequently, for any two distinct elements (x k-1 , . . . , x 0 ) and (y k-1 , . . . , y 0 ) of m k , the combined distance CD(A, x, y) := CD(A 0 , . . . , A k-1 , x, y) between the labels x := φ(x k-1 , . . . , x 0 ) and y := φ(y k-1 , . . . , y 0 ) in the k labelings A 0 , . . . , A k-1 is at least 

CD(A, x, y) = k-1 i=0 A -1 i (x) -A -1 i (y) = k-1 i=0 |φ(x k-i-1 , . . . , x 0 , x k-1 , . . . , x k-i ) -φ(y k-i-1 , . . . , y 0 , y k-1 , . . . , y k-i )| ≥ k-1 i=0   m k-1 |x k-i-1 -y k-i-1 | - k-2 j=0 m j |x (j-i) mod k -y (j-i) mod k |   = k-1 i=0 |x i -y i |   m k-1 - k-2 j=0 m j   ≥ m k-1 - m k-1 -1 m -1 .
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Construction B

We present our second construction only for n = km k and m ≥ 2. For a fixed integer m we construct k labelings B 0 , . . . , B k-1 of the array km k . To construct the labeling B i , we first assign a color α i (x) to each cell x of km k such that α i (x) := x m i-1 mod m. Intuitively, for 1 ≤ i ≤ k -1, the cell x is colored by α i (x) according to its ith least significant digit in its m-ary decomposition. Observe that the color α 0 (x) is always equal to 0. The labeling B i is then defined for all cells x ∈ km k by

B i (x) := x -km k-1 α i (x) mod km k .
In other words, for all 0 ≤ p ≤ m -1, the labeling B i cyclically permutes the set of all cells x with color α i (x) = p, and the amplitude of this permutation is proportional to p. In particular, we have

α i (x) = α i (B i (x)
) and it is easy to describe the inverse permutation of B i for all labels x ∈ km k as

B -1 i (x) = x + km k-1 α i (x) mod km k .
Note that B 0 is the identity permutation since α 0 (x) = 0 for all x ∈ km k .

Proposition 2. The minimum combined distance of the k labelings B 0 , . . . , B k-1 of km k is bounded by

min x =y∈ km k CD(B 0 , . . . , B k-1 , x, y) ≥ km k-1 .
Proof. Let x and y be two distinct labels of km k . For

0 ≤ i ≤ k -1, write B -1 i (x) = x + km k-1 α i (x) + r i km k and B -1 i (y) = y + km k-1 α i (y) + s i km k
for some integers r i and s i . We consider two cases:

(1) If α i (x) = α i (y) for all i, then x -y is a non-zero multiple of m k-1 . Thus, for all i, the difference

B -1 i (x) -B -1 i (y) = x -y + (r i -s i )km k is also a non-zero multiple of m k-1 , and CD(B 0 , . . . , B k-1 , x, y) = k-1 i=0 B -1 i (x) -B -1 i (y) ≥ km k-1 .
(2) Otherwise, α j (x) = α j (y) for some j = 0. Then

CD(B 0 , . . . , B k-1 , x, y) = k-1 i=0 B -1 i (x) -B -1 i (y) ≥ |B -1 j (x) -B -1 j (y)| + |B -1 0 (x) -B -1 0 (y)| = |B -1 j (x) -B -1 j (y)| + |x -y| ≥ |B -1 j (x) -B -1 j (y) -x + y| = km k-1 |α j (x) -α j (y) + (r j -s j )m| ≥ km k-1 .
The last inequality holds since

1 ≤ |α j (x) -α j (y)| ≤ m -1.
Example 2. For k = 2 and m = 3, this construction yields the two labelings of 18 with minimum combined distance 6 shown in Figure 4. For k = 3 and m = 2, this construction yields the three labelings of 24 with minimum combined distance 12 shown in Figure 5. The numbers on top are the three least significant digits of the m-ary decompositions of the array cell indices. 17 1,2,1 1,2,2 0,1,1 0,1,2 0,2,1 0,0,1 0,0,2 0,1,0 0,2,0 1,1,0 1,1,1 1,2,0 0,2,2 1,0,0 1,0,1 1,0,2 1,1,2 0,0,0 0,0,0 18 0,0,1 1,0,0 1,0,1 1,1,1 0,0,1 0,1,1 1,1,0 1,0,0 1,0,1 1,1,1 0,0,0 0,0,1 0,1,0 0,1,1 1,1,0 0,0,0 1,1,0 0,1,1 1,0,0 1,0,1 0,1,0 0,1,0 

1,2,1 1,2,2 0,1,1 0,1,2 0,2,1 0,0,1 0,0,2 0,1,0 0,2,0 1,1,0 1,1,1 1,2,0 0,2,2 1,0,0 1,0,1 1,0,2 1,
19 0,0,0 0,0,1 1,0,0 1,0,1 1,1,1 0,0,1 0,1,1 1,1,0 1,0,0 1,0,1 1,1,1 0,0,0 0,0,1 0,1,0 0,1,1 1,1,0 0,0,0 1,1,0 0,1,1 1,0,0 1,0,1 0,1,0 0,1,0 1,1,1 3 
13 0,0,1 1,0,0 1,0,1 1,1,1 0,0,1 0,1,1 1,1,0 1,0,0 1,0,1 1,1,1 0,0,0 0,0,1 0,1,0 0,1,1 1,1,0 0,0,0 1,1,0 0,1,1 1,0,0 1,0,1 0,1,0 0,1,0 1,

Remark 1.

Both constructions A and B can be generalized to arbitrary n. In the next subsection we present a unified view of the two constructions and provide a conceptually simple meta-method for such generalizations.

Rook placements

In this section, we interpret the minimum combined distance of k labelings of a 1-dimensional array n as the minimum distance in a rook placement in the k-dimensional hypercube n k . Let us first state a precise definition:

Definition 1. A (k, n)-rook placement is a subset R of the k-dimensional hypercube n k with precisely one element in the subspace n p-1 × {q} × n k-p for each 1 ≤ p ≤ k and 0 ≤ q ≤ n -1.
In other words, a (k, n)-rook placement is a maximal set of non-attacking rooks in n k , where a rook positioned in (x 1 , . . . , x k ) can attack the subspaces n p-1 × {x p } × n k-p for 1 ≤ p ≤ k (see Figure 6). There is an immediate correspondence between k-tuples of labelings of the 1-dimensional array n and (k, n)-rook placements:

• given k labelings L 1 , . . . , L k of n , the subset R(L 1 , . . . , L k ) := (L -1 1 (x), . . . , L -1 k (x)) x ∈ n of n k is a (k, n)-rook placement;
• reciprocally, a (k, n)-rook placement R has n rooks, whose pth coordinates are all distinct (for any fixed 1 ≤ p ≤ k). If we arbitrarily label the rooks of R from 0 to n -1, the order of the rooks according to their pth coordinate defines a labeling L p (R) of n .

Observe that we do not change the rook placement when permuting the labels of its rooks: for any permutations L 1 , . . . , L k and τ of n , we have

R(τ • L 1 , . . . , τ • L k ) = R(L 1 , . . . , L k ).
We can therefore assume that L 1 is the identity permutation. Consequently, the number of (k, n)-rook placements is (n!) k-1 . Furthermore, the above correspondence between k-tuples of labelings of n and (k, n)-rook placements preserves metric properties: the combined distance between two labels x and y in k labelings L 1 , . . . , L k of n is precisely the ℓ 1 -distance between the two corresponding rooks (L -1 1 (x), . . . , L -1 k (x)) and (L -1 1 (y), . . . , L -1 k (y)) in the (k, n)-rook placement R(L 1 , . . . , L k ). We call minimum distance of a finite point set S of R k the minimum pairwise ℓ 1 -distance between two points of S.

To illustrate the interest of this geometric point of view, let us first prove the upper bound of Theorem 1:

Lemma 1. For any integers k ≥ 2 and n ≥ 2, γ(k, n, 1) ≤ n -1 (n/k!) 1/k -1 .
Proof. We prove the result in the setting of rook placements by a simple volume argument. Consider a (k, n)-rook placement R, and let δ be the minimum distance between two rooks of R. Then the ℓ 1 -balls of radius δ/2 centered at the rooks of R are disjoint and contained in the cube [-δ/2, n -1 + δ/2] k . Since each ball has volume δ k /k!, this yields the inequality nδ k /k! ≤ (n -1 + δ) k , and thus the upper bound of the lemma.

To prove the lower bound of Theorem 1, we will use more general configurations of integer points in R k to obtain (k, n)-rook placements with large minimum distance, for all values of n. The principal ingredient of our constructions is the following proposition: Proposition 3. If there exists a set of n integer points in Z k with minimum distance δ such that the projection of these points on each axis is an interval of consecutive integers (with possible repetitions), then there exists a (k, n)-rook placement with minimum distance δ.

Proof. Let S be such a set of n integers. We label the points of S arbitrarily from 0 to n -1. For each direction i, we then construct a labeling L i of n which respects the order of the ith coordinate of the points of S, and where points with equal ith coordinate are ordered arbitrarily. Since the projection of S in each direction covered an interval of integers, the distance between two points in each direction can only increase during this construction, and the minimum distance of the (k, n)-rook placement R(L 1 , . . . , L k ) is at least that of S.

A simple way to obtain such point sets S on which we can easily control the minimum distance is to use lattices of R k . Remember that a lattice of R k is the set of integer linear combinations of k linearly independent vectors of R k ; see [START_REF] Pach | Combinatorial Geometry[END_REF]Chapter 1]. We call a (k, n)-rook lattice any sublattice L of the integer lattice Z k whose trace L ∩ n k on the hypercube n k is a (k, n)-rook placement and which contains ne 0 (e 0 is the first vector of the canonical basis of R k ). Applying Proposition 3, a good (k, ν)-rook lattice provides good (k, n)-rook placements not only for n = ν, but for any larger value of n: Proposition 4. If there exists a (k, ν)-rook lattice with minimum distance δ, then there exists a (k, n)-rook placement with minimum distance δ for all n ≥ ν -1.

Proof. Let L be a (k, ν)-rook lattice of minimum distance δ. For n = ν -1, consider the point configuration L ∩ {1, . . . , ν -1} k : it has minimum distance δ and projects bijectively on {1, . . . , ν -1} in each direction. For n ≥ ν, consider the trace of L on n × ν k-1 . Since ne 0 ∈ L, this trace projects bijectively on n in the first direction and surjectively on ν in all the other directions. The result thus follows from Proposition 3.

In the remaining of this section, we first use this result to reinterpret van Dam et al.'s rook placements in the square [START_REF] Van Dam | Maximin Latin hypercube designs in two dimensions[END_REF] in a neat and geometric way. Our description provides the same rook placements and avoids tedious and technical calculations. We then apply Proposition 4 to extend the constructions of Sections 2.1 and 2.2 to any value of n.

Example 3 (Rook placements in the square). We consider two families of lattices in the plane (see Figure 7): Note that the trace of these rook lattices on their corresponding square gives precisely the rook placements of [START_REF] Van Dam | Maximin Latin hypercube designs in two dimensions[END_REF] (up to a reflection with respect to the vertical axis). From these two families and using Proposition 4, we obtain in a much simpler way the lower bound on γ(2, n, 1) in [START_REF] Van Dam | Maximin Latin hypercube designs in two dimensions[END_REF]:

Proposition 5. For any integer n, γ(2, n, 1) ≥ √ 2n + 2 .
Proof. Let m be any integer. Since there exists a (2, 2m 2 )-rook lattice with minimum distance 2m, Proposition 4 implies for any integer n with

2m 2 -1 ≤ n ≤ 2m 2 + 2m -1 that √ 2n + 2 = 2m ≤ γ(2, n, 1
). Similarly, since there exists a (2, 2m 2 + 2m + 1)-rook lattice with minimum distance 2m + 1, Proposition 4 implies for any integer n with

2m 2 + 2m ≤ n ≤ 2m 2 + 4m that √ 2n + 2 = 2m + 1 ≤ γ(2, n, 1).
We have seen in Lemma 1 that γ(2, n, 1) is bounded by (n -1)/( n/2 -1). Together with Proposition 5, this implies that γ(2, n, 1) ∼ √ 2n. In fact, using a similar but slightly refined packing argument as in our proof of Lemma 1, van Dam et al. [START_REF] Van Dam | Maximin Latin hypercube designs in two dimensions[END_REF] proved that the bound in Proposition 5 is in fact the exact value of γ(2, n, 1): γ(2, n, 1) = √ 2n + 2 . 

j := k-1 i=0 m (j+i) mod k e i , for 0 ≤ j ≤ k -1.
In other words, the matrix whose column vectors are u 0 , . . . , u k-1 is a circulant matrix M (k, m) whose first row is (1, m, . . . , m k-1 ). See Figure 8 for an example. Lemma 2. The (k, m k )-rook placement R(A 0 , . . . , A k-1 ) is formed by the points of U (k, m) located in the hypercube m k -1 k together with the point (m k -1) k-1 i=0 e i .

Proof. For any x := φ(x k-1 , . . . , x 0 ) ∈ m k , the rook labeled by x in R(A 0 , . . . , A k-1 ) is positioned at

k-1 i=0 A -1 i (x)e i = k-1 i=0 k-1 ℓ=0 x (ℓ-i) mod k m ℓ e i = k-1 i=0   k-1 j=0 x j m (j+i) mod k   e i = k-1 j=0 x j k-1 i=0 m (j+i) mod k e i = k-1 j=0 x j u j ,
and thus is an element of the lattice U (k, m). For any i, we have

0 ≤ A -1 i (x) ≤ m k -1

and the last inequality is an equality if and only if

x = m k -1 = φ(m -1, m -1, . . . , m -1). Thus, the rook labeled by x is either in U (k, m) ∩ m k -1 k , or equals (m k -1) k-1 i=0 e i .
For the reverse inclusion, we use a volume argument. Define the shifted hypercube

C := -1 2 , m k -3 2 k
and the corresponding tiling

T := C + k-1 i=0 Z (m k -1)e i of the space R k . By inversion of the circulant matrix M (k, m), the vector (m k -1)e i = mu (i-1) mod k -u i is in the lattice U (k, m) for all 0 ≤ i ≤ k -1.
Consequently, any tile of T contains the same number of points of the lattice U (k, m). Since the boundary of C contains no point of U (k, m), it follows that the number of points in C is the quotient of its volume by the volume of the fundamental parallelepiped of the lattice U (k, m). The former clearly equals (m k -1) k while the later is the determinant of the circulant matrix M (k, m), that is, (m k -1) k-1 . Consequently, the lattice U (k, m) has precisely m k -1 points in C, hence in m k -1 k . This implies the reverse inclusion.

In other words, U (k, m) is a (k, m k )-rook lattice whose minimum distance is at least m k-1 -m k-1 -1 m-1 . Applying Proposition 4, we obtain that for any n ∈ N,

γ(k, n, 1) ≥ n 1/k k-1 - n 1/k k-1 -1 n 1/k -1 .
Example 5 (Construction B, revisited). We finish by reinterpreting our Construction B in terms of rook lattices. When k = 2, the rook placement R(B 0 , B 1 ) is precisely the trace of the rook lattice generated by (m, m) and (1, 2m + 1) which we saw in Example 3(a) (see also Figure 7(a)). As discussed previously, this rook lattice provides optimal rook placements in the square. For k ≥ 3, the (k, km k )-rook placement R(B 0 , . . . , B k-1 ) produced by construction B is not the trace of a lattice on km k . However, it is still sufficiently regular to apply Proposition 3. 

S = (x, B -1 1 (x), . . . , B -1 k-1 (x))
x ∈ Z . The trace of S on n × km k k-1 projects bijectively on n on the first coordinate and surjectively on km k on all other coordinates. A similar analysis as in the proof of Proposition 2 ensures that the minimum distance of S, like the minimum distance of R(B 0 , . . . , B k-1 ), is at least km k-1 too. According to Propositions 2 and 3, we obtain a (k, n)-rook placement whose minimum distance is at least km k-1 . Thus,

γ(k, n, 1) ≥ km k-1 = k n k 1/k k-1
.

To summarize, Lemmas 1 and 3 prove Theorem 1 announced in the introduction:

Theorem 1. For any integers k ≥ 2 and n ≥ 2, the maximal value of the minimum ℓ 1 -distance between two rooks of a rook placement in a k-dimensional chessboard of size n is bounded by

k n k 1/k k-1 ≤ γ(k, n, 1) ≤ n -1 (n/k!) 1/k -1 .

Labelings of d-dimensional grids

We now extend our results to general dimension d, proving Theorem 2 announced in the introduction:

Theorem 2. For any integers k ≥ 2, n ≥ 2, and d ≥ 1, the maximal value of the minimum combined distance between any two labels for a k-tuple of labelings of the d-dimensional grid of size n is bounded by

k n k 1/k k-1 ≤ γ(k, n, d) ≤ n -1 (n d /(dk)!) 1/(dk) -1 .
In particular, γ(k, n, d) = Θ(n 1-1/k ) if k and d are constants.

To generalize the lower bound from a one-dimensional array to a d-dimensional grid, we simply treat the d dimensions independently. The movement of a symbol in the k -1 labelings L 1 , . . . , L k-1 in each direction depends only on the location of the symbol in the labeling L 0 in that particular direction, as described in the previous Sections. Thus we obtain a lower bound for the d-dimensional grid that is exactly the same as the lower bound for the one-dimensional array. In turn, the upper bound for general d is obtained by an adapted packing argument. As in the case when d = 1, we can represent k labelings L 1 , . . . , L k of a d-dimensional grid n d by the point configuration

R(L 1 , . . . , L k ) := (L -1 1 (x), . . . , L -1 k (x)) x ∈ n d of ( n d ) k ≃ n dk .
The combined distance between two labels x, y ∈ n d is given by the ℓ 1 -distance of the corresponding rooks (L -1 1 (x), . . . , L -1 k (x)) and (L -1 1 (y), . . . , L -1 k (y)) of R(L 1 , . . . , L k ). Consequently, if L 1 , . . . , L k are k labelings of n d with minimum combined distance δ, then the ℓ 1 -balls of radius δ/2 centered at the rooks of R(L 1 , . . . , L k ) are disjoint and contained in the hypercube [-δ/2, n -1 + δ/2] dk . Since each of these balls has volume δ dk /(dk)!, this yields the inequality n d δ dk /(dk)! ≤ (n -1 + δ) dk , and thus the upper bound of Theorem 2.

Connection to graph isomorphism

In this section, we discuss the generalization of this problem to labelings of arbitrary graphs. Let G be a graph on n vertices, and let S be a set of n symbols. Define a labeling of the graph G as a bijection that assigns a distinct symbol in S to each vertex in G, and define the distance between two vertices in G as the number of edges in a shortest path between them. The combined distance between two labels x, y ∈ S of the k labelings L 1 , . . . , L k of G is again defined as the sum of the distances in G of the vertices labeled by x and y in each labeling.

We first prove the following lemma: Lemma 4. A graph has two labelings with combined distance at least 3 if and only if the graph is a subgraph of its complement.

Proof. We first prove the direct implication. Suppose that a graph G has two labelings L 1 and L 2 with combined distance at least 3. Then any two symbols assigned by one labeling to two adjacent vertices in G must be assigned by the other labeling to two non-adjacent vertices in G. That is, any two symbols assigned by one labeling to two adjacent vertices in G must be assigned by the other labeling to two adjacent vertices in the complement G ′ of G. Thus the two labelings L 1 and L 2 specify a bijection f from the vertices of G to the vertices of G ′ such that two vertices u and v are adjacent in G only if the corresponding two vertices f (u) and f (v) are adjacent in G ′ . Therefore G is a subgraph of its complement G ′ . We next prove the reverse implication. Suppose G is a subgraph of its complement G ′ . Let f be a bijection from the vertices of G to the vertices of G ′ such that two vertices u and v are adjacent in G only if the corresponding two vertices f (u) and f (v) are adjacent in G ′ . Then in the graph G, two vertices u and v are adjacent only if the two vertices f (u) and f (v) are non-adjacent. Let L 1 and L 2 be two labelings of G such that the symbol assigned to a vertex v by L 1 is the same as the symbol assigned to the corresponding vertex f (v) by L 2 . Then the combined distance of the two labelings L 1 and L 2 is at least 3.

The problem graph isomorphism is that of deciding whether two graphs are isomorphic. Two graphs G 1 = (V 1 , E 1 ) and G 2 = (V 2 , E 2 ) are isomorphic if there is a bijection f from V 1 to V 2 such that any two vertices u and v are adjacent in G 1 if and only if the corresponding two vertices f (u) and f (v) are adjacent in G 2 . A graph is self-complementary if it is isomorphic to its complement. It is known that selfcomplementary graph recognition is polynomial-time equivalent to graph isomorphism [START_REF] Colbourn | Graph isomorphism and self-complementary graphs[END_REF]. Observe that a graph is isomorphic to its complement if and only if (1) the graph is a subgraph of its complement, and

(2) the graph and its complement have the same number of edges. Condition (2) can be easily checked in linear time. Together with Lemma 4, this completes the proof of Theorem 3: Theorem 3. Deciding whether a graph has two labelings with combined distance at least 3 is at least as hard as graph isomorphism.

Figure 1 :

 1 Figure 1: Two labelings of a 3 × 3 grid. With the first labeling fixed, the second labeling is one of 840 solutions for which the minimum combined distance is 3.

Example 1 .

 1 For k = 2 and m = 4, this construction yields the two labelings of 16 with minimum combined distance 5 shown in Figure2. For k = 3 and m = 2, this construction yields the three labelings of 8 with minimum combined distance 6 shown in Figure3. The numbers on top are the m-ary decompositions of the numbers in the array cells.

Figure 2 :

 2 Figure 2: The two labelings A 0 and A 1 provided by construction A when n = 16, k = 2 and m = 4.
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 2 

Figure 3 :

 3 Figure 3: The three labelings A 0 , A 1 , and A 2 provided by construction A when n = 8, k = 3 and m = 2.

1 Figure 4 :

 14 Figure 4: The two labelings B 0 and B 1 provided by construction B when n = 18, k = 2 and m = 3.

Figure 5 :

 5 Figure 5: The three labelings B 0 , B 1 , and B 2 provided by construction B when n = 24, k = 3 and m = 2.

Figure 6 :

 6 Figure 6: The affine spaces a rook can attack.

  (a) The lattice generated by (m, m) and (1, 2m + 1) is a (2, 2m 2 )-rook lattice with minimum distance 2m. (b) The lattice generated by (m + 1, m) and (1, 2m + 1) is a (2, 2m 2 + 2m + 1)-rook lattice with minimum distance 2m + 1.

Figure 7 :

 7 Figure 7: Examples of two optimal families of rook lattices in the square. (a) Lattice generated by the vectors (m, m) and (1, 2m + 1), for m = 3. (b) Lattice generated by the vectors (m + 1, m) and (1, 2m + 1), for m = 3.

Figure 8 :

 8 Figure 8: The lattice corresponding to the example in Figure 2 of construction A, for n = 16, k = 2 and m = 4.

Lemma 3 . 1 /k k- 1 .

 311 For any integers k ≥ 2 and n ≥ 2, γ(k, n, 1) ≥ k n k Proof. Let m := n k 1/k . Let S denote the set obtained by translations of the (k, km k )-rook placement R(B 0 , . . . , B k-1 ) by any integer multiple of km k e 0 . In other words, since B 0 is the identity permutation,

Example 6 .

 6 For k = 2, n = 8, and d = 2, construction B yields the two labelings with minimum combined distance 4 shown in Figure 9.

1 Figure 9 :

 19 Figure 9: Two labelings L 0 and L 1 of a square grid, obtained by construction B. For convenience, in this example we label each direction independently by using n d labels, instead of n d labels.
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