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3 Université Pierre et Marie Curie, Paris, France, 4 Commissariat à l’Energie Atomique, Gif-sur-Yvette, France, 5 Institut National de Recherche en Informatique et
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Abstract

Protein polymerization consists in the aggregation of single monomers into polymers that may fragment. Fibrils assembly is
a key process in amyloid diseases. Up to now, protein aggregation was commonly mathematically simulated by a polymer
size-structured ordinary differential equations (ODE) system, which is infinite by definition and therefore leads to high
computational costs. Moreover, this Ordinary Differential Equation-based modeling approach implies biological
assumptions that may be difficult to justify in the general case. For example, whereas several ordinary differential
equation models use the assumption that polymerization would occur at a constant rate independently of polymer size, it
cannot be applied to certain protein aggregation mechanisms. Here, we propose a novel and efficient analytical method,
capable of modelling and simulating amyloid aggregation processes. This alternative approach consists of an integro-Partial
Differential Equation (PDE) model of coalescence-fragmentation type that was mathematically derived from the infinite
differential system by asymptotic analysis. To illustrate the efficiency of our approach, we applied it to aggregation
experiments on polyglutamine polymers that are involved in Huntington’s disease. Our model demonstrates the existence
of a monomeric structural intermediate ~cc1 acting as a nucleus and deriving from a non polymerizing monomer (c1).
Furthermore, we compared our model to previously published works carried out in different contexts and proved its
accuracy to describe other amyloid aggregation processes.
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Introduction

Protein aggregation and misfolding are involved in several fatal

human disorders, such as Alzheimer’s, Prion, Huntington’s

diseases [1,2]. Certain types of aggregates display specific

structural traits (e.g. a b{sheet enriched secondary structure) that

characterize amyloid assemblies. Recent progress in solid state

Nuclear Magnetic Resonance (NMR) has led to a better

understanding of amyloid assemblies at the molecular level [3].

However, this structural knowledge constitutes only a snapshot of

the dynamic processes. Protein aggregation involves a large

amount of chain reactions, e.g. conformational exchange, nucle-

ation (which is the formation of a first stable intermediate),

polymerization by monomer, dimer or i{ mer addition,

coalescence, depolymerization (by loss of mono, di or oligomers),

fragmentation (breakage into two or more polymers), protein

degradation.

To explore the dynamics of amyloid assemblies, nucleation/

polymerization reaction schemes have been applied, and to model

them, ordinary differential equations (ODEs) have been used for

many years [4]. An ODE means an equation containing only one

independent variable (e.g. the chemical concentration of mole-

cules) and its derivatives. Therefore in the case of polymerization,

the number of equations should be at least equal to the number of

sub-units constituting the longuest polymer. This value is

extremely large in the case of amyloid fibrils (amyloid fibril sizes

can go up to 1 mm length [5]), therefore simplifying assumptions

are commonly admitted, e.g. constant reaction rates, meaning that

polymers of any size behave roughly in the same way [6–9].

Although such assumptions allow the system to be reduced from

an infinite set of ODEs to a couple of equations [4,7], assumptions

of this nature are difficult to justify biochemically.

We propose here a new and global framework that can be

adapted to most protein polymerization reactions. This method

relies on partial differential equations (PDEs). In contrast to an

ODE, a PDE permits formulation of problems involving functions

of several variables. Instead of handling an infinite set of ODEs, we

show that under reasonable assumptions, we can derive an

equivalent model composed of a small number of ODEs coupled

with a single size-structured PDE. The size variable of fibers

replaces the infinite number of ODEs. To derive our model, we

tune asymptotic methods from previously published works [10,11].

A fully general model, which is much easier to handle both

theoretically and numerically, is obtained. It allows much faster

computations than for the full ODE set of equations. Moreover,

recent analytical tools developed for PDE analysis can be applied.
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The obtention of size-distributions of polymers is a fundamental

step [12], as it makes it possible to estimate quantitative reaction

rates and build a predictive model by the means of recently

developed inverse problem techniques [13].

To illustrate our method, we first formally derive the PDE

model in a general case, and then apply our method to expanded

polyglutamine (PolyQ) diseases. Finally, we compare our results to

existing work [7,8].

Results

The Infinite ODE System
Let us first recall how one can write the differential system

describing all the reactions that occur during nucleated protein

polymerization. We denote c1 the protein monomeric concentra-

tion and c�1 the one of a misfolded monomeric species which

displays the ability to polymerize. c1 monomers transform into this

monomeric species c�1 at the rate kz
I , and c�1 transform back to c1

at the rate k{
I :

ci represents the concentration of polymers made up of i

monomers. We assume that polymers and monomers are

degraded with a size-dependent degradation rate denoted ki
m:

The misfolded monomers c�1 are able to polymerize to give rise to

a nucleus ci0 , composed of i0 monomeric units, with the rate kN
on:

As proposed by Oosawa and co-authors [4], a nucleus is generated

by the addition of an object to highly unstable entities that are too

transitory to be observed. The object stabilizing the highly

unstable entities can be a monomer (c1). If we consider a nucleus

ci0 with a size i0, its formation does not consist in a sequential

addition of c1 till ci0 (where it would be represented by

c1?c2?c3? � � �?ci0 ), but follows an i0 order kinetic (where

i0c�1?ci0 ).

This nucleus can dissociate at the rate kN
off : We make the

reasonable assumption that there is an equilibrium between

monomers and oligomers [4].

c1 '
k{

I

kz
I

c�1, c�1z � � �zc�1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
i0

'
kN

off

kN
on

ci0
ð1Þ

Polymers of size i larger than i0 can polymerize or depolymer-

ize, which is the gain or the loss of a single monomeric unit: the

elongating species is assumed here to be c�1 (our model is easy to

adapt to other cases, e.g if the elongating species is a dimer or an

oligomer [8]). Those reactions occur at the rate ki
on and ki

dep

respectively.

cizc1 '
kiz1

dep

ki
on

ciz1 ð2Þ

Polymers can also coalesce with other polymers or break into

two smaller polymers. For the sake of simplicity, we assume that a

polymer can only break into two pieces at the exact same time (a

breakeage into 3 or more pieces is generally much more

hazardeous, so that it can be neglected). Coagulation of two

polymers of respective size i and j occurs at the rate k
i,j
col .

Fragmentation of a polymer of size i gives rise to smaller polymers

of size j and i{j (where 2ƒjƒi0), at the rate k
j,i
off :

cizcj '
k

i,izj
off

k
i,j
col

cizj ð3Þ

We could have kept the same notation for fragmentation and

depolymerization, by denoting k1,i
off ~ki{1,i

off ~
1

2
ki

dep: We prefered

however to distinguish them, because they involve reactions of

different kinds, so that the orders of magnitude may appear

different.

Let us define K
j
off ~

Xj{2

i~2

k
i,j
off : This represents the total rate with

which a polymer of size j can break to give smaller polymers. By

symmetry we have that k
i,j
off ~k

j{i,j
off and k

i,j
col~k

j,i
col :

The following model is the exact deterministic transcription of

the previously considered reactions. It could be completed by

other reactions (polymerization pathways, other types of confor-

mational exchange, for instance) to adapt to any possible case. The

variation
dc

dt
of the species ci (or c1, c�1) depends on two

phenomena: 1) their rates of consumption, including depolymer-

ization into a smaller polymer (or transformation into c1 in the

case of c�1), polymerization into a higher polymer (or transforma-

tion into c�1 in the case of c1) and degradation km, and 2) their rates

of production, i.e. polymerization from smaller polymer (or

transformation from c1 in the case of c�1) and depolymerization

from higher polymer (or transformation from c�1 in the case of c1).

This induces the following equations.

dc1

dt
~{kz

I c1zk{
I c�1{k1

mc1, ð4Þ

dc�1
dt

~kz
I c1{k{

I c�1{i0 kN
on (c�1)i0zi0 kN

off ci0
{k1�

m c�1

{c�1
X
i§i0

ki
on ciz

X?
j~i0

k
j
depcjz2

Xi0{1

i~2

X?
j~i0

i k
i,j
off cj ,

ð5Þ

dci0

dt
~kN

on (c�1)i0{kN
off ci0

{k
i0
on ci0

c�1zk
i0z1

dep ci0z1{k
i0
m ci0

z2
X?

j~i0z2

k
i0,j

off cj{K
i0
off ci0

{
X
j§i0

k
i0,j

col ci0
cj ,

ð6Þ

dci

dt
~c�1(ki{1

on ci{1{ki
on ci){(ki

depci{kiz1
dep ciz1){ki

mci

z2
X?

j~iz2

k
i,j
off cj{Ki

off ciz
1

2

X
i0ƒjƒi{2

k
j,i{j
col cj ci{j

{
X
j§i0

k
i,j
colci cj :

ð7Þ

This model and variants of it have been extensively studied,

either in the general case in the mathematical literature (see

Kinetic Model for Amyloid Fibril Assemblies
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[10,14] and references therein), or when applying simplifying

assumptions in the biological literature [4,6–8]. It is an efficient

tool to study protein aggregation when the average size of protein

iM is of a reasonable order. However, for long polymer reactions,

this modeling technique may be time-consuming and therefore

inefficient to understand the underlying complexity. One can

notice the resemblance between this infinite ODE model and a

coupled PDE [15].

From ODEs to PDE: a New Size-structured Model
We propose here a new size-structured model composed of two

ODEs and one PDE in the case of a large average size iM of

polymers - i.e., iM&1: The main idea is to replace the discrete size

i of a polymer by a continuous variable x[(ei,e(iz1)), in which we

have defined the small parameter e : ~
1

iM
%1: In the same way,

the densities (ci(t)) are replaced by a continuous-in-size function

c(t,x) (see supplementary data S1 for more details). This model

can be derived from the infinite set of ODEs if the two following

assumptions hold.

First, for most polymer sizes i, there is only a slight difference

between what happens for i{ mers and for iz1-mers. In other

terms, even if quantities and reaction rates vary, it occurs in a

‘‘continuous’’ manner, implying only slight changes from one size i
to its neighbor sizes iz1 and i{1 except for a small number of

values. For instance, for degradation coefficients ki
m, it is

formalized as: There exists a constant, denoted below Cstw0,
such that

For all i§i0, Dkiz1
m {ki

mDƒ
Cst

i
:

This assertion allows a continuous viewpoint on the equations

for ci. It also means that disruptions in the concentrations or in the

coefficients can only appear at some specific points, that will have

to be identified, and that are meaningful biologically. Though, this

assertion appears to be natural since the conformational changes

in polymers only occur at specific sizes [16]. Moreover, having a

look at experimental size distributions (Figure 1) confirms how

natural it is to view the size of polymers as a continuous quantity.

The second and quite standard assumption is that at the

beginning of the reaction, when polymer concentrations remain

small compared to monomers, polymerization is the main process,

whereas fragmentation and coalescence are secondary processes

[4,6]. This assumption can be replaced if necessary by a similar

one, such as the existence of a dominant polymerization by j{mer

addition, with j%iM a relatively small oligomer. In such a case, the

polymerization terms ki
onc1ci would be replaced by ki

oncjci in the

equations, and a similar treatment can apply.

We refer to supplementary data S1 for a rigorous mathematical

formulation of these two assertions. They are obtained when the

system of equations is rescaled, and this allows us to estimate the

relative contribution of each process to the overall dynamics.

Let us turn to the nucleus ci0 : In this equation, the two assertions

make it possible to ignore the influence of fragmentation and

coalescence. Then as we are in the case where iM&1, the time-

dependency of the equation for ci0 is much faster than the one for

c1: it can be written
d

dt
ci0~

1

e
� � � (see supplementary data S1).

Hence, it is valid to suppose that it reaches its equilibrium

instantaneously, and we can replace Equation (6) by

0~kN
on(c�1)i0{kN

off ci0
{k

i0
onci0

c�1:

We thus obtain the following equality, which generalizes well-

established formulas [6]

ci0
(t)~

kN
on (c�1)i0

kN
off zk

i0
onc�1

: ð8Þ

We can now write the following coupled ODE and PDE system,

where i is replaced by a continuous variable x: Differences are

replaced by derivatives and sums by integrals.

dc1

dt
~{kz

I c1zk{
I c�1{k1

mc1, ð9Þ

dc�1
dt

~kz
I c1{k{

I c�1{
i0 kN

on (c�1)i0z1k
i0
on

kN
off zk

i0
onc�1

{k1�
m c�1

{c�1

ð?
x0

kon(x)c(t,x)dxz

ð?
x0

kdep(x)c(t,x)dx,

ð10Þ

Lc

Lt
~{c�1

L
Lx

(kon(x)c(t,x))z
L
Lx

(kdep(x)c(t,x))

z2

ð?
x

koff (x,y)c(y)dy{Koff (x)c(t,x)

z
1

2

ðx
x0

kcol(y,x{y)c(t,y)c(t,x{y)dy

{

ð?
x0

kcol(x,y)c(t,x)c(t,y)dy{km(x)c(t,x),

ð11Þ

Figure 1. PolyQ41 Fibrils size distribution before (blue plain
line) and after (dashed green) 10 min of sonication. The absence
of any change in the distribution shows that neither fragmentation nor
coalescence occured.
doi:10.1371/journal.pone.0043273.g001
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kon(x0)c(t,x0)~kon(x0)
kN

on c
i0
1

kN
off zkon(x0)c1

: ð12Þ

Complete rigorous mathematical derivation can be found in

supplementary data S1, and also shows that generally the third

term in the right-hand side of Equation (10) (the ratio

i0 kN
on (c�1)i0z1ki0

on

kN
off zki0

onc�1
) is negligible. Even mathematical approximation

theorems can be written to validate the model, as is done for

instance in [10,11,17].

The advantages are twofold. First, it allows us to investigate

numerically, using standard and well-known numerical schemes

(see [18]), how a change in the coefficients can influence the

overall reaction, and, more specifically, the size distribution. Also,

inverse problem techniques could allow size-dependent parame-

ters to be estimated (see for instance [19,20]). Secondly, it is easier

to handle mathematically. Theoretical analysis can help us

understand the intrinsic mechanisms and formulate new para-

digms [21,22].

Application to PolyQ Polymerization
Aggregation of polyglutamine (PolyQ)-containing proteins is

responsible for several neurodegenerative disorders including

Huntington’s disease. We have carried out biophysical analyses

to investigate the aggregation kinetics of PolyQ41, which are

peptides containing a repetition of 41 glutamine residues per

monomer. Such a length of PolyQ repetition per molecule is

sufficient to induce aggregation in vitro and in transfected cells [23].

Due to its simplicity, PolyQ provides an excellent model system

to test our mathematical model. According to the experimental

observations (Figure 1), fragmentation can be ignored. Indeed, in

Figure 1, the size distribution of PolyQ41 fibrils did not change

after 10 min of ultrasound treatments, showing that polymer-to-

polymer reactions do not occur.

In order to determine whether coalescence occurs, we

monitored simultaneously two types of measurements, polymer

size and total polymerized mass. Polymer size was estimated by a

static light scattering (SLS) signal. SLS is governed by the weighted

average mass of oligomers and therefore highly depends on

oligomer size. It can be viewed as a measurement of

I2(t)~
P

i§i0

i2ci~
Ð

x2c(t,x)dx: Total polymerized mass was fol-

lowed by thioflavine T (ThT) fluorescence. Such fluorescence

arises from interactions between ThT and the peculiar structure of

amyloids, relatively independently of amyloid size (above a certain

size threshold). ThT can be mathematically expressed by

M(t)~
P

i§i0
ici~

Ð
xc(t,x)dx: If there were coalescence, the

weighted average polymer size would continue to grow even when

the total polymerized mass M(t) reached a plateau, so the second

moment I2(t) would continue to grow after the plateau has been

reached by M(t): Here, however, both curves reach the plateau

roughly simultaneously (see supplementary data S2). Therefore we

conclude that coalescence is negligible. As described in Materials

and Methods, the spontaneous polymerization of PolyQ41 is

prevented by a glutathione s-transferase (GST) tag attached to

PolyQ41 peptide. Such experimental system has the advantage of

providing a system where only monomeric species are present at

time 0, i.e. no seeding was required for polymerization:

c1(t~0)~ctot, c�1(t~0)~ci(t~0)~0: As the GST-polyQ41 does

not constitute the pro-aggregative conformer, the PolyQ41

aggregation needs to be ignited by an irreversible enzymatic

cleavage (here by thrombin hydrolysis), releasing the GST region

apart from PolyQ41. This enzymatic cleavage can be assimilated

to an activation process along which the poly Q41 monomer turns

into a structurally activated form prone to aggregation. This led us

to establish a minimal activation scheme in which the GST-

polyQ41, denoted by c1, is converted into an active form denoted

c�1 with a constant rate kz
I . The nucleus size i0, of unknown value,

can be equal to 1, 2, 3 or even more. With these assumptions,

Model (4)–(7) becomes

dc1

dt
~{kz

I c1zk{
I c�1, ð13Þ

dc�1
dt

~kz
I c1{k{

I c�1{i0 kN
on (c�1)i0zi0 kN

off ci0
{c�1

X
i§i0

ki
on ci, ð14Þ

dci0

dt
~kN

on (c�1)i0{kN
off ci0

{k
i0
on ci0

c�1 ð15Þ

dci

dt
~c�1(ki{1

on ci{1{ki
on ci), ð16Þ

and we use the continuous version of this model, given by (9)–(12),

which becomes

dc1

dt
~{kz

I c1zk{
I c�1, ð17Þ

dc�1
dt

~kz
I c1{k{

I c�1{
i0 kN

on k
i0
on(c�1)i0z1

kN
off zk

i0
onc�1

{c�1

ð?
x0

kon(x)c(t,x)dx,

ð18Þ

Lc

Lt
~{c�1

L
Lx

(kon(x)c(t,x)), ð19Þ

kon(x0)c(t,x0)~kon(x0)
kN

on (c�1)i0

kN
off zkon(x0)c�1

: ð20Þ

As an initial approach, we tested piecewise linear polymeriza-

tion rates. They are linear from kmin
on to kmax

on on (xi0 ,x1), constantly

equal to kmax
on on (x1,x2) and linearly decreasing to zero on

(x2,xM ) with kmin
on and kmax

on parameters to be calibrated. We

arbitrarily set kmin
on and x1, which led to 7 free parameters. We

have also tested two different kinds of kinetics when i0~1: first, the

special case where there is no nucleus, i.e. the polymerization

process starts directly from c�1, which means kN
on~kon and kN

off is

negligible. This reaction scheme was unable to fit properly even a

single experimental curve so we abandoned it. Second, the case

when the previous model is unchanged but where i0~1 : this

Kinetic Model for Amyloid Fibril Assemblies
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means that the nucleus ci0~~cc1 is a monomeric species differing

only from c�1 in its conformation. The elongating species remains

the intermediate c�1: In the following, i0~1 refers to this second

case.

The parameters of this model were then estimated by fitting

experimental data on PolyQ41 protein polymerization. We

performed this in two successive ways. The first consists in fitting

separately each experimental curve, corresponding to a given

experiment, at a given concentration. The result is that whatever

i0 is, the fit is excellent for any curve, with a measurement error

from 0:5 to 2% in L2 adimensioned norms (see supplementary

data S2). It gives almost undistinguishable curves. However, the

variability among the optimal coefficients was large, which led us

to the second step. This consisted in fitting simultaneously all the

curves of experiments carried out in identical experimental

conditions, but for different concentrations. The global adimen-

sioned error (in L2{norm) diminished with i0, and reached its

lowest level for i0~1, as shown in Figure 2. For larger values of the

nucleus, the error is moreover too large for the model to be

acceptable (results shown in supplementary data S2). It gives solid

ground to the assumption, already suggested in the literature [24],

that the nucleus is of size 1, but with a specific and unconventional

nucleation-elongation reaction scheme, where the elongating

species c�1 and the nucleus ci0~~cc1 are distinct conformers.

Another result of our simulations is that k{
I is negligible, thus

we can suppose that c1~c0e{kz
I

t: In the same way, we can

compare c�1 to the solution of the following differential equation

dctest

dt
~kz

I c0e
{kz

I
t
{i0kN

onc
i0
test, ctest(0)~0,

i.e., neglect the contribution of polymers in the equation for c�1: it

fits perfectly for the total duration of the lag phase.

Application to the Knowles et al. Model [7]
As seen for the application to PolyQ, the fully general model

(9)–(12) is not yet directly applicable, precisely because of its

general character. It can be thought of as the departure point for

numerical, biological and mathematical analysis; and it is indeed a

powerful way to tackle polymerization issues. To illustrate our

approach, we have applied our model to experimental data of

amyloid protein aggregation from other authors and we have

compared or transposed our model to the recently published

models that were accompanying the data [7,8].

In [7], Knowles and coauthors set up a model for polymeri-

zation of breakable filament assembly. This model is an analytical

approximation that they have applied to (potential) experimental

data and compared to exact equations representing the experi-

mental data. For their approximation model, Knowles and

coauthors made the following assumptions.

N Polymerization at a constant rate independent of the size of the

polymers,

N no degradation of polymers neither monomers,

N the size of the nucleus is i0~2,

N fragmentation rate depends linearly on the size of the polymer:

k
i,j
off ~koff constant,

Figure 2. Simulation vs Experiments for Experimental Set 1, for an initial PolyQGST concentration of 100 mM: The parameters were first
estimated for an experimental set of initial concentration 285 mM, then we compared the experimental measures (dotted lines) for an initial
concentration 100 mM with the simulations (in solid lines) for i0~1,2,3,4: We see that the smaller i0 is, the closer the simulation to experimental
curves.
doi:10.1371/journal.pone.0043273.g002

Kinetic Model for Amyloid Fibril Assemblies
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N no coalescence,

N nucleation disaggregation occurs with the same rate koff as

depolymerization.

With these assumptions, it is well-known that the original ODE

system simplifies by summation on a system of 2 non linear

coupled ODEs (Equations (3a) and (3b) in [7]), namely:

dP

dt
~koff (M{(2i0{1)P)zkN

on(C0{M)i0 , ð21Þ

dM

dt
~(kon(C0{M){i0(i0{1)koff )Pzi0kN

on(C0{M)i0 ð22Þ

where M~
X
i§i0

ici represents the total polymerized mass, and

P~
X
i§i0

ci represents the total number of polymers. They

approximate this system by an analytical formula, justified by a

fixed point method and shown numerically to give a good

approximation. To apply our method, we first look at the average

size iM (t) of polymers, which is given by iM~
M(t)

P(t)
: It is shown in

Figure 3 for the parameter values kon~105M{1s{1,

koff ~2:10{8s{1, C0~5:10{6M, kN
on~2:10{5M{1s{1, i0~2,

M(0)~P(0)~0: All these values, taken from [7] (fig. 1 of

KnowlesTM manuscript), directly represent the exact system of

(potential) experimental data. We see that our assertion of large

polymers is satisfied. Similarly, we check that the range of

parameters that they proposed fit to our other assumptions, so that

our method can be applied. The assumption on kN
off ~koff implies

that the nucleus dissociation term in the equations for c1 and ci0
is

negligible: indeed we have koff ci0
to be compared to c1koniMci:

We followed their modelling ideas but our method allows us to

relax their assumptions in the following sense.

N Polymerization is not necessarily constant, but values

kon(0)w0 for small polymers of size i close to i0%iM :

N We neglect degradation of small polymers and of monomers,

but we keep a degradation for large polymers,

N I0 = 2,

N fragmentation rate does not necessarily depend linearly on the

size of the polymer, but it is true for small polymers:

koff (x%1,y%1)~k0
off constant,

N coalescence is negligible compared to polymerization as long

as c1 remains in the order of (C0):

With these assumptions, System (9)–(12) can be simplified as

follows:

dc1

dt
~{i0 kN

on c
i0
1 {c1

ð?
0

kon(x)c(t,x)dx, ð23Þ

Lc

Lt
~{c1

L
Lx

(kon(x)c(t,x)))

z2

ð?
x

koff (x,y)c(y)dy{Koff (x)c(t,x){km(x)c(t,x),

ð24Þ

koncDx~0~kN
onc

i0{1

1 : ð25Þ

If we take as in [7] koff and kon constant, we recover System

(??)(??) by summation, but with the terms (2i0{1)P(t) and

i0(i0{1)koff P(t) neglected. Numerical simulations are shown in

Figure 3, and we see that this simplification allows a perfect fit with

the complete model, fast simulations, and a better understanding

of which reaction dominates at any moment (since we have access

to size distributions, see Figure 4).

Comments on Size Distributions. For the size parameters

taken from [7], fig. 1, we are able to observe the evolution of

polymer size distributions over time: see Figure 4. At the beginning

of the reaction (in this particular case, for a time between 0 and 5
hours), the average size increases very fast. Then it reaches an

equilibrium, and between 6 to 15 hours it reaches an exponential

regime during which the whole size distribution, not only the

average size, is quite steady. An explanation for this could be taken

from [25] for instance. After this period, the average size decreases

- and ultimately, the model shows that M=P?i0z1 but this

would be accomplished only after a very long period of time. A

good test for the model proposed by [7] would be to check whether

size distribution of polymers resembles such a one-peak distribu-

tion. If not, the assumptions would have to be relaxed, e.g. by

taking variable coefficients [25].

PDE Model Applied to the Xue et al. Model [8]
Xue and colleagues present a new strategy to analyse the self-

assembly of misfolded proteins into amyloid fibrils [8]. They

analysed fibril length distribution of b2-microglobulin, a protein

involved in dialysis-related amyloidosis. Xue and colleagues have

developed the following approach. Based on a large data set of

experimental growth curves, transitional general parameters of the

time-curve, namely the length of the lag phase (Tlag) and the slope

(k) of the reaction curve at the inflexion point were extracted.

Several theoretical models are simulated using the ODE formu-

lation and the theoretical transitional parameters Tlag and k were

extracted from the numerical growth curve in the same way as for

the experimental curve (see Table S2 in Supplementary data S3).

Then the best model and its parametrization were determined by

comparing the theoretical values with the experimental data

through least-squares analysis. This powerful approach is based on

the simulation of a full ODE system (with one equation per size of

aggregates) for each model investigated and no simplifications

were made to reduce the dimension of this system. As a

consequence, the method is time-consuming, which limits the

number of mechanisms studied and the maximal polymer size

(2400 in [8]). In addition, estimation of the best fitting model is

based only on general parameters of the curve, which do not seem

much sensitive to the distribution of the fragmentation process (see

supplementary data S3). To overcome these limitations, we

propose transposing their approach using PDE models, allowing

for i) faster simulations, ii) no limitation in the size of aggregates,

and iii) development of inverse problem techniques ([26,27]) to

estimate parameters using the overall time evolution process.

Xue et al investigated b2{microglobulin growth, using models

including different processes: a pre-polymerization step (charac-

terized by either no pre-polymerization, or monomer-dimer

equilibrium and dimer addition mechanism, or conformation

exchange), an elongation of the aggregates following a one-step

function, a linear function or a power function, and a possible
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secondary process such as fragmentation. Their best-fit model is

given by:

N No conformational exchange, no coalescence and no degra-

dation of polymers or monomers,

N the size of the nucleus is i0~2 and nucleus dissociation occurs

only through depolymerization,

N polymerization and depolymerization follow a one-step

function with the step at i~6,

N fragmentation into two smaller polymers occurs.

Thus, using the previously introduced notations, the original

ODE system can be written

dc1

dt
~{i0kN

onc
i0
1 zi0kN

off ci0
{c1

X
i§i0

ki
onci, ð26Þ

dci0

dt
~kN

onc
i0
1 {kN

off ci0
{k

i0
onc1ci0

z2
X

j§i0z2

k
i0,j

off cj ð27Þ

Figure 3. Numerical solution of Equation (21) (22) either using the exact equations, directly representing (potential) experimental
data, the PDE approximation, or the analytical approximation proposed in [7]. Left: average size of polymers. Right: monomers
concentration. It is clear that the PDE approximation gives excellent results. The parameters used for the exact equations (i.e. values for elongation
rate, fragmentation rate and nucleus size) are those from Fig. 1 of [7].
doi:10.1371/journal.pone.0043273.g003

Figure 4. Adimensionned Distributions of the sizes of polymers
for various times. To obtain adimensionned distributions of polymer
sizes, our model was applied to data taken from Figure 1 of [7]. From 6
to 18 hours one can see that the distribution remains roughly stable.
doi:10.1371/journal.pone.0043273.g004
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dci

dt
~c1(ki{1

on ci{1{ki
onci)

{(ki
depci{kiz1

dep ciz1)z2
X

j§iz2

k
i,j
off cj{Ki

off ci:
ð28Þ

For the particular choice of fragmentation made in [8],

however, fragmentation in polymers of size 1 is close to 0. This

ODE system is then formally equivalent to the following PDE

system:

dc1

dt
~{

i0kN
onkon(x0)c

i0z1

1

kN
off zkon(x0)c1

{c1

ð?
x0

kon(x)c(t,x)dx, ð29Þ

Lc(t,x)

Lt
~{c1

L
Lx

(kon(x)c(t,x))z
L
Lx

(kdep(x)c(t,x))0

z2

ð?
x

koff (x,y)c(t,y)dy{Koff (x)c(t,x),

ð30Þ

c(t,x0)~
kN

onc
i0
1

kN
off zkon(x0)c1

: ð31Þ

Due to the shape of the polymerization process, which has a step

at i~6 (meaning that ki
on~K1 for iƒ5, ki

on~K2 for i§6), if the

step is high, that is if K2&K1, it is however preferable to keep all

the ODEs occurring for iƒ6 and to set up the PDE (30) only for

i§6: We then adapt the boundary condition (31) as shown in

supplementary data S3. This can also be approximated by the

Bishop and Ferrone model [6] by adjusting a nucleus critical size

to i0~6: Similar work can be done for the different processes

studied in [8]. Our study allowed us to enhance their approach by

quick investigation of different fragmentation kernels, showing that

the shape of the fragmentation does not influence the polymer-

ization dynamics (see supplementary data S3).

Discussion

We proposed a new model (9)–(12) to serve as a global

framework to investigate the leading mechanisms of nucleation-

elongation processes in amyloid fibrils’ assemblies. We applied it to

PolyQ41 aggregation, demonstrating experimentally that coales-

cence and fragmentation were negligible, and predicting by our

simulations that the monomer activation was irreversible. More-

over, it highlighted the early step of PolyQ41 nucleus formation

and assemblies. With regard to the bibliography, the concept of

nucleus in protein aggregation remains obscure. Here the analysis

of PolyQ polymerization suggested a kinetic scheme in which c�1 is

at an equilibrium with ~cc1. These two species are monomeric and

only differ in their conformation. According to the conventional

model of nucleation-elongation process [4], the nucleus is

thermodynamically stabilized by the addition of at least one

monomer. Here we proposed an unconventional mechanism of

nucleation in which the ~cc1 formation constitutes the limiting step

in the polymerization process which is stabilized by an interaction

with c�1. Therefore, the formation of the ½~cc1{c�1� complex

constitutes the first proaggregative species. Furthermore, during

the formation of this complex, a structural information exchange

should occur between ~cc1 and c�1. To reach the formation of a

nucleus, two changes of conformation are hence required. The

first one arises from the GST-cleavage of c1 to a conformer c�1
released as a random coil structure, that is not proaggregative. The

second change of conformation is an internal change of the

random coil c�1 into a proaggregative species ~cc1 that is still

monomeric.

Our approach also proved highly efficient when applied to

previously designed models [7,8], where it can be adapted and

used to pursue the research further. We believe it could be applied

to many other cases, providing both a unified framework and an

efficient way to carry out fast simulations, model discrimination

[28], inverse problem methods and analysis.

Materials and Methods

Model Derivation
To derive the continuous model, we first write a rescaled version

of the model, that makes use of typical orders of magnitude. Then,

quantifying our assumptions, we approximate sums by integrals

and differences by derivatives. Finally, from the equation for ci0 we

deduce the boundary condition for c(t,x~x0) (full details in

supplementary data S1).

Numerical Implementation
To avoid useless conversions, we implemented the PDE model

(9)–(12) with dimensioned numbers, and checked a posteriori that

the considered orders of magnitude fit the assumptions. We use an

explicit upwind scheme - finer methods can be used such as

WENO [18].

Parameter Estimation
The parameter estimation was performed by a least-square

approach. For i0~1,2,3,4, we searched for the optimal set of

parameters such that it minimized the quadratic distance between

the data points obtained by ThT measures and the simulated

curve of the mass, represented by
Ð

c(t,x)xdx in the PDE model or

by
P

ici in the ODE one. The minimization task was performed

by the CMAES algorithm [29]. It was run with 50 different initial

parameters sets. Then the optimal solution was used as an initial

guess and the minimization algorithm was run again 50 times.

Experimental Results
GST-PolyQ production. The GST-Q41 expression vector

was described by Masino et al [30]. GST-polyQ41 fusion protein

was produced in E.Coli BL21DE3 and purified by affinity

chromatography using Glutathione Sepharose affinity beads

(Pharmacia).

Fragmentation experiments. The Fragmentation experi-

ments were performed using an immersion sonotrod oscillating at

40 kHz. The size distributions of polyQ fibrils were monitored

before and after sonication by dynamic light scattering (DLS,

Wyatt).

Kinetic experiments. All polymerization experiments were

performed at 33uC. Aggregation was initiated by thrombin

addition (0.5 unit/ÂmM of GST-PolyQ41) leading to the release

of PolyQ41 peptide from GST. The aggregation was monitored

either by Thioflavine T (Tht) (100 mM) in a 96-well plate

fluorescence spectrometer or by a homemade multiwavelength

static light scattering/fluorescence system (SLS).
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Supporting Information

Figure S1 Parameter estimation considering each curve
separately. Time evolution of PolyQ41 polymerized mass for an

initial PolyQGST concentration equal to 285 mM. The experimental

results are plotted in dotted line and the best-fit curve in solide line. i0 is

set to 3. Best-fit parameters are kz
I ~0:67 h{1, k{

I ~0, kN
on~

7:8:102 M{2h{1, kN
off ~5:10{2 h{1, kmax

on ~1:2:109 M{1h{1,

imax~2:106, x2~0:2 imax.

(TIF)

Figure S2 Parameter estimation for Experimental Set 1
when i0 is set to 3. Time evolution of the adimensioned

PolyQ41 polymerized mass for an initial PolyQGST concentra-

tion equal to 100 mM (A), 285 mM (B), 420 mM(C). Dotted curves

represent experimental results. The solid curve is the best-fit. The

global error in L2 adimensioned norm was equal to 40% and the

optimal parameters are very close to those of Figure 1.

(TIF)

Figure S3 Parameter estimation for Experimental Set 1
when i0 is set to 1. Time evolution of the adimensioned

PolyQ41 polymerized mass for an initial PolyQGST concentra-

tion equal to 100 mM (A), 285 mM (B), 420 mM (C). Dotted curves

represent experimental results. The solid curve is the best-fit. The

global error in in L2 adimensioned norm was equal to 11%. The

best-fit parameters are kz
I ~0:65 h{1, k{

I ~0, kN
on~

7:10{6 M{1h{1, kN
off ~5:10{2h{1, kmax

on ~2:3:109M{1h{1,

x2~0:1 imax, imax~5:106:
(TIF)

Figure S4 Left: Size distribution of the fragmentation rate for an

aggregation of size 20, following a uniform distribution (black) or a

mechanical-based distribution (red) of fragmentation. Right:

Simulated normalized reaction progress curves of amyloid

formation for a uniform distribution (black) and a mechanical-

based distribution (red) of fragmentation. See below for the

numerical values.

(TIF)

Figure S5 Examples of simulated size distribution of
the aggregates for a uniform distribution (black) and a
mechanical-based distribution (red) of fragmentation.
See above for the numerical values.

(TIF)

Supplementary Data S1 Model derivation from ODE to
PDE.
(PDF)

Supplementary Data S2 Application to PolyQ41 poly-
merization.
(PDF)

Supplementary Data S3 Effect of the fragmentation
distribution on the kinetics of the Xue et al. model [1].
(PDF)

Author Contributions

Conceived and designed the experiments: MD HR. Performed the

experiments: SP FC HR. Analyzed the data: AB FC NL MD. Contributed

reagents/materials/analysis tools: PG LMT NL. Wrote the paper: MD SP

HR AB. Contributed equally to the design and supervision of this work:

MD HR.

References

1. Shastry BS (2003) Neurodegenerative disorders of protein aggregation.

Neurochemistry International 43: 1–7.

2. Ross C, Poirier M (2004) Protein aggregation and neurodegenerative disease.

Nature Medicine 10(Suppl): S10–S17.

3. Wasmer C, Lange A, Van Melckebeke H, Siemer AB, Riek R, et al. (2008)

Amyloidfibrils of the het-s(218–289) prion form a beta solenoid with a triangular

hydrophobic core. Science 319: 1523–1526.

4. Oosawa F, Asakura S (1975) Thermodynamics of the polymerization of protein.

Waltham, MA: Academic Press.

5. Dicko C, Kenney J, Vollrath F (2006) Fibrous Proteins: Amyloids, Prions and

Beta- proteins, volume 73. Amsterdam: Elsevier. 17–53.

6. Bishop M, Ferrone F (1984) Kinetics of nucleation-controlled polymerization. a

perturbation treatment for use with a secondary pathway. Biophysical Journal

46: 631–644.

7. Knowles TPJ, Waudby CA, Devlin GL, Cohen SIA, Aguzzi A, et al. (2009) An

Analytical Solution to the Kinetics of Breakable Filament Assembly. Science

326: 1533–1537.

8. Xue WF, Homans SW, Radford SE (2008) Systematic analysis of nucleation-

dependent polymerization reveals new insights into the mechanism of amyloid

self-assembly. PNAS 105: 8926–8931.

9. Masel J, Jansen V, Nowak M (1999) Quantifying the kinetic parameters of prion

replication. Biophysical Chemistry 77: 139–152.

10. Doumic M, Goudon T, Lepoutre T (2009) Scaling limit of a discrete prion

dynamics model. Communications in Mathematical Sciences 7: 839–865.

11. Collet JF, Goudon T, Poupaud F, Vasseur A (2002) The Becker–Döring system
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