
HAL Id: hal-00778035
https://hal.science/hal-00778035v1

Submitted on 18 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The brick polytope of a sorting network
Vincent Pilaud, Francisco Santos

To cite this version:
Vincent Pilaud, Francisco Santos. The brick polytope of a sorting network. European Journal of
Combinatorics, 2012, 33, pp.632-662. �10.1016/j.ejc.2011.12.003�. �hal-00778035�

https://hal.science/hal-00778035v1
https://hal.archives-ouvertes.fr


THE BRICK POLYTOPE OF A SORTING NETWORK

VINCENT PILAUD AND FRANCISCO SANTOS

Abstract. The associahedron is a polytope whose graph is the graph of flips
on triangulations of a convex polygon. Pseudotriangulations and multitriangu-
lations generalize triangulations in two different ways, which have been unified
by Pilaud & Pocchiola in their study of flip graphs on pseudoline arrangements
with contacts supported by a given sorting network.

In this paper, we construct the brick polytope of a sorting network, ob-
tained as the convex hull of the brick vectors associated to each pseudoline

arrangement supported by the network. We combinatorially characterize the
vertices of this polytope, describe its faces, and decompose it as a Minkowski

sum of matroid polytopes.
Our brick polytopes include Hohlweg & Lange’s many realizations of the

associahedron, which arise as brick polytopes for certain well-chosen sorting
networks. We furthermore discuss the brick polytopes of sorting networks
supporting pseudoline arrangements which correspond to multitriangulations
of convex polygons: our polytopes only realize subgraphs of the flip graphs on
multitriangulations and they cannot appear as projections of a hypothetical
multiassociahedron.

keywords. associahedron · sorting networks · pseudoline arrangements with
contacts · multitriangulations · zonotopes
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2 VINCENT PILAUD AND FRANCISCO SANTOS

1. Introduction

This paper focusses on polytopes realizing flip graphs on certain geometric and
combinatorial structures. Various examples of such polytopes are illustrated in Fig-
ure 2 and described along this introduction. The motivating example is the asso-
ciahedron whose vertices correspond to triangulations of a convex polygon P and
whose edges correspond to flips between them. The boundary complex of its polar
is (isomorphic to) the simplicial complex of crossing-free sets of internal diagonals
of P. The associahedron appears under various motivations ranging from geometric
combinatorics to algebra, and several different constructions have been proposed
(see [Lee89, Lod04, HL07, CSZ11]). We have represented two different realizations
of the 3-dimensional associahedron in Figure 2 (top). In fact, the associahedron is
a specific case of a more general polytope: the secondary polytope [GKZ94, BFS90]
of a d-dimensional set P of n points is a (n − d − 1)-dimensional polytope whose
vertices correspond to regular triangulations of P and whose edges correspond to
regular flips between them. Its boundary complex is (isomorphic to) the refinement
poset of regular polyhedral subdivisions of P. See Figure 2 (middle left). We refer
to [DRS10] for a reference on triangulations of point sets and of the structure of
their flip graphs.

Our work was motivated by two different generalizations of planar triangulations,
whose combinatorial structures extend that of the associahedron — see Figure 1:

(i) Let P be a point set in general position in the Euclidean plane, with i interior
points and b boundary points. A set of edges with vertices in P is pointed if
the edges incident to any point of P span a pointed cone. A pseudotriangle
on P is a simple polygon with vertices in P, which has precisely three convex
corners, joined by three concave chains. A (pointed) pseudotriangulation of P
is a decomposition of its convex hull into i+b−2 pseudotriangles on P [PV96,
RSS08]. Equivalently, it is a maximal pointed and crossing-free set of edges
with vertices in P. The pseudotriangulations polytope [RSS03] of the point
set P is a simple (2i+ b− 3)-dimensional polytope whose vertices correspond
to pseudotriangulations of P and whose edges correspond to flips between

Figure 1. Flips in four geometric structures: a triangulation of a
convex polygon, a triangulation of a general point set, a pseudo-
triangulation and a 2-triangulation of a convex polygon.
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Figure 2. Polytopal realizations of various flip graphs: two con-
structions of the 3-dimensional associahedron — the secondary
polytope of the regular hexagon (top left) and Loday’s construction
(top right); the secondary polytope of a set of 6 points (middle left);
a 3-dimensional pseudotriangulations polytope (middle right); the
3-dimensional permutahedron (bottom left); the 3-dimensional cy-
clohedron (bottom right).
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them. The boundary complex of its polar is (isomorphic to) the simplicial
complex of pointed crossing-free sets of internal edges on P. See Figure 2
(middle right).

(ii) A k-triangulation of a convex n-gon P is a maximal set of diagonals with no
(k+1)-crossing (no k+1 diagonals are mutually crossing) [CP92, PS09, Pil10].
We can forget the diagonals of the n-gon with less than k vertices of P on
one side: they cannot appear in a (k+1)-crossing and thus they belong to all
k-triangulations of P. The other edges are called k-relevant. The simplicial
complex ∆k

n of (k + 1)-crossing-free sets of k-relevant diagonals of P is a
topological sphere [Jon03, Stu11] whose facets are k-triangulations of P and
whose ridges are flips between them. It remains open whether or not this
simplicial complex is the boundary complex of a polytope.

In [PP10], Pilaud & Pocchiola developed a general framework which generalizes
both pseudotriangulations and multitriangulations. They study the graph of flips
on pseudoline arrangements with contacts supported by a given sorting network.
The present paper is based on this framework. Definitions and basic properties are
recalled in Section 2.

In this paper, we define and study the brick polytope of a sorting network N ,
obtained as the convex hull of vectors associated to each pseudoline arrangement
supported by N . Our main result is the characterization of the pseudoline arrange-
ments which give rise to the vertices of the brick polytope, from which we derive a
combinatorial description of the faces of the brick polytope. We furthermore pro-
vide a natural decomposition of the brick polytope into a Minkowski sum of ma-
troid polytopes. These structural results are presented in Section 3. We illustrate
the results of this section with particular sorting networks whose brick polytopes
are graphical zonotopes. Among them, the permutahedron is a well-known simple
(n− 1)-dimensional polytope whose vertices correspond to permutations of [n] and
whose edges correspond to pairs of permutations which differ by an adjacent trans-
position. Its boundary complex is (isomorphic to) the refinement poset of ordered
partitions of [n]. See Figure 2 (bottom left).

We obtain our most relevant examples of brick polytopes in Section 4. We ob-
serve that for certain well-chosen sorting networks, our brick polytopes coincide (up
to translation) with Hohlweg & Lange’s realizations of the associahedron [HL07].
We therefore provide a complementary point of view on their polytopes and we com-
plete their combinatorial description. We obtain in particular a natural Minkowski
sum decomposition of these polytopes into matroid polytopes.

Finally, Section 5 is devoted to our initial motivation for the construction of the
brick polytope. We wanted to find a polytopal realization of the simplicial com-
plex ∆k

n of (k + 1)-crossing-free sets of k-relevant diagonals of the n-gon. Using
Pilaud & Pocchiola’s correspondence between multitriangulations and pseudoline
arrangement covering certain sorting networks [PP10], we construct a point config-
uration in R

n−2k with one point associated to each k-triangulation of the n-gon. We
had good reasons to believe that this point set could be a projection of the polar of
a realization of ∆k

n: the graph of the corresponding brick polytope (the convex hull
of this point configuration) is a subgraph of flips, and all sets of k-triangulations
whose corresponding points belong to a given face of this brick polytope are faces
of ∆k

n. However, we prove that our point configuration cannot be a projection of
the polar of a realization of ∆k

n.
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After the completion of a preliminary version of this paper, Stump pointed out to
us his paper [Stu11] which connects the multitriangulations to the type A subword
complexes of Knutson & Miller [KM04]. The latter can be visually interpreted as
sorting networks (see Section 2.3). This opened the perspective of the generalization
of brick polytopes to subword complexes on Coxeter groups. This generalization
was achieved by Pilaud & Stump in [PS11]. This construction yields in particular
the generalized associahedra of Hohlweg, Lange & Thomas [HLT11] for certain
particular subword complexes described by Ceballos, Labbé & Stump [CLS11]. In
the present paper, we focus on the classical situation of type A, which already
reflects the essence of the construction. The only polytope of different type which
appears here is the cyclohedron via its standard embedding in the associahedron.
The vertices of the cyclohedron correspond to centrally symmetric triangulations
of a centrally symmetric convex (2n)-gon and its edges correspond to centrally
symmetric flips between them (i.e. either a flip of a centrally symmetric diagonal
or a simultaneous flip of a pair of symmetric diagonals). The boundary complex of
its polar is (isomorphic to) the refinement poset of centrally symmetric polygonal
subdivisions of the (2n)-gon. See Figure 2 (bottom right).

We moreover refer to [PS11] for further properties of the brick polytope which
appeared when generalizing it to Coxeter groups of finite types. They relate in
particular the graph of the brick polytope to a quotient of the weak order and the
normal fan of the brick polytope to the Coxeter fan.

2. The brick polytope of a sorting network

2.1. Pseudoline arrangements on sorting networks. Consider a set of n hori-
zontal lines (called levels, and labeled from bottom to top), and place m vertical
segments (called commutators, and labeled from left to right) joining two consecu-
tive horizontal lines, such that no two commutators have a common endpoint — see
e.g. Figure 3. Throughout this paper, we fix such a configuration N that we call
a network. The bricks of N are its m − n + 1 bounded cells. We say that a net-
work is alternating when the commutators adjacent to each intermediate level are
alternatively located above and below it.

Figure 3. Three networks with 5 levels, 14 commutators and 10
bricks. The first two are alternating.

A pseudoline is an abscissa monotone path on the network N . A contact be-
tween two pseudolines is a commutator whose endpoints are contained one in each
pseudoline, and a crossing between two pseudolines is a commutator traversed by
both pseudolines. A pseudoline arrangement (with contacts) is a set of n pseudo-
lines supported by N such that any two of them have precisely one crossing, some
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Figure 4. Two pseudoline arrangements, both supported by the
rightmost network N of Figure 3, and related by a flip. The left
one is the greedy pseudoline arrangement Γ(N ), whose flips are all
decreasing. It is obtained by sorting the permutation (5, 4, 3, 2, 1)
according to the network N .

(perhaps zero) contacts, and no other intersection — see Figure 4. Observe that
in a pseudoline arrangement, the pseudoline which starts at level ℓ necessarily ends
at level n+ 1− ℓ and goes up at n− ℓ crossings and down at ℓ− 1 crossings. Note
also that a pseudoline arrangement supported by N is completely determined by
its
(

n
2

)

crossings, or equivalently by its m −
(

n
2

)

contacts. Let Arr(N ) denote the
set of pseudoline arrangements supported by N . We say that a network is sorting
when it supports at least one pseudoline arrangement.

2.2. The graph of flips. There is a natural flip operation which transforms a pseu-
doline arrangement supported by N into another one by exchanging the position
of a contact. More precisely, if V is the set of contacts of a pseudoline arrangement
Λ supported by N , and if v ∈ V is a contact between two pseudolines of Λ which
cross at w, then (V r {v}) ∪ {w} is the set of contacts of another pseudoline ar-
rangement supported by N — see Figure 4. The graph of flips G(N ) is the graph
whose nodes are the pseudoline arrangements supported by N and whose edges are
the flips between them. This graph was studied in [PP10], whose first statement is
the following result:

Theorem 2.1 ([PP10]). The graph of flips G(N ) of a sorting network N with n
levels and m commutators is

(

m−
(

n
2

))

-regular and connected.

Regularity of the graph of flips is obvious since every contact induces a flip. For
the connectivity, define a flip to be decreasing if the added contact lies on the left
of the removed contact. The oriented graph of decreasing flips is clearly acyclic
and is proved to have a unique source in [PP10] (and thus, to be connected).
This source is called the greedy pseudoline arrangement supported by N and is
denoted by Γ(N ). It is characterized by the property that any of its contacts is
located to the right of its corresponding crossing. It can be computed by sorting
the permutation (n, n − 1, . . . , 2, 1) according to the sorting network N — see
Figure 4 (left). We will use this particular pseudoline arrangement later. We
refer to [PP10] for further details.

For any given subset γ of the commutators ofN , we denote by Arr(N|γ) the set of
pseudoline arrangements supported by N and whose set of contacts contains γ. The
arrangements of Arr(N|γ) are in obvious correspondence with that of Arr(N r γ),
whereNrγ denotes the network obtained by erasing the commutators of γ inN . In
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particular, the subgraph of G(N ) induced by Arr(N|γ) is isomorphic to G(N r γ),
and thus Theorem 2.1 ensures that this subgraph is connected for every γ.

More generally, let ∆(N ) denote the simplicial complex of all sets of commutators
of N contained in the set of contacts of a pseudoline arrangement supported by N .
In other words, a set γ of commutators of N is a face of ∆(N ) if and only if the
network N r γ is still sorting. This complex is pure of dimension m−

(

n
2

)

− 1, its
maximal cells correspond to pseudoline arrangements supported by N and its ridge
graph is the graph of flips G(N ). The previous connectedness properties ensure
that ∆(N ) is an abstract polytope [Sch97], and it is even a combinatorial sphere
(see Corollary 5.7 and the discussion in Section 5.3). These properties motivate the
following question:

Question 2.2. Is ∆(N ) the boundary complex of a
(

m−
(

n
2

))

-dimensional simpli-
cial polytope?

In this article, we construct a polytope whose graph is a subgraph of G(N ), and
which combinatorially looks like “a projection of” the dual complex of ∆(N ). More
precisely, we associate a vector ω(Λ) ∈ R

n to each Λ ∈ Arr(N ), and we consider
the convex hull Ω(N ) := conv {ω(Λ) | Λ ∈ Arr(N )} ⊂ R

n of all these vectors. The
resulting polytope has the property that for every face F of Ω(N ) there is a set γ of
commutators of N such that Arr(N|γ) = {Λ ∈ Arr(N ) | ω(Λ) ∈ F}. In particular,
when the dimension of Ω(N ) is m −

(

n
2

)

, our construction answers Question 2.2
in the affirmative. The relationship between our construction and Question 2.2 is
discussed in more details in Section 5.3.

2.3. Subword complexes on finite Coxeter groups. Before presenting our
construction of the brick polytope of a sorting network, we make a little detour
to connect the abovementioned simplicial complexes ∆(N ) with the subword com-
plexes of Knutson & Miller [KM04].

Let (W,S) be a finite Coxeter system, that is, W is a finite reflection group and
S is a set of simple reflections minimally generating W . See for example [Hum90]
for background. Let Q be a word on the alphabet S and let ρ be an element
of W . The subword complex ∆(Q, ρ) is the pure simplicial complex of subwords
of Q whose complements contain a reduced expression of ρ [KM04]. The vertices of
this simplicial complex are labeled by the positions in the word Q (note that two
positions are different even if the letters of Q at these positions coincide), and its
facets are the complements of the reduced expressions of ρ in the word Q.

There is a straightforward combinatorial isomorphism between:

(i) the simplicial complex ∆(N ) discussed in the previous section, where N is a
sorting network on n levels and m commutators; and

(ii) the subword complex ∆(Q,w◦), where the underlying Coxeter group W is the
symmetric group Sn on n elements, the simple system S is the set of adjacent
transpositions τi :=(i, i + 1), the word Q = τi1τi2 . . . τim is formed according
to the positions of the commutators of N — the jth leftmost commutator of
N lies between the ij

th and (ij + 1)th levels of N —, and the permutation
w◦ = [n, n− 1, . . . , 2, 1] is the longest element of Sn — its reduced expressions
on S all have the maximal length

(

n
2

)

.

Since Pilaud & Pocchiola [PP10] were not aware of the definition of the sub-
word complex, they studied the simplicial complexes ∆(N ) independently and re-
discovered some relevant properties which hold for any subword complex. The
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connection between multitriangulations and subword complexes was first done by
Stump [Stu11], providing the powerful toolbox of Coxeter combinatorics to the
playground.

In particular, Knutson & Miller prove in [KM04] that the subword complex
∆(Q, ρ) is either a combinatorial sphere or a combinatorial ball, depending on
whether the Demazure product of Q equals ρ or not. The interested reader can
refer to their article for details on this property and for other known properties
on subword complexes. In the conclusion of their article, Question 6.4 asks in
particular whether any spherical subword complex is the boundary complex of a
convex simplicial polytope, which is a generalized version of Question 2.2 stated
above.

Throughout our article, we only consider subword complexes on the Coxeter
system (Sn, {τi | i ∈ [n− 1]}) and with ρ = w◦. However, we want to mention that
Pilaud & Stump [PS11] extended the construction of this paper to any subword
complex on any Coxeter system. This generalized construction yields in particular
the generalized associahedra of Hohlweg, Lange & Thomas [HLT11] for certain
particular subword complexes described by Ceballos, Labbé & Stump [CLS11].

2.4. The brick polytope. The subject of this paper is the following polytope:

Definition 2.3. Let N be a sorting network with n levels. The brick vector of
a pseudoline arrangement Λ supported by N is the vector ω(Λ) ∈ R

n whose ith

coordinate is the number of bricks of N located below the ith pseudoline of Λ (the
one which starts at level i and finishes at level n + 1 − i). The brick polytope
Ω(N ) ⊂ R

n of the sorting network N is the convex hull of the brick vectors of all
pseudoline arrangements supported by N :

Ω(N ) := conv {ω(Λ) | Λ ∈ Arr(N )} ⊂ R
n.

This article aims to describe the combinatorial properties of this polytope in
terms of the properties of the supporting network. In Section 3, we provide a
characterization of the pseudoline arrangements supported by N whose brick vec-
tors are vertices of the brick polytope Ω(N ), from which we derive a combinatorial
description of the faces of the brick polytope. We also provide a natural decomposi-
tion of Ω(N ) into a Minkowski sum of simpler polytopes. In Section 4, we recall the
duality between the triangulations of a convex polygon and the pseudoline arrange-
ments supported by certain networks [PP10], whose brick polytopes coincide with
Hohlweg & Lange’s realizations of the associahedron [HL07]. We finally discuss
in Section 5 the properties of the brick polytopes of more general networks which
support pseudoline arrangements corresponding to multitriangulations of convex
polygons [PS09, PP10].

We start by observing that the brick polytope is not full dimensional. Define
the depth of a brick of N to be the number of levels located above it, and let D(N )
be the sum of the depths of all the bricks of N . Since any pseudoline arrangement
supported by N covers each brick as many times as its depth, all brick vectors are
contained in the following hyperplane:

Lemma 2.4. The brick polytope Ω(N ) ⊂ R
n is contained in the hyperplane of

equation
∑n

i=1 xi = D(N ).

The dimension of Ω(N ) is thus at most n− 1, but could be smaller. We obtain
the dimension of Ω(N ) in Corollary 3.14.
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We can also describe immediately the action of the vertical and horizontal reflec-
tions of the network on the brick polytope. The brick polytope of the network v(N )
obtained by reflecting N through the vertical axis is the image of Ω(N ) under the
affine transformation (x1, . . . , xn) 7→ (xn, . . . , x1). Similarly, the brick polytope of
the network h(N ) obtained by reflecting N through the horizontal axis is the image
of Ω(N ) under the affine transformation (x1, . . . , xn) 7→ (m−n+1)11−(xn, . . . , x1).

2.5. Examples. Before going on, we present some examples which will illustrate
our results throughout the paper. Further motivating examples will be studied in
Sections 4 and 5.

Example 2.5 (Reduced networks). A sorting networkN with n levels andm =
(

n
2

)

commutators supports a unique pseudoline arrangement. Consequently, the graph
of flips G(N ), the simplicial complex ∆(N ) and the brick polytope Ω(N ) are all
reduced to a single point. Such a network is said to be reduced.

Example 2.6 (2-level networks). Consider the network Xm formed by two levels
related by m commutators. We obtain a pseudoline arrangement by choosing any
of these commutators as the unique crossing between two pseudolines supported
by Xm. Thus, the graph of flips G(Xm) is the complete graph on m vertices, and
the simplicial complex ∆(Xm) is a (m−1)-dimensional simplex. The brick polytope
Ω(Xm) is, however, a segment.

Figure 5. The three pseudoline arrangements supported by the
network X3 with two levels and three commutators.

The brick vector of the pseudoline arrangement whose crossing is the ith commuta-
tor of Xm is the vector (m−i, i−1). Thus, the brick polytope Ω(Xm) is the segment
from (m− 1, 0) to (0,m− 1). Its endpoints are the brick vectors of the pseudoline
arrangements whose crossings are respectively the first and the last commutator
of Xm. The former is the source (i.e. the greedy pseudoline arrangement) and the
latter is the sink in the oriented graph of decreasing flips. The polytope Ω(Xm) is
contained in the hyperplane of equation x+ y = m− 1.

Example 2.7 (3-level alternating networks). Let m ≥ 3 be an odd integer. Con-
sider the network Ym formed by 3 levels related by m alternating commutators.
Any choice of 3 alternating crossings provides a pseudoline arrangement supported
by Ym. Consequently, Ym supports precisely 1

24 (m − 1)m(m + 1) pseudoline ar-
rangements. The brick polytope Ω(Ym) is a single point when m = 3, a pentagon
when m = 5, and a hexagon for any m ≥ 7. We have represented in Figure 6 the
projection of Ω(Y11) on the first and third coordinates plane, in such a way that
the transformation (x1, x3) 7→ (x3, x1) appears as a vertical reflection.

Example 2.8 (Duplicated networks). Consider a reduced network N with n levels
and

(

n
2

)

commutators. For any distinct i, j ∈ [n], we labeled by {i, j} the commu-

tator of N where the ith and jth pseudolines of the unique pseudoline arrangement
supported by N cross. Let Γ be a connected graph on [n]. We define Z(Γ) to be the



10 VINCENT PILAUD AND FRANCISCO SANTOS

Figure 6. The brick polytope Ω(Y11) of a 3-level alternating net-
work, projected on the first and third coordinates plane. Next to
each vertex is drawn the corresponding pseudoline arrangement,
and next to each edge is drawn the corresponding set of contacts.

network with n levels and m =
(

n
2

)

+|Γ| commutators obtained from N by duplicat-
ing the commutators labeled by the edges of Γ — see Figure 7. We say that Z(Γ) is a
duplicated network. Observe that a pseudoline arrangement supported by Z(Γ) has
a crossing for each commutator which has not been duplicated, and a crossing and a
contact among each pair of duplicated commutators. Thus, Z(Γ) supports precisely
2|Γ| different pseudoline arrangements, the graph of flips G(Z(Γ)) is the graph of
the |Γ|-dimensional cube, and more generally, the simplicial complex ∆(Z(Γ)) is
the boundary complex of the |Γ|-dimensional cross-polytope. As an application
of the results of Section 3, we will see that the brick polytope of the duplicated
network Z(Γ) is a graphical zonotope — see Examples 3.4, 3.19, 3.25, and 3.32. In
particular, when Γ is complete we obtain the permutahedron, while when Γ is a
tree, we obtain a cube.

Figure 7. The graph of flips of the duplicated network Z(K3).
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3. Combinatorial description of the brick polytope

In this section, we characterize the vertices and describe the faces of the brick
polytope Ω(N ). For this purpose, we study the cone of the brick polytope Ω(N ) at
the brick vector of a given pseudoline arrangement supported by N . Our main tool
is the incidence configuration of the contact graph of a pseudoline arrangement,
which we define next.

3.1. The contact graph of a pseudoline arrangement. Let N be a sorting
network with n levels and m commutators, and let Λ be a pseudoline arrangement
supported by N .

Definition 3.1. The contact graph of Λ is the directed multigraph Λ# with a
node for each pseudoline of Λ and an arc for each contact of Λ oriented from the
pseudoline passing above the contact to the pseudoline passing below it.

2

1

5

4

3

2

1

5

4

3

Figure 8. The contact graphs of the pseudoline arrangements of
Figure 4. The connected components are preserved by the flip.

The nodes of the contact graph come naturally labeled by [n]: we label by ℓ the
node corresponding to the pseudoline of Λ which starts at level ℓ and finishes at
level n + 1 − ℓ. With this additional labeling, the contact graph provides enough
information to characterize its pseudoline arrangement:

Lemma 3.2. Let N be a network and Λ# be a graph on [n]. If Λ# is the contact
graph of a pseudoline arrangement Λ supported by N , then Λ can be reconstructed
from Λ# and N .

Proof. To obtain a pseudoline arrangement from its contact graph Λ#, we sort the
permutation (n, n−1, . . . , 2, 1) on N according to Λ#. We sweep the network from
left to right, and start to draw the ℓth pseudoline at level ℓ. When we reach a
commutator of N with pseudoline i above and pseudoline j below,

• if there remains an arc (i, j) in Λ#, we insert a contact in place of our
commutator and delete an arc (i, j) from Λ#;

• otherwise, we insert a crossing in place of our commutator: the indices i
and j of the permutation get sorted at this crossing.

This procedures is correct since the contacts between two pseudolines i < j are all
directed from i to j before their crossing and from j to i after their crossing. �

Example 3.3. We already mentioned a relevant example of the sorting procedure
of the previous proof: the greedy pseudoline arrangement Γ(N ) is obtained by
sorting the permutation (n, n−1, . . . , 2, 1) on N and inserting the crossings as soon
as possible. In other words any arc of the contact graph of the greedy pseudoline
arrangement is sorted (i.e. of the form (i, j) with i < j) — see Figure 8 (left).
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Example 3.4 (Duplicated networks, continued). For a connected graph Γ, consider
the duplicated network Z(Γ) defined in Example 2.8. A pseudoline arrangement
supported by Z(Γ) has one contact among each pair of duplicated commutators,
and thus its contact graph is an oriented copy of Γ. Reciprocally, any orientation
on Γ is the contact graph of a pseudoline arrangement: this follows from Lemma 3.2
since Z(Γ) supports 2|Γ| pseudoline arrangements, but one can also easily recon-
struct the pseudoline arrangement whose contact graph is a given orientation on Γ.

Note that the contact graphs of the pseudoline arrangements supported by a
given network have in general distinct underlying undirected graphs (see Figure 8).

Remark 3.5. In fact, any labeled directed multigraph arises as the contact graph
of pseudoline arrangement on a certain sorting network. Indeed, consider a labeled
directed multigraph G on n vertices. Consider the unique pseudoline arrangement Λ
supported by a reduced network N with n levels and

(

n
2

)

commutators. For any
directed edge (i, j) ∈ G with i < j (resp. with i > j), insert a new commutator
immediately to the right (resp. left) of the crossing between the ith and jth pseu-
dolines of Λ. Then G is precisely the contact graph Λ# of Λ (seen as a pseudoline
arrangement supported by the resulting network).

Let Λ and Λ′ denote two pseudoline arrangements supported by N and related
by a flip involving their ith and jth pseudolines — see Figure 8 for an example. Then
the directed multigraphs obtained by merging the vertices i and j in the contact
graphs Λ# and Λ′# coincide. In particular, a flip preserves the connected compo-
nents of the contact graph. Since the flip graph G(N ) is connected (Theorem 2.1),
this implies the following result:

Lemma 3.6. The contact graphs of all pseudoline arrangements supported by N
have the same connected components.

We call a sorting network reducible (resp. irreducible) when the contact graphs
of the pseudoline arrangements it supports are disconnected (resp. connected).

Our next statement describes the structure of the simplicial complex ∆(N ) and of
the brick polytope Ω(N ) associated to a reducible sorting network N . To formalize
it, we need the following definition. If N is a network and Θ is a set of disjoint
abscissa monotone curves supported by N , the restriction of N to Θ is the network
obtained by keeping only the curves of Θ and the commutators between them, and
by stretching the curves of Θ. In other words, it has |Θ| levels and a commutator
between its ith and (i + 1)th levels for each commutator of N joining the ith and
(i+ 1)th curves of Θ — see Figure 9 (left).

It makes sense to speak of the restrictionN (U) ofN to a connected component U
of the contact graphs of the pseudoline arrangements supported by N . Indeed, if Λ
is supported by N , the restriction of N to the levels of the subarrangement formed
by the pseudolines of Λ labeled by U does not depend on the choice of Λ — see
Figure 9 (right). Furthermore, there is an obvious correspondence between the
pseudoline arrangements supported by N (U) and the subarrangements of the ar-
rangements supported by N formed by their pseudolines in U . In particular, N (U)
is an irreducible sorting network; we say that it is an irreducible component of N .

Proposition 3.7. Let N be a sorting network whose irreducible components are
N1, . . . ,Np. Then the simplicial complex ∆(N ) is isomorphic to the join of the
simplicial complexes ∆(N1), . . . ,∆(Np) and the brick polytope Ω(N ) is a translate
of the product of the brick polytopes Ω(N1), . . . ,Ω(Np).
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3

Figure 9. A sorting network and a pseudoline arrangement cover-
ing it (top). Their restriction to the connected component {1, 3, 5}
of the contact graph (bottom).

Proof. The commutators of N can be partitioned into p + 1 sets: one set cor-
responding to each irreducible component of N , and the set X of commutators
between two different connected components in the contact graphs. All pseudo-
line arrangements supported by N have crossings at the commutators of X, and
are obtained by choosing independently their subarrangements on the irreducible
components N1, . . . ,Np. The result immediately follows. �

In particular, the dimension of the brick polytope of a sorting network with n lev-
els and p irreducible components is at most n−p. We will see in Corollary 3.14 that
this is the exact dimension. For example, the brick polytope of a reduced network
(see Example 2.5) has dimension 0: it supports a unique pseudoline arrangement
whose contact graph has no edge, and its brick polytope is a single point.

Proposition 3.7 enables us to only focus on irreducible sorting networks through-
out this article. Among them, the following networks have the fewest commutators:

Definition 3.8. An irreducible sorting network N is minimal if it satisfies the
following equivalent conditions:

(i) N has n levels and m =
(

n
2

)

+ n− 1 commutators.
(ii) The contact graph of a pseudoline arrangement supported by N is a tree.
(iii) The contact graphs of all pseudoline arrangements supported by N are trees.

For example, the networks of Figure 3 all have 5 levels and 14 commutators.
The rightmost is reducible, but the other two are minimal. To be convinced, draw
the greedy pseudoline arrangement on these networks, and check that its contact
graph is connected.

We come back to minimal irreducible sorting networks at the end of Section 3.4
since their brick polytopes are of particular interest.

3.2. The incidence cone of a directed multigraph. In this section, we briefly
recall classical properties of the vector configuration formed by the columns of the
incidence matrix of a directed multigraph. We fix a directed multigraph G on n
vertices, whose underlying undirected graph is connected. Let (e1, . . . , en) be the
canonical basis of Rn and 11 :=

∑

ei.
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Definition 3.9. The incidence configuration of the directed multigraph G is the
vector configuration I(G) := {ej − ei | (i, j) ∈ G} ⊂ R

n. The incidence cone of G
is the cone C(G) ⊂ R

n generated by I(G), i.e. its positive span.

In other words, the incidence configuration of a directed multigraph consists of
the column vectors of its incidence matrix. Observe that the incidence cone is
contained in the linear subspace of equation 〈11 | x〉 = 0. We will use the following
relations between the graph properties of G and the orientation properties of I(G),
which can be summed up by saying that the (oriented and unoriented) matroid
of G coincides with that of its incidence configuration I(G). See [BLS+99] for an
introduction and reference on oriented matroids. In particular, Section 1.1 of that
book explores the incidence configuration of a directed graph.

Remark 3.10. Consider a subgraph H of G. Then the vectors of I(H):

(1) are independent if and only if H has no (not necessarily oriented) cycle,
that is, if H is a forest;

(2) span the hyperplane 〈11 | x〉 = 0 if and only if H is connected and spanning;
(3) form a basis of the hyperplane 〈11 | x〉 = 0 if and only ifH is a spanning tree;
(4) form a circuit if and only if H is a (not necessarily oriented) cycle; the

positive and negative parts of the circuit correspond to the subsets of edges
oriented in one or the other direction along this cycle; in particular, I(H)
is a positive circuit if and only if H is an oriented cycle;

(5) form a cocircuit if and only if H is a minimal (not necessarily oriented) cut;
the positive and negative parts of the cocircuit correspond to the edges
in one or the other direction in this cut; in particular, I(H) is a positive
cocircuit if and only if H is an oriented cut.

This remark on the incidence configuration translates into the following remark
on the incidence cone:

Remark 3.11. Consider a subgraph H of G. The incidence configuration I(H) is
the set of vectors of I(G) contained in a k-face of C(G) if and only if H has n− k
connected components and the quotient graph G/H is acyclic. In particular:

(1) The cone C(G) has dimension n− 1 (since we assumed that the undirected
graph underlying G is connected).

(2) The cone C(G) is pointed if and only if G is an acyclic directed graph.
(3) If G is acyclic, it induces a partial order on its set of nodes. The rays

of C(G) correspond to the edges of the Hasse diagram of G. The cone is
simple if and only if the Hasse diagram of G is a tree.

(4) The facets of C(G) correspond to the complements of the minimal directed
cuts in G. Given a minimal directed cut in G, the characteristic vector of
its sink is a normal vector of the corresponding facet.

Example 3.12. If G is the complete directed graph on n vertices, with one arc
from any node to any other (and thus, two arcs between any pair of nodes, one in
each direction), then its incidence configuration I(G) = {ei − ej | i, j ∈ [n]} is the
root system of type A. See [Hum90].

If G is an acyclic orientation on the complete graph, then its incidence configu-
ration I(G) is a positive system of roots [Hum90]. The Hasse diagram of the order
induced by G is a path, thus the incidence cone C(G) is simple. Its rays are spanned
by the simple roots of the positive system I(G).
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3.3. The vertices of the brick polytope. Let N be an irreducible sorting net-
work supporting a pseudoline arrangement Λ. We use the contact graph Λ# to
describe the cone of the brick polytope Ω(N ) at the brick vector ω(Λ):

Theorem 3.13. The cone of the brick polytope Ω(N ) at the brick vector ω(Λ) is
precisely the incidence cone C(Λ#) of the contact graph Λ# of Λ:

cone {ω(Λ′)− ω(Λ) | Λ′ ∈ Arr(N )} = cone
{

ej − ei
∣

∣ (i, j) ∈ Λ#
}

.

Proof. Assume that Λ′ is obtained from Λ by flipping a contact from its ith pseu-
doline to its jth pseudoline. Then the difference ω(Λ′)−ω(Λ) is a positive multiple
of ej − ei. This immediately implies that the incidence cone C(Λ#) is included in
the cone of Ω(N ) at ω(Λ).

Reciprocally, we have to prove that any facet F of the cone C(Λ#) is also a facet
of the brick polytope Ω(N ). According to Remark 3.11(4), there exists a minimal
directed cut from a source set U to a sink set V (which partition the vertices of Λ#)
such that 11V :=

∑

v∈V ev is a normal vector of F . We denote by γ the commutators

of N which correspond to the arcs of Λ# between U and V . We claim that for any
pseudoline arrangement Λ′ supported by N , the scalar product 〈11V | ω(Λ′)〉 equals
〈11V | ω(Λ)〉 when γ is a subset of the contacts of Λ′, and is strictly bigger than
〈11V | ω(Λ)〉 otherwise.

Remember first that the set of all pseudoline arrangements supported by N and
whose set of contacts contains γ is connected by flips. Since a flip between two
such pseudoline arrangements necessarily involves either two pseudolines of U or
two pseudolines of V , the corresponding incidence vector is orthogonal to 11V . Thus,
the scalar product 〈11V | ω(Λ′)〉 is constant on all pseudoline arrangements whose
set of contacts contains γ.

Reciprocally, we consider a pseudoline arrangement Λ′ supported by N which
minimizes the scalar product 〈11V | ω(Λ′)〉. There is clearly no arc from U to V
in Λ′#, otherwise flipping the corresponding contact in Λ′ would decrease the value
of 〈11V | ω(Λ′)〉. We next prove that we can join Λ to Λ′ by flips involving two
pseudolines of U or two pseudolines of V . As a first step, we show that we can
transform Λ and Λ′ into pseudoline arrangements Λ̂ and Λ̂′ in which the first pseu-
doline coincide, using only flips involving two pseudolines of U or two pseudolines
of V . We can then conclude by induction on the number of levels of N .

Assume first that the first pseudoline (the one which starts at level 1 and ends
at level n) of Λ and Λ′ is in U . We sweep this pseudoline from left to right in Λ.
If there is a contact above and incident to it, the above pseudoline must be in U .
Otherwise we would have an arc between V and U in Λ#. Consequently, we are
allowed to flip this contact. By doing this again and again we obtain a pseudoline
arrangement Λ̂ whose first pseudoline starts at the bottom leftmost point and goes
up whenever possible until getting to the topmost level. Since this procedures only
relies on the absence of arc from V to U in Λ#, we can proceed identically on Λ′

to get a pseudoline arrangement Λ̂′ with the same first pseudoline. Finally, if the
first pseudoline of Λ and Λ′ is in V , then we can argue similarly but sweeping the
pseudoline from right to left. �

By Remark 3.11(1) and Proposition 3.7, we obtain the dimension of Ω(N ):
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Corollary 3.14. The brick polytope of an irreducible sorting network with n levels
has dimension n − 1. In general, the brick polytope of a sorting network with n
levels and p irreducible components has dimension n− p.

According to Remark 3.11(2), Theorem 3.13 also characterizes the pseudoline
arrangements whose brick vector is a vertex of Ω(N ):

Corollary 3.15. The brick vector ω(Λ) is a vertex of the brick polytope Ω(N ) if
and only if the contact graph Λ# of Λ is acyclic.

For example, the brick vector of the greedy pseudoline arrangement Γ(N ) is al-
ways a vertex of Ω(N ) since its contact graph is sorted (see Example 3.3). Similarly,
the brick vector of the sink of the oriented graph of decreasing flips is always a ver-
tex of Ω(N ). These two greedy pseudoline arrangements can be the only vertices
of the brick polytope, as happens for 2-level networks:

Example 3.16 (2-level networks, continued). Let Xm be the sorting network
formed by two levels related by m commutators. The contact graph of the pseudo-
line arrangement whose unique crossing is the ith commutator of Xm is a multigraph
with two vertices and m− 1 edges, m− i of them in one direction and i− 1 in the
other. Thus, only the first and last commutators give pseudoline arrangements with
acyclic contact graphs.

In general, the map ω : Arr(N ) → R
n (which associates to a pseudoline arrange-

ment its brick vector) is not injective on Arr(N ). For example, many interior points
appear several times in Examples 2.7 and 2.8. However, the vertices of the brick
polytope have precisely one preimage by ω:

Proposition 3.17. The map ω : Arr(N ) → R
n restricts to a bijection between the

pseudoline arrangements supported by N whose contact graphs are acyclic and the
vertices of the brick polytope Ω(N ).

Proof. According to Corollary 3.15, the map ω defines a surjection from the pseudo-
line arrangements supported by N whose contact graphs are acyclic to the vertices
of the brick polytope Ω(N ). To prove injectivity, we use an inductive argument
based on the following claims:

(i) the greedy pseudoline arrangement Γ(N ) is the unique preimage of ω(Γ(N ));
(ii) if a vertex of Ω(N ) has a unique preimage by ω, then so do its neighbors in

the graph of Ω(N ).

To prove (i), consider a pseudoline arrangement Λ supported by N such that
ω(Λ) = ω(Γ(N )). According to Theorem 3.13, the contact graphs Λ# and Γ(N )#

have the same incidence cone, which ensures that all arcs of Λ# are sorted. In other
words, all flips in Λ are decreasing. Since this property characterizes the greedy
pseudoline arrangement, we obtain that Λ = Γ(N ).

To prove (ii), consider two neighbors v, v′ in the graph of Ω(N ). Let i, j ∈ [n] be
such that v′ − v = α(ej − ei) for some α > 0. Let Λ be a pseudoline arrangement
supported by N such that v = ω(Λ). Let Λ′ denote the pseudoline arrangement
obtained from Λ by flipping the rightmost contact between its ith and jth pseudo-
lines if i < j and the leftmost one if i > j. Then v′ = ω(Λ′). In particular, if v has
two distinct preimages by ω, then so does v′. This proves (ii). �

Corollary 3.18. The graph of the brick polytope is a subgraph of G(N ) whose
vertices are the pseudoline arrangements with acyclic contact graphs.
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Example 3.28 shows that the graph of the brick polytope is not always the sub-
graph of G(N ) induced by the pseudoline arrangements with acyclic contact graphs.

Example 3.19 (Duplicated networks, continued). For a connected graph Γ, con-
sider the duplicated network Z(Γ) defined in Example 2.8. The contact graphs of
the 2|Γ| pseudoline arrangements supported by Z(Γ) are the 2|Γ| orientations on Γ,
and two pseudoline arrangements are related by a flip if their contact graphs differ
in the orientation of a single edge of Γ. According to Proposition 3.17, the vertices
of the brick polytope Ω(Z(Γ)) correspond to the acyclic orientations on Γ.

When Γ = Kn is the complete graph on n vertices, the contact graphs of the pseu-
doline arrangements supported by Z(Kn) are the tournaments on [n], the vertices

123

321

132

231

213

312

4321

4312
3421 4231

3412

2413

2314

3214

4213

1423

1432

2431

1324

1234

1243

1342

2341

3241

3142

2143

2134

3124

4123

4132

Figure 10. The brick polytope Ω(Z(Kn)) is (a translate of) the
permutahedron Πn. For space reason, we have represented only
certain arrangements. The rest of the drawing is left to the reader.
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of Ω(Z(Kn)) correspond to the permutations of [n], and the graph of Ω(Z(Kn)) is
a subgraph of that of the permutahedron Πn = conv

{

(σ(1), . . . , σ(n))T
∣

∣ σ ∈ Sn

}

.
Since Πn is simple and both Ω(Z(Kn)) and Πn have dimension n − 1, they must
have in fact the same graph, and consequently the same combinatorial structure (by
simplicity [BML87, Kal88]). In fact, Ω(Z(Kn)) is a translate of Πn. See Figure 10.

When Γ is a tree, all possible orientations on Γ are acyclic. The brick polytope
Ω(Z(Γ)) is thus a cube.

Remark 3.20 (Simple and non-simple vertices). According to Remark 3.11(3),
the brick vector ω(Λ) of a pseudoline arrangement Λ supported by N is a simple
vertex of Ω(N ) if and only if the contact graph Λ# is acyclic and its Hasse diagram
is a tree. See Figure 11 for a brick polytope with non-simple vertices.

3.4. The faces of the brick polytope. Let N be an irreducible sorting net-
work. Theorem 3.13 and Remark 3.11(4) provide the facet description of the brick
polytope Ω(N ):

Corollary 3.21. The facet normal vectors of the brick polytope Ω(N ) are pre-
cisely all facet normal vectors of the incidence cones of the contact graphs of the
pseudoline arrangements supported by N . Representatives for them are given by
the characteristic vectors of the sinks of the minimal directed cuts of these con-
tact graphs.

Remark 3.22. Since we know its vertices and its facet normal vectors, we obtain
immediately the complete inequality description of the brick polytope. More pre-
cisely, for each given pseudoline arrangement Λ supported byN with an acyclic con-
tact graph Λ#, and for each minimal directed cut in Λ# with source U and sink V ,
the right-hand-side of the inequality of the facet with normal vector 11V :=

∑

v∈V ev
is given by the sum, over all pseudolines ℓ of Λ in V , of the number of bricks below ℓ.

More generally, Theorem 3.13 implies a combinatorial description of the faces of
the brick polytope. We need the following definition:

Definition 3.23. A set γ of commutators of N is k-admissible if there exists a
pseudoline arrangement Λ ∈ Arr(N|γ) such that Λ#

r γ# has n − k connected
components and Λ#/(Λ#

r γ#) is acyclic (where γ# denotes the subgraph of Λ#

corresponding to the commutators of γ).

Theorem 3.13, Remark 3.11, and Proposition 3.17 lead to our face description:

Corollary 3.24. Let Φ be the map which associates to a subset X of Rn the set of
commutators of N which are contacts in all the pseudoline arrangements supported
by N whose brick vectors lie in X. Let Ψ be the map which associates to a set γ
of commutators of N the convex hull of {ω(Λ) | Λ ∈ Arr(N|γ)}. Then the maps Φ
and Ψ define inverse bijections between the k-faces of Ω(N ) and the k-admissible
sets of commutators of N .

Example 3.25 (Duplicated networks, continued). For a connected graph Γ on [n],
consider the duplicated network Z(Γ) defined in Example 2.8. According to Corol-
lary 3.24, the k-faces of Ω(Z(Γ)) are in bijection with the couples (π, σ) where π
is a set of n− k connected induced subgraphs of Γ whose vertex sets partition [n],
and σ is an acyclic orientation on the quotient Γ/

⋃

π.
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When Γ = Kn is the complete graph on n vertices, the k-faces of the brick poly-
tope Ω(Z(Kn)) correspond to the ordered (n − k)-partitions of [n]. This confirms
that Ω(Z(Kn)) is combinatorially equivalent to the permutahedron Πn.

When Γ is a tree, we obtain a k-face by choosing n − k connected subgraphs
of Γ whose vertex sets partition [n] and an arbitrary orientation on the remaining
edges. This clearly corresponds to the k-faces of the cube.

We now apply our results to minimal irreducible sorting networks (which support
pseudoline arrangements whose contact graphs are trees — Definition 3.8). For
these networks, we obtain an affirmative answer to Question 2.2:

Theorem 3.26. For any minimal irreducible sorting network N , the simplicial
complex ∆(N ) is the boundary complex of the polar of the brick polytope Ω(N ). In
particular, the graph of Ω(N ) is the flip graph G(N ).

Proof. Let γ be a set of p commutators such that N r γ is still sorting, and let
Λ ∈ Arr(N|γ). Since the contact graph of Λ is an oriented tree, its subgraph
Λ#

rγ# has p+1 connected components and its quotient Λ#/(Λ#
rγ#) is acyclic.

Consequently, Ω(N ) has a (n− p− 1)-dimensional face corresponding to γ. �

Example 3.27. When Γ is a tree, the polar of the cube Ω(Z(Γ)) realizes ∆(Z(Γ)).

Reciprocally, note that the dimension of the brick polytope Ω(N ) does not even
match that of the simplicial complex ∆(N ) for an irreducible sorting network N
which is not minimal. Consequently, the minimal networks are precisely those
irreducible networks for which the brick polytope provides a realization of ∆(N ).
We discuss in more details the relationship between the boundary complex of the
brick polytope and the simplicial complex ∆(N ) for certain non minimal networks
in Section 5.

Example 3.28. We finish our combinatorial description of the face structure of the
brick polytope with the example of the sorting network represented in Figure 11.
It illustrates that:

(1) All pseudoline arrangements supported byN can appear as vertices of Ω(N )
even for a non-minimal network N .

(2) Even when all pseudoline arrangements supported by N appear as vertices
of Ω(N ), the graph can be a strict subgraph of G(N ).

(3) The brick vector of a pseudoline arrangement Λ supported by N is a simple
vertex of Ω(N ) if and only if the contact graph Λ# is acyclic and its Hasse
diagram is a tree.

3.5. Brick polytopes as (positive) Minkowski sums. Let N be a sorting net-
work with n levels and let b be a brick of N . For any pseudoline arrangement Λ
supported by N , we denote by ω(Λ, b) ∈ R

n the characteristic vector of the pseu-
dolines of Λ passing above b. We associate to the brick b of N the polytope

Ω(N , b) := conv {ω(Λ, b) | Λ ∈ Arr(N )} ⊂ R
n.

These polytopes provide a Minkowski sum decomposition of the brick polytope Ω(N ):

Proposition 3.29. The brick polytope Ω(N ) is the Minkowski sum of the poly-
topes Ω(N , b) associated to all the bricks b of N .
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Figure 11. The Schlegel diagram of the brick polytope Ω(N ) of
a sorting network N with 4 levels and 10 commutators. Since the
graph of flips G(N ) is that of the 4-dimensional cube, Ω(N ) has
no missing vertex but 4 missing edges (find them!).

Proof. Since ω(Λ) =
∑

ω(Λ, b) for any pseudoline arrangement Λ supported by N ,
Ω(N ) is included in the Minkowski sum

∑

Ω(N , b). To prove equality, we thus only
have to prove that any vertex of

∑

Ω(N , b) is also a vertex of Ω(N ).
Let f : Rn → R be a linear function, and Λ,Λ′ be two pseudoline arrangements

related by a flip involving their ith and jth pseudolines. If a brick b of N is not
located between the ith pseudolines of Λ and Λ′, then f(ω(Λ, b)) = f(ω(Λ′, b)).
Otherwise, the variation f(ω(Λ, b))− f(ω(Λ′, b)) has the same sign as the variation
f(ω(Λ))−f(ω(Λ′)). Consequently, the pseudoline arrangement Λf supported by N
which minimizes f on Ω(N ), also minimizes f on Ω(N , b) for each brick b of N .

Now let v be any vertex of
∑

Ω(N , b). Let f : R
n → R denote a linear

function which is minimized by v on
∑

Ω(N , b). Then v is the sum of the ver-
tices which minimize f in each summand Ω(N , b). Consequently, we obtain that
v =

∑

ω(Λf , b) = ω(Λf ) is a vertex of Ω(N ). �
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Remark 3.30. This Minkowski sum decomposition comes from the fact that the
summation and convex hull in the definition of the brick polytope commute:

Ω(N ) := convΛ
∑

b
ω(Λ, b) =

∑

b
convΛ ω(Λ, b) =:

∑

b
Ω(N , b),

where the index b of the sums ranges over the bricks of N and the index Λ of the
convex hulls ranges over the pseudoline arrangements supported by N .

Observe that the vertex set of Ω(N , b) is contained in the vertex set of a hy-
persimplex, since the number of pseudolines above b always equals the depth of b.
Furthermore, since Ω(N , b) is a summand in a Minkowski decomposition of Ω(N ),
all the edges of the former are parallel to that of the latter, and thus to that of the
standard simplex △[n] := conv {ei | i ∈ [n]}. Consequently, the polytope Ω(N , b) is
a matroid polytope, i.e. the convex set of the characteristic vectors of the bases of
a matroid (the ground set of this matroid is the set of pseudolines and its rank is
the depth of b).

Example 3.31 (2-level networks, continued). Let Xm be the sorting network
formed by two levels and m commutators, and let b be a brick of Xm. For ev-
ery pseudoline arrangement Λ supported by Xm, we have ω(Λ, b) = (1, 0) if the
two pseudolines of Λ cross before b and ω(Λ, b) = (0, 1) otherwise. Thus, the
polytope Ω(Xm, b) is the segment with endpoints (1, 0) and (0, 1), and the brick
polytope Ω(Xm) is the Minkowski sum of m− 1 such segments.

Example 3.32 (Duplicated networks, continued). For a connected graph Γ, con-
sider the duplicated network Z(Γ) obtained by duplicating the commutators of a
reduced network N according to the edges of Γ — see Example 2.8. This network
has two kinds of bricks: those located between two adjacent commutators (which
replace a commutator of N ) and the other ones (which correspond to the bricks
of N ). For any brick b of the latter type, the polytope Ω(Z(Γ), b) is still a single
point. Now let b be a brick of Z(Γ) located between a pair of adjacent commuta-
tors corresponding to the edge {i, j} of Γ. Then Ω(Z(Γ), b) is (a translate of) the
segment [ei, ej ]. Summing the contributions of all bricks, we obtain that the brick
polytope Ω(Z(Γ)) is the Minkowski sum of all segments [ei, ej ] for {i, j} ∈ Γ. Such
a polytope is usually called a graphical zonotope. When Γ = Kn, the permutahe-
dron Πn = Ω(Z(Kn)) is the Minkowski sum of the segments [ei, ej ] for all distinct
i, j ∈ [n]. When Γ is a tree, the cube Ω(Z(Γ)) is the Minkowski sum of linearly
independent segments.

3.6. Brick polytopes and generalized permutahedra. Our brick polytopes
are instances of a well-behaved class of polytopes studied in [Pos09, ABD10, PRW08]:

Definition 3.33 ([Pos09]). A generalized permutahedra is a polytope whose in-
equality description is of the form:

Z

(

{zI}I∈[n]

)

:=

















x1

...
xn






∈ R

n

∣

∣

∣

∣

∣

∣

∣

n
∑

i=1

xi = z[n] and
∑

i∈I

xi ≥ zI for I ⊂ [n]











for a family {zI}I⊂[n] ∈ R
2[n]

such that zI + zJ ≤ zI∪J + zI∩J for all I, J ⊂ [n].

In other words, a generalized permutahedron is obtained as a deformation of the
classical permutahedron by moving its facets while keeping the direction of their
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normal vectors and staying in its deformation cone [PRW08]. This family of poly-
topes contains many relevant families of combinatorial polytopes: permutahedra,
associahedra, cyclohedra (and more generally, all graph-associahedra [CD06]), etc.

Since Z({zI}) + Z({z′I}) = Z({zI + z′I}), the class of generalized associahedra is
closed by Minkowski sum and difference (a Minkowski difference P −Q of two poly-
topes P,Q ⊂ R

n is defined only if there exists a polytope R such that P = Q+R).

Consequently, for any {yI}I⊂[n] ∈ R
2[n]

, the Minkowski sum and difference

Y

(

{yI}I∈[n]

)

:=
∑

I⊂[n]

yI△I

of faces △I := conv {ei | i ∈ I} of the standard simplex △[n] is a generalized permu-
tahedron. Reciprocally, it turns out that any generalized permutahedron Z({zI})
can be decomposed as such a Minkowski sum and difference Y({yI}), and that {yI}
is derived from {zI} by Möbius inversion when all the inequalities defining Z({zI})
are tight:

Proposition 3.34 ([Pos09, ABD10]). Every generalized permutahedron can be
written uniquely as a Minkowski sum and difference of faces of the standard simplex:

Z

(

{zI}I∈[n]

)

= Y

(

{yI}I∈[n]

)

, where yI =
∑

J⊂I

(−1)|IrJ|zJ

if all inequalities
∑

i∈I xi ≥ zI are tight.

Example 3.35. The classical permutahedron can be written as

Πn = conv
{

(σ(1), . . . , σ(n))T
∣

∣ σ ∈ Sn

}

= Z

(

{

|I|(|I|+ 1)

2

}

I∈[n]

)

=
∑

|I|=2

△I .

The Minkowski decomposition of Proposition 3.34 is useful in particular to com-
pute the volume of the generalized permutahedra [Pos09].

All our brick polytopes are generalized permutahedra (as Minkowski sums of
matroid polytopes). It raises three questions about our construction:

Question 3.36. Which generalized permutahedra are brick polytopes?

For example, we obtain all graphical zonotopes (Example 2.8) and all associahe-
dra (Section 4). However, the only 2-dimensional brick polytopes are the square,
the pentagon and the hexagon: no brick polytope is a triangle.

Question 3.37. How to compute efficiently the coefficients {yI} in the Minkowski
decomposition of a brick polytope Ω(N ) into dilates of faces of the standard simplex?

Lange studies this question in [Lan11] for all associahedra of Hohlweg and
Lange [HL07] (see also Remark 4.9). In general, observe that the Minkowski sum
decomposition we obtain in Proposition 3.29 has only positive coefficients, but its
summands are matroid polytopes which are not necessarily simplices. In contrast,
the Minkowski decomposition of Proposition 3.34 has nice summands but requires
sums and differences. In general, the two decompositions of Propositions 3.29
and 3.34 are therefore different. This last observation raises an additional question:

Question 3.38. Which generalized permutahedra can be written as a Minkowski
sum of matroid polytopes?
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4. Hohlweg & Lange’s associahedra, revisited

In this section, we first recall the duality between triangulations of a convex
polygon and pseudoline arrangements supported by the 1-kernel of a reduced al-
ternating sorting network [PP10]. Based on this duality, we observe that the brick
polytopes of these particular networks specialize to Hohlweg & Lange’s realizations
of the associahedron [HL07].

4.1. Duality. Remember that we call reduced alternating sorting network any net-
work with n levels and

(

n
2

)

commutators and such that the commutators adjacent
to each intermediate level are alternatively located above and below it. Such a net-
work supports a unique pseudoline arrangement, whose first and last pseudolines
both touch the top and the bottom level, and whose intermediate pseudolines all
touch either the top or the bottom level.

To a word x ∈ {a, b}n−2, we associate two dual objects — see Figure 12:

(1) Nx denotes the reduced alternating sorting network such that the (i+1)th

pseudoline touches its top level if xi = a and its bottom level if xi = b, for
all i ∈ [n− 2].

(2) Px denotes the n-gon obtained as the convex hull of {pi | i ∈ [n]} where
p1 = (1, 0), pn = (n, 0) and pi+1 is the point of the circle of diameter [p1, pn]
with abscissa i + 1 and located above [p1, pn] if xi = a and below [p1, pn]
if xi = b, for all i ∈ [n− 2].

For any distinct i, j ∈ [n], we naturally both label by {i, j} the diagonal [pi, pj ] of Px

and the commutator of Nx where cross the ith and jth pseudolines of the unique
pseudoline arrangement supported by Nx. Note that the commutators incident to
the first and last level of Nx correspond to the edges of the convex hull of Px.

In Figure 12, we have represented Nx and Px for x ∈ {bbb, aab, aba}. The five
missing reduced alternating sorting networks with 5 levels are obtained by reflection
of these three with respect to the horizontal or vertical axis.

We call 1-kernel of a network N the network N 1 obtained from N by erasing
its first and last horizontal lines, as well as all commutators incident to them. For
a word x ∈ {a, b}n−2, the network N 1

x has n − 2 levels and
(

n
2

)

− n commutators.

b

b

b
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b
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1 a b a

Figure 12. The networks Nx and the polygons Px for the words
bbb, aab and aba. The leftmost sorting network is the “bubble
sort”, while the rightmost is the “even-odd transposition sort”.
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Figure 13. A triangulation T of Paab and its dual pseudoline
arrangement T ∗ on the 1-kernel of the sorting network Naab.

Since we erased the commutators between consecutive pseudolines on the top or
bottom level ofNx, the remaining commutators are labeled by the internal diagonals
of Px. The pseudoline arrangements supported by N 1

x are in bijection with the
triangulations of Px through the following duality — see Figure 13:

Proposition 4.1 ([PP10]). Fix a word x ∈ {a, b}n−2. The set of commutators
of Nx labeled by the internal diagonals of a triangulation T of Px is the set of
contacts of a pseudoline arrangement T ∗ supported by N 1

x . Reciprocally the internal
diagonals of Px which label the contacts of a pseudoline arrangement supported
by N 1

x form a triangulation of Px.

The dual pseudoline arrangement T ∗ of a triangulation T of Px has one pseudo-
line ∆∗ dual to each triangle ∆ of T . A commutator is the crossing between two
pseudolines ∆∗ and ∆′∗ of T ∗ if it is labeled by the common bisector of the triangles
∆ and ∆′ (a bisector of ∆ is an edge incident to one vertex of ∆ and which sepa-
rates its remaining two vertices). A commutator is a contact between ∆∗ and ∆′∗

if it is labeled by a common edge of ∆ and ∆′. Consequently, this duality defines
an isomorphism between the graph of flips on pseudoline arrangements supported
by N 1

x and the graph of flips on triangulations of Px. Furthermore, we obtain the
following interpretation of the contact graph of T ∗:

Lemma 4.2. The contact graph (T ∗)# of the dual pseudoline arrangement T ∗ of a
triangulation T is precisely the dual tree of T , with some orientations on the edges.

Remark 4.3. This duality can be extended to any reduced sorting network. First,
a reduced sorting network N with n levels can be seen as the dual arrangement of
a set P of n points in a topological plane. Second, the pseudoline arrangements
which cover the 1-kernel of N correspond to the pseudotriangulations of P. We
refer to [PP10] or [Pil10, Chapter 3] for details. In Section 5, we recall another
similar duality between k-triangulations of the n-gon and pseudoline arrangements
supported by the k-kernel of a reduced alternating sorting network with n levels.

4.2. Associahedra. Let Nx be a reduced alternating sorting network with n lev-
els. According to Proposition 4.1 and Lemma 4.2, its 1-kernel N 1

x is a minimal
network: the pseudoline arrangements it supports correspond to triangulations
of Px and their contact graphs are the dual trees of these triangulations (with
some additional orientations). Consequently, the brick polytope Ω(N 1

x ) is a simple
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(n−3)-dimensional polytope whose graph is isomorphic to the graph of flips G(N 1
x ).

Since this graph is isomorphic to the graph of flips on triangulations of the poly-
gon Px, we obtain many realizations of the (n− 3)-dimensional associahedron with
integer coordinates:

Proposition 4.4. For any word x ∈ {a, b}n−2, the simplicial complex of crossing-
free sets of internal diagonals of the convex n-gon Px is (isomorphic to) the bound-
ary complex of the polar of Ω(N 1

x ). Thus, the brick polytope Ω(N 1
x ) is a realization

of the (n− 3)-dimensional associahedron.

It turns out that these polytopes coincide up to translation with the associahedra
of Hohlweg & Lange [HL07]. For completeness, let us recall their construction (we
adapt notations to fit our presentation). Consider the polygon Px associated to a
word x ∈ {a, b}n−2, and let T be a triangulation of Px. For j ∈ [n − 2], there is
a unique triangle ∆j(T ) of T with vertices u < j + 1 < v. Let πj(T ) denote the
product of the number of edges of Px between u and j + 1 by the number of edges
of Px between j+1 and v. Associate to the triangulation T the vector ω(T ) whose
jth coordinate is πj(T ) if xj+1 = b and n+1−πj(T ) if xj+1 = a. The associahedra
of Hohlweg & Lange [HL07] is the convex hull of the vectors ω(T ) associated to
the 1

n−1

(

2n−4
n−2

)

triangulations of Px. It is straightforward to check that our duality

from T to T ∗ maps ∆j(T ) to the jth pseudoline of T ∗, and the vector ω(T ) to our
brick vector ω(T ∗), up to a constant translation.

Observe that the associahedron Ω(N 1
x ) does not depend on the first and last let-

ters of x since we erase the first and last levels of Nx. Furthermore, a network Nx

and its reflection v(Nx) (resp. h(Nx)) through the vertical (resp. horizontal) axis
give rise to affinely equivalent associahedra. Affine equivalence between these asso-
ciahedra is studied in [BHLT09]. Two non-affinely equivalent 3-dimensional asso-
ciahedra are presented in Figure 14.

Figure 14. The brick polytopes Ω(N 1
b4
) (left) and Ω(N 1

a2b2
)

(right) provide two different realizations of the 3-dimensional asso-
ciahedron. The convex hull of the brick vectors of the centrally
symmetric triangulations of Pa2b2 (colored in the picture) is a re-
alization of the 2-dimensional cyclohedron.
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Example 4.5. We obtain Loday’s realization of the (n − 3)-dimensional associa-
hedron [Lod04] as a translate of the brick polytope of the 1-kernel of the “bubble
sort” network Bn :=Nbn−2 associated to the word bn−2 — see Figure 14 (left).

We now describe normal vectors for the facets of these associahedra. For any
word x ∈ {a, b}n−2, the facets of the brick polytope Ω(N 1

x ) are in bijection with the
commutators of N 1

x . The vertices of the facet corresponding to a commutator γ
are the brick vectors of the pseudoline arrangements supported by N 1

x and with a
contact at γ. We have already seen that a normal vector of this facet is given by the
characteristic vector of the cut induced by γ in the contact graphs of the pseudoline
arrangements supported by N 1

x and with a contact at γ. In the following lemma,
we give an additional description of this characteristic vector:

Lemma 4.6. Let Λ be a pseudoline arrangement supported by N 1
x and let γ be a

contact of Λ. The arc corresponding to γ is a cut of the contact graph Λ# which
separates the pseudolines of Λ passing above γ from those passing below γ.

Proof. Let T be the triangulation of Px such that T ∗ = Λ. Let ∆ and ∆′ be
two triangles of T whose dual pseudolines ∆∗ and ∆′∗ pass respectively above and
below γ. Then ∆ and ∆′ are located on opposite sides of the edge γ of T , and
thus, they cannot share an edge, except if it is γ itself. Consequently, their dual
pseudolines ∆∗ and ∆′∗ cannot have a contact, except if it is γ itself. We obtain
that γ is the only contact between the pseudolines of Λ passing above γ and those
passing below γ. This implies the lemma. �

Remark 4.7. The pseudolines passing below γ in any pseudoline arrangement sup-
ported by N 1

x with a contact at γ are also the pseudolines of the greedy pseudoline
arrangement Γ(N 1

x ) which pass below the cell immediately to the left of γ. This
provides a fast method to obtain a normal vector for each facet of Ω(N 1

x ) — see
Figure 15 for illustration.
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Figure 15. Normal vectors for the facets of the associahe-
dra Ω(N 1

b4
) and Ω(N 1

a2b2
), read on the greedy pseudoline arrange-

ments Γ(N 1
b4
) and Γ(N 1

a2b2
).

Corollary 4.8. For any x ∈ {a, b}n−2, the brick polytope Ω(N 1
x ) has n−3 pairs of

parallel facets. The diagonals of Px corresponding to two parallel facets of Ω(N 1
x )

are crossing.
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Figure 16. Pairs of parallel facets in the associahedra of Fig-
ure 14. Since they are arranged differently (for example, there is a
vertex adjacent to none of these facets in the rightmost realization),
these two associahedra are not affinely equivalent.

Proof. For i ∈ [n− 3], the normal vector of the facet corresponding to the leftmost

contact between the ith and (i+1)th level of N 1
x is always the vector fi :=

∑i

j=1 ej
while the normal vector of the facet corresponding to the rightmost contact between
the (n−i−2)th and (n−i−1)th level of N 1

x is always the vector
∑n−2

j=i+1 ej = 11−fi
— see Figure 15. Since Ω(N 1

x ) is orthogonal to 11, these two facets are thus parallel.
We obtain n− 3 pairs of parallel facets when i varies from 1 to n− 3. Finally, since
two parallel facets of Ω(N 1

x ) have no vertex in common, the corresponding diagonals
of Px are necessarily crossing each other. �

Remark 4.9. As discussed in Sections 3.5 and 3.6, the associahedron Ω(N 1
x ) has

two different Minkowski decompositions: as a positive Minkowski sum of the poly-
topes Ω(N 1

x , b) associated to each brick b of N 1
x , or as a Minkowski sum and differ-

ence of faces of the standard simplex △[n−2].

In Loday’s associahedron (i.e. when x = bn−2 and Nx = Bn), these two de-
compositions coincide. Indeed, for any i, j ∈ [n] with j ≥ i + 3, denote by b(i, j)
the brick of Bn located immediately below the contact between the ith and the
jth pseudoline of the unique pseudoline arrangement supported by Bn. Then the
Minkowski summand Ω(Bn, b(i, j)) is the face △{i,...,j−2} of the standard simplex
(up to a translation of vector 11{1,...,i−1}∪{j−1,...,n−2}). This implies that

Ω(B1
n) =

∑

1≤i<j≤n−2

△{i,...,j}

up to translation, and by unicity, that the coefficient yI is 1 if I is an interval of
[n−2] and 0 otherwise (singletons are irrelevant since they only involve translations).

For general x, the Minkowski summands Ω(N 1
x , b) are not always simplices.

In [Lan11], Lange computes the coefficients {yI} in the Minkowski decomposition of
any associahedra Ω(N 1

x ) into dilates of faces of the standard simplex, and therefore
answers Question 3.37 for those special networks.
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Remark 4.10. To close this section, we want to mention that we can similarly
present Hohlweg & Lange’s realizations of the cyclohedra [HL07]. Namely, consider
an antisymmetric word x ∈ {a, b}2n−2 (i.e. which satisfies {xi, x2n−1−i} = {a, b}
for all i), such that the (2n)-gon Px is centrally symmetric. Then the convex hull
of the brick vectors of the dual pseudoline arrangements of all centrally symmetric
triangulations of Px is a realization of the (n − 1)-dimensional cyclohedron. For
example, the centrally symmetric triangulations of Pa2b2 are colored in the right
associahedron of Figure 14: the convex hull of the corresponding vertices is a real-
ization of the 2-dimensional cyclohedron.

5. Brick polytopes and multitriangulations

This last section is devoted to the initial motivation of this work. We start
recalling some background on multitriangulations, in particular the duality between
k-triangulations of a convex polygon and pseudoline arrangements supported by the
k-kernel of a reduced alternating sorting network. We then describe normal vectors
for the facets of the brick polytope of the k-kernel of the “bubble sort network”.
Finally, we discuss the relationship between our brick polytope construction and
the realization of a hypothetical “multiassociahedron”.

5.1. Background on multitriangulations. We refer the reader to [PS09] and
[Pil10, Chapters 1–4] for detailled surveys on multitriangulations and only recall
here the properties needed for this paper. We start with the definition:

Definition 5.1. A k-triangulation of a convex polygon is a maximal set of its
diagonals such that no k + 1 of them are mutually crossing.

Multitriangulations were introduced by Capoyleas & Pach [CP92] in the context
of extremal theory for geometric graphs: a k-triangulation of a convex polygon P
induces a maximal (k + 1)-clique-free subgraph of the intersection graph of the
diagonals of P. Fundamental combinatorial properties of triangulations (which
arise when k = 1) extend to multitriangulations [Nak00, DKM02, Jon03, PS09].
We restrict the following list to the properties we need later on:

Diagonals [Nak00, DKM02, PS09]. Any k-triangulation of a convex n-gon P
has precisely k(2n− 2k − 1) diagonals. A diagonal of P is said to be k-relevant
(resp. k-boundary, resp. k-irrelevant) if it has at least k vertices of P on each
side (resp. precisely k − 1 vertices of P on one side, resp. less than k − 1 vertices
of P on one side). All k-boundary and k-irrelevant diagonals are contained in all
k-triangulations of P.

Figure 17. A 2-triangulation of the octagon (left) and the 2-rele-
vant, 2-boundary and 2-irrelevant edges of the octogon (right).



THE BRICK POLYTOPE OF A SORTING NETWORK 29

Stars [PS09]. A k-star of P is a star-polygon with 2k + 1 vertices s0, . . . , s2k
in convex position joined by the 2k + 1 edges [si, si+k] (the indices have to be
understood modulo 2k + 1). Stars in multitriangulations play the same role as
triangles in triangulations. In particular, a k-triangulation of T is made up gluing
n− 2k distinct k-stars: a k-relevant diagonal of T is contained in two k-stars of T
(one on each side), while a k-boundary diagonal is contained in one k-star of T —
see Figure 18 for an illustration. Furthermore, any pair of k-stars of T has a unique
common bisector. This common bisector is not a diagonal of T and any diagonal
of P not in T is the common bisector of a unique pair of k-stars.

Figure 18. The four 2-stars in the 2-triangulation of Figure 17.

Flip [Nak00, Jon03, PS09]. Let T be a k-triangulation of P, let e be a k-relevant
edge of T , and let f denote the common bisector of the two k-stars of T containing e.
Then T△{e, f} is again a k-triangulation of P, and T and T△{e, f} are the only
k-triangulations of P containing T r {e}. We say that we obtain T△{e, f} by the
flip of e in T . The graph of flips is k(n− 2k − 1)-regular and connected.

Figure 19. A flip in the 2-triangulation of Figure 17.

Duality [PP10]. Fix a word x ∈ {a, b}n−2 and consider the n-gon Px and the
sorting network Nx defined in Section 4.1. We denote by N k

x the k-kernel of Nx,
i.e. the network obtained from Nx by erasing its first k and last k levels together
with the commutators incident to them. The remaining commutators of N k

x are
precisely labeled by the k-relevant diagonals of Px, which provides a duality between
k-triangulations of Px and pseudoline arrangements supported by N k

x . Namely, the
set of commutators of Nx labeled by the internal diagonals of a k-triangulation T
of Px is the set of contacts of a pseudoline arrangement T ∗ supported by N k

x .
Reciprocally the k-relevant diagonals of Px which label the contacts of a pseudo-
line arrangement supported by N k

x , together with all k-irrelevant and k-boundary
diagonals of Px, form a k-triangulation of Px.

The dual pseudoline arrangement T ∗ of a k-triangulation T of Px has one pseu-
doline S∗ dual to each k-star S of T . A commutator is the crossing (resp. a contact)
between two pseudolines S∗ and R∗ of T ∗ if it is labeled by the common bisector
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Figure 20. A 2-triangulation T of Pb6 (left), a symmetric repre-
sentation of it (center), and its dual pseudoline arrangement T ∗ on
the 2-kernel of the sorting network Nb6 (right).

(resp. by a common edge) of the k-stars S and R. Consequently, this duality defines
an isomorphism between the graph of flips on pseudoline arrangements supported
by N k

x and the graph of flips on k-triangulations of Px.

5.2. The brick polytope of multitriangulations. We consider the brick poly-
tope Ω(N k

x ) of the k-kernel of a reduced alternating sorting network Nx (for some
word x ∈ {a, b}n−2). Since we erase the first and last k levels, this polytope again
does not depend on the first k and last k letters of x. The vertices of this polytope
correspond to k-triangulations of Px whose contact graph is acyclic. In contrast to
the case of triangulations (k = 1) discussed in Section 4,

(i) not all k-triangulations of Px appear as vertices of Ω(N k
x ) and the graph

of Ω(N k
x ) is a proper subgraph of the graph of flips on k-triangulations of Px;

(ii) the combinatorial structure of Ω(N k
x ) depends upon x.

In the rest of this section, we restrict our attention to the “bubble sort network”.
We denote by Bn :=Nbn−2 and Pn :=Pbn−2 . For this particular network, we can
describe further the combinatorics of the brick polytope Ω(Bk

n).

Example 5.2. The f -vectors of the brick polytopes Ω(B2
7), Ω(B2

8), Ω(B2
9) and

Ω(B2
10) are (6, 6), (22, 33, 13), (92, 185, 118, 25) and (420, 1062, 945, 346, 45) respec-

tively. We have represented Ω(B2
8) and Ω(B2

9) in Figures 21 and 22. The poly-
topes Ω(B2

7) and Ω(B2
8) are simple while the polytope Ω(B2

9) has two non-simple
vertices (which are contained in the projection facet of the Schlegel diagram on the
right of Figure 22) and the polytope Ω(B2

10) has 24 non-simple vertices.

As mentioned in Example 4.5, the brick polytope Ω(B1
n) coincides (up to transla-

tion) with Loday’s realization of the (n− 3)-dimensional associahedron [Lod04] —
see Figure 14 (left). The facet normal vectors of this polytope are all vectors of
{0, 1}n−2 which are neither 0n−2 nor 1n−2 and whose 1’s are consecutive. More

precisely, the vector
∑j−2

ℓ=i eℓ is a normal vector of the facet corresponding to the
diagonal [i, j], for any i, j ∈ [n] with j ≥ i+ 2.

For general k, we can similarly provide a more explicit description of the facets
of the brick polytope Ω(Bk

n). Representatives for their normal vectors are given by
the following sequences:

Definition 5.3. A sequence of {0, 1}q is p-valid if it is neither 0q nor 1q and if it
does not contain a subsequence 10r1 for r ≥ p. In other words, all subsequences of
p consecutive zeros appear before the first 1 or after the last 1.
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Figure 21. The 3-dimensional polytope Ω(B2
8). Only 22 of the

84 2-triangulations of the octagon appear as vertices.
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Figure 22. Two Schlegel diagrams of the 4-dimensional polytope
Ω(B2

9). On the second one, the two leftmost vertices of the projec-
tion facet are non-simple vertices.
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Remark 5.4. Let vsp,q denote the number of p-valid sequences of {0, 1}q. It is
easy to see that vs1,q = 1

2 (q − 1)(q + 2) (the number of internal diagonals of a

(q + 2)-gon!) and that vs2,q = Fq+4 − (q + 4), where Fn denotes the nth Fibonacci
number. To compute vsp,q in general, consider the non-ambiguous rational expres-
sion 0∗(1, 10, 100, . . . , 10p−1)∗10∗. The corresponding rational language consists of
all p-valid sequences plus all non-empty sequences of 1. Thus, the generating func-
tion of p-valid sequences is:

∑

q∈N

vsp,qx
q =

1

1− x

1

1−
∑p

i=1 x
i
x

1

1− x
−

x

1− x
=

x2(2− xp)

(1− 2x+ xp+1)(1− x)
.

Let σ be a sequence of {0, 1}n−2k. Let |σ|0 denote the number of zeros in σ. For
all i ≤ |σ|0 + 2k, we denote by ζi(σ) the position of the ith zero in the sequence
0kσ0k, obtained from σ by appending a prefix and a suffix of k consecutive zeros.
We associate to σ the set of edges of Pn:

D(σ) := {[ζi(σ), ζi+k(σ)] | i ∈ [|σ|0 + k]} .

Observe that D(σ) can contain some k-boundary edges of Pn.

Proposition 5.5. Each k-valid sequence σ ∈ {0, 1}n−2k is a normal vector of a
facet Fσ of the brick polytope Ω(Bk

n). The facet Fσ contains precisely the brick
vectors of the dual pseudoline arrangements of the k-triangulations of Pn contain-
ing D(σ). Furthermore, every facet of Ω(Bk

n) is of the form Fσ for some k-valid
sequence σ ∈ {0, 1}n−2k.

Proof (sketch). Consider a sequence σ ∈ {0, 1}n−2k and let (U, V ) be a partition of
[n−2k] such that σ = 11U = 11−11V . Since D(σ) contains no (k+1)-crossing, there
exists a k-triangulation T of Pn containing D(σ). We claim that the k-relevant
edges of D(σ) separate U from V in the contact graph (T ∗)#, and that this cut is
minimal if and only if σ is k-valid. This claim together with Corollary 3.21 prove
our proposition. We refer the reader to [Pil10] for details. �

5.3. Towards a construction of the multiassociahedron? Let ∆k
n denote the

simplicial complex of (k + 1)-crossing-free sets of k-relevant diagonals of a convex
n-gon. Its maximal elements are k-triangulations of the n-gon and thus it is pure
of dimension k(n − 2k − 1) − 1. In an unpublished manuscript [Jon03], Jonsson
proved that ∆k

n is in fact a shellable sphere (see also the recent preprint [SS]).
However, the question is still open to know whether the sphere ∆k

n can be realized
as the boundary complex of a simplicial k(n− 2k − 1)-dimensional polytope. As a
conclusion, we discuss some interactions between this question and our paper.

Universality. According to Pilaud & Pocchiola’s duality presented in Section 5.1,
this question seems to be only a particular subcase of Question 2.2. However, we
show in the next proposition that the simplicial complexes ∆k

n (n, k ∈ N) contain
all simplicial complexes ∆(N ) (N sorting network). If X is a subset of the ground
set of a simplicial complex ∆, remember that the link of X in ∆ is the subcom-
plex {Y rX | X ⊂ Y ∈ ∆}, while the star of X is the join of X with its link.

Proposition 5.6. For any sorting network N with n levels and m commutators,
the simplicial complex ∆(N ) is (isomorphic to) a link of ∆m−1

n+2m−2.
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Proof. Label the commutators of N from left to right (and from top to bottom if
some commutators lie on the same vertical line). For any i ∈ [m], let i� be such
that the ith commutator of N join the i�

th and (i� + 1)th levels of N . Define the
set W := {{i, i+ i� +m− 1} | i ∈ [m]}.

We claim that the simplicial complex ∆(N ) is isomorphic to the simplicial com-
plex of all m-crossing-free sets of (m−1)-relevant diagonals of the (n+ 2m− 2)-gon
which contain the diagonals not labeled byW . Indeed, by duality, the (m− 1)-trian-
gulations of this complex correspond to the pseudoline arrangements supported
by Bm−1

n+2m−2 whose sets of contacts contain the contacts of Bm−1
n+2m−2 not labeled

by W . Thus, our claim follows from the observation that, by construction, the
contacts labeled by W are positioned exactly as those of N — see Figure 23. �

Figure 23. Universality of the multitriangulations: any sorting
network N is a subnetwork of a bubble sort network Bk

n for some
parameters n and k depending on N .

Since links in shellable spheres are shellable spheres, this proposition extends
Jonsson’s result [Jon03] to any sorting network:

Corollary 5.7. For any sorting network N , the simplicial complex ∆(N ) is a
shellable sphere.

This corollary is also a consequence of Knutson & Miller’s results on the shella-
bility of any subword complex [KM04]. Proposition 5.6 would also extend any proof
of the polytopality of ∆k

n to that of ∆(N ):

Corollary 5.8. If the simplicial complex ∆k
n is polytopal for any n, k ∈ N, then

the simplicial complex ∆(N ) is polytopal for any sorting network N .

In particular, if one manages to construct a multiassociahedron realizing the
simplicial complex ∆k

n, it would automatically provide an alternative construction
to the polytope of pseudotriangulations [RSS03]. We want to underline again that
the brick polytope does not realizes the simplicial complex of pointed crossing-free
sets of internal edges in a planar point set.

Projections and brick polytopes. In this paper, we have associated to each
k-triangulation T of the n-gon the brick vector ω(T ∗) ∈ R

n−2k of its dual pseudo-
line arrangement T ∗ on Bk

n. We have seen that the convex hull Ω(Bk
n) of the set

{ω(T ∗) | T k-triangulation of the n-gon} satisfies the following two properties:

(i) The graph of Ω(Bk
n) is (isomorphic to) a subgraph of the graph of flips on

k-triangulations of an n-gon (Corollary 3.18).
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(ii) The set of k-triangulations whose brick vector belongs to a given face of Ω(Bk
n)

forms a star of ∆k
n (Proposition 5.5).

One could thus reasonably believe that our point set could be a projection of the
polar of a hypothetical realization of ∆k

n. The following observation kills this hope:

Proposition 5.9. Let P be the polar of any realization of ∆2
7. It is impos-

sible to project P down to the plane such that the vertex of P labeled by each
2-triangulation T of the heptagon is sent to the corresponding brick vector ω(T ∗).

Proof. The network B2
7 is a 3-level alternating network and thus has been addressed

in Example 2.7. See Figure 24 (left) to visualize the brick polytope Ω(B2
7). The con-

tacts are labeled from left to right, and the brick vector of a pseudoline arrangement
covering B2

7 is labeled by its four contacts.

1234 4567

2345 3456

1245 3467

1347 1457

2356

1267

1237 1567

1256 2367

1 753

642

Figure 24. The 2-dimensional brick polytope Ω(B2
7).

Assume that there exists a polytope P whose polar realizes ∆2
7 and which projects

to the point configuration {ω(T ∗) | T 2-triangulation of the heptagon}. Observe
that the projections of two non-parallel edges of a 2-dimensional face of P either
are not parallel or lie on a common line (when the 2-dimensional face is projected to
a segment of this line). We will reach a contradiction by considering the facet of P
labeled by 4. We have represented in Figure 25 the projections of its 2-dimensional
faces: there are two triangles 24 and 46 which project to a segment, two quadrilater-
als 14 and 47 and two pentagons 34 and 45. Since they belong to the 2-dimensional
face 45 of P , and since they project on two distinct parallel lines, the two edges
(3456, 4567) and (1245, 1457) of P are parallel. Similarly, the edges (1245, 1457)
and (1234, 1347) are parallel and the edges (1234, 1347) and (3456, 3467) are par-
allel. By transitivity, we obtain that the edges (3456, 4567) and (3456, 3467) of P
are parallel which is impossible since they belong to the triangular face 46. �
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classes of generalized associahedra. Séminaire Lotharingien de Combinatoire, B61Aa,
2009.

[BLS+99] Anders Björner, Michel Las Vergnas, Bernd Sturmfels, Neil White, and Günter M.

Ziegler. Oriented matroids, volume 46 of Encyclopedia of Mathematics and its Appli-
cations. Cambridge University Press, Cambridge, second edition, 1999.

[BML87] Roswitha Blind and Peter Mani-Levitska. Puzzles and polytope isomorphisms. Aequa-
tiones Math., 34(2-3):287–297, 1987.

[CD06] Michael P. Carr and Satyan L. Devadoss. Coxeter complexes and graph-associahedra.
Topology Appl., 153(12):2155–2168, 2006.
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