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Nanostructured materials with tunable optical properties are of great interest in the 

perspective of optical transport of information. Gold nanoparticles (GNPs) exhibit unique 

optical properties due to Localized Surface Plasmon Resonance (LSPR), which are highly 

sensitive to the optical index of the embedding medium and the presence of neighboring 

GNPs. Linear (1D) assemblies of GNPs are particularly interesting due to their strong 

anisotropy. Various methods have been explored to create linear assemblies of nanoparticles 

but obtaining straight structures over a large scale remains challenging. A promising approach 

is the directed self-assembly of nano-objects within large-scale, ordered templates.
[1, 2] 

This 

approach is particularly promising for liquid crystals (LC) which are able to rapidly self-

arrange into large ordered anisotropic matrices which can contain linear structural defects.
[3, 4, 

5] 
This kind of defect has been used so far as molt for polymerization.

[6]
 Concerning assembly 

of particles, many studies have been devoted to the trapping of !m-sized particles by nematic 

and smectic defects.
[7, 8, 9]

 In nematic LC matrices, !m-sized particles can create
[10] 

and 

interact with localized defects.
[8, 9, 11] 

In case of attraction between LC defects and particles, 

controlled large-scale arrays of particles can be obtained,
 
leading to linear assemblies for the 
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so-called nematic disclinations.
 [8,9,10] 

 However, these assemblies are not really straight and 

better trapping has been demonstrated for smectic defects compare to nematic ones, due to 

higher distortion energy associated with the former.
[11]

 Trapping of NPs by defects has been 

evidenced through the accumulation within defects, especially in LC blue phases.
 [12,13,14]

 The 

following question thus arises: can the trapping of NPs be controlled at the nanoscale, for 1D 

geometry, even though NPs are expected to be too small to generate a long-range elastic LC 

distortion? The smallest particles around which LC distortions have been evidenced have a 

diameter of 125 nm.
[15] 

In this article we show that ordered linear arrays of defects in the 

smectic phase of a liquid crystal attract and organize NPs such as quantum dots (QDs) and 

GNPs. The well-defined alignments of single GNPs provide new means of tuning their optical 

response (e.g. their LSPR). 

 

 

We have used films of smectic 8CB (4-n-octyl-4'-cyanobiphenyl) deposited on a solid 

substrate inducing planar anchoring of the LC director while a homeotropic (normal) 

anchoring was generated at the air interface. This produces a distorted texture, the so-called 

'oily streaks', containing periodic curvature walls and disclination lines, perpendicular to the 

planar anchoring (Fig.1a).
[4, 5, 15]

 Due to the high energetic cost of their structural 

deformations, the defects core thickness is expected to be limited.
[16]

 We used well-defined 

defects orientations to induce anisotropic assemblies of  NPs. We performed optical extinction, 

fluorescence microscopy, and scanning electron microscopy (SEM) to identify the role of 

defects and study the influence of the NPs concentration. Discrete dipole approximation 

(DDA) calculations were also performed for the analysis of extinction spectra.
[17, 19]

 We have 

considered two substrates: (a) a freshly cleaved surface of crystalline molybdenum disulfide 

(MoS2), semi conductive and opaque to light, and (b) transparent coatings of poly-vinyl 

alcohol (PVA) on glass, rubbed to induce planar anchoring. We used two types of NPs: (i) 

gold NPs (Aldrich) with a diameter of 5 nm, coated with dodecanethiols to avoid aggregation 
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in toluene solution, and (ii) fluorescent CdSe-ZnS QDs (Invitrogen) characterized by binary 

blinking fluorescence ( λ exc=440 nm, λ emi=630 nm).
[20]

 

 

Figure 1.a. Schematic illustration of a linear array of straight parallel oily streaks in which 

only smectic layers are represented, with disclination lines (D) and curvature walls (W). b. 

Polarized optical microscopy image of a single array of a 300nm thick film of 8CB on MoS2. 

c. SEM image of the MoS2 substrate with GNPs chains. d. Enlarged view of a chain. 

 

 

In order to visualize the GNPs by SEM, we first started experiments on the MoS2 

substrate. When GNPs were deposited without LC, SEM images revealed dense GNPs areas 

homogeneously dispersed on the substrate (not shown). They correspond to close-packed 

GNPs separated by 1.5 nm on average, due to alkylthiols chains interdigitation. A solution of 

3"10
16

 GNPs/L in toluene was then mixed with 5mM of 8CB and spin-coated 25 times to 

obtain a large number of GNPs and a LC film thickness of 300nm.
[3]

 The sample was heated 2 

minutes at 60°C in a second step to allow appearance of 8CB oily streaks when cooling back 

to room temperature. Polarized optical microscopy images did not show textural changes in 

the 8CB/GNPs array compared to pure 8CB (Fig. 1b). In a third step 8CB was eliminated by 

heating the substrate at 60°C for one week. The lamellar texture of MoS2 indeed allows 

formation of 8CB monolayers at each basal planes,
[21]

 leading to a draining of 8CB which 

systematically occurs within MoS2 in contrast to other substrates, like rubber polymer on 

glass. SEM images showed GNPs arranged in straight parallel chains with lengths up to 

several hundreds of !m (Fig. 1c). The typical distance between chains (from 1.5 to 2.2!m) 
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was of the same order than the distance between walls, P, (Fig. 1a), imposed by the LC film 

thickness.
[3]

 We occasionally observed double chains of GNPs separated by a smaller distance, 

L, (Fig. 1c), comparable to the typical walls-disclination distance (about 300 nm).
[15]

 

Disclinations can  also trap GNPs, though less efficiently than walls. We observe other areas 

with randomly oriented thicker alignments of GNPs (Fig. 2c). As the planar anchoring on 

MoS2 is multi-directional, oily streaks are oriented in domains corresponding to different 

azimuthal (in-plane) anchoring directions (Fig. 2a),
[21]

 coexisting on the same cleavage plane 

of MoS2. We identify regions between randomly oriented alignments of GNPs with small 

anchoring domains of MoS2 and alignments of GNPs with domain (grain) boundaries. The 

density of GNPs is the largest in regions where several domains meet each other (arrow on 

Fig. 2c). Therefore, GNPs are preferentially trapped in grain boundary regions where the LC 

director is highly distorted to accommodate the disorientation between 3 azimuthal directions. 

The migration of GNPs from the oily streaks region to grain boundaries shows that different 

types of defects have a different 'trapping efficiency': Grain boundaries are more efficient than 

walls and disclinations to trap NPs, and disclinations turns out to be the least efficient 

“trapping system” of all.  

!"#$%&'$()*+($,*-)$./0(-12($34'$("4#/1$5678$3/*4#$3$(391$/"41&$:)"($(0##1(-($-)3-$

3;*"'"4#$ -)1$3##21#3-"*4$*<$ ./0(-12($ /13'($ -*$ .)3"4($*<$ "4'";"'03/$567($ "4$*"/=$ (-213>(&$

?(*/3-1'$ 67($ 321$ *,(12;1'$ *4$ !"#&$ %@$ +)".)$9134($ -)3-$ -)1$ 67($ .*4.14-23-"*4$ *4$ -)1$

(0,(-23-1$90(-$ ,1$ adjusted. We have then decided to control the NPs concentration using 

drop-casting on a rubbed PVA polymer substrate. This kind of substrate presents the 

advantage of having a unique planar anchoring direction for 8CB. The deposition of a drop of 

8CB, immediately followed by a 2 minutes heating at 60°C during solvent evaporation, makes 

it possible to avoid the formation of NPs clusters. These clusters may be formed using spin-

coating, most likely during the formation of the smectic film prior to the appearance of the 
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oily streaks (Figure 1c).We have then performed a study of the influence of the nanoparticles 

concentration on rubbed PVA polymer substrate. 

 

Figure 2. a. Polarized Optical Microscopy image of multiple anchoring domains of 8CB on 

MoS2 (the arrows show anchoring direction). b. Enlarged view with a high density of grain 

boundaries. c. SEM image of the MoS2 with thick alignments of GNPs aligned along the grain 

boundaries. The arrow points to a region where 3 grain boundaries meet each other. 

 

At low concentration, we have considered QDs of the same diameter (5 nm) as GNPs 

which can be observed in-situ by fluorescence microscopy. We prepared a solution containing 

3.5 x10
12

 QD.L
-1

 and 5mM 8CB in toluene. We deposited a 30 !l drop on rubbed PVA 

polymer, to form a 300nm thick film with an average surface density of 0.7 QD.!m
-2

. After 

cooling back from 60°C in the smectic phase, array of oily streaks appeared (Fig. 3a). Using 

fluorescence microscopy, without QD, no chain was visible. In presence of QDs, straight 

chains of blinking fluorescent spots parallel to the oily streaks (Fig. 3b) are visible. The 

distance between neighboring chains ranges between 0.64 and 7.5 !m, which is of the same 

order than the distances between walls (Fig. 3a, 1c). The wide range of distances is due to 

variations in the 8CB thickness. A careful analysis of the blinking QDs allows to identify one 

bright spot on Fig. 3b as being 2 QDs in average. This is consistent with average spot size 

which ranges from 0.5 to 1.7 !m, that is 1 to 3 times the calculated QD airy diameter (549 nm 

forλemi=630 nm ). From the density of spots in Fig. 3b, we calculate a surface density of 0.8 

QD.!m
-2

, which is very close to the estimated average density of 0.7 QD. !m
-2

. Therefore, 

almost all QDs are trapped in the defects, showing that walls are very efficient at trapping and 
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directing an assembly of NPs much smaller than the particles used in previous studies. 
[9, 15]

 

The length of the QDs chains is given by the one of the oily streaks, longer on PVA compare 

to MoS2 because they do not end in grain boundaries, leading to chains of several hundreds of 

micrometer, only interrupted by "dislocation-like" regions which accommodate thickness 

variations.
[5] 

 

Figure 3. a. Polarized Optical Microscopy image of an array of oily streaks formed in a thin 

film of 8CB/QDs on rubbed PVA. Red crosses show the directions of polarization , the 

dashed white arrow the anchoring direction  and the solid white arrow  the oily streaks 

direction b. Image of an array obtained by unpolarized fluorescence microscopy on the same 

film, with QDs. 

 

To evidence inter-particle coupling and also the NPs alignment by a different mean, 

we replaced the QDs by GNPs at a concentration four orders of magnitude larger, 3"10
16

 

GNP.L
-1

 We then measured the localized surface plasmon resonance (LSPR) of the GNPs in 

8CB. When incident light was polarized perpendicular to the oily streaks (Fig. 4a, black 
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curve), the extinction peak was very similar to the one of GNPs dispersed in pure toluene (λ

=516 nm, Fig. 4a, dashed line). For parallel polarization, the LSPR is red-shifted by about 40 

nm compared to the NPs in solution (Fig. 4a, red curve). It is well known that in isotropic 

media the LSPR moves to larger wavelengths as the refractive index increases.
[20]

 Due to the 

positive uniaxial birefringence of 8CB, we expect to probe the ordinary index (no=1.52) when 

the polarization is set parallel to the oily streaks and a refractive index varying between 

ordinary and extraordinary index (ne=1.67) for a polarization perpendicular to the oily streaks, 

depending on the localization of GNPs (Fig. 1a). Therefore, the 8CB birefringence could only 

lead to a blueshift of the LSPR for a polarization parallel to the oily streaks. The observed red 

shift is indicative of a different phenomenon, the coupling between GNPs preferentially along 

the oily streaks. 

 

Figure 4. Extinction spectra recorded on rubbed PVA polymer with an incident light 

polarization set either parallel (red curves) or perpendicular (black curves) to the oily streaks. 

The dashed curve was obtained for GNP/toluene solution (3x 10
16

 GNP.L
-1

), divided by 20 

for comparison (a) 8CB/GNPs on PVA (3x10
16 

GNP.L
-1

). (b) GNPs on PVA (3x10
16

 GNP.L
-

1
). (c) 8CB/GNPs on PVA (6x10

16
 GNP.L

-1
). 

 

In contrast, no polarization anisotropy of the LSPR was observed for the same amount of 

GNPs deposited on PVA without LC (Fig. 4b). This is due to the presence of randomly 

oriented clusters of optically coupled GNPs, like on MoS2 without LC.
 [23]

 We have 

performed DDA calculations of the extinction spectra considering optically coupled gold/thiol 

core-shell GNPs. We have taken into account that: (a) the minimum distance between the 

metal cores of two GNPs was limited to 1.5 nm due to the presence of thiol coatings, (b) The 

extinction spectra measured for GNPs in pure toluene (dashed line) were blue-shifted by 16 
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nm with respect to values calculated for uncoupled particles in toluene (ntoluene=1.497). The 

covalent bond at the gold-thiol interface may modify the dielectric constant of gold close to 

the interface. 
[19, 20]

 In the following we will only compare the experimental and theoretical 

variations of the extinction maxima with respect to the spectrum of GNPs in toluene. The 

calculated red-shift with respect to toluene was 10 nm for single GNPs embedded in ne and 

only 2 nm for no. The fact that, for perpendicular polarization (Fig. 4a), no clear experimental 

shift is observed with respect to toluene, shows that GNPs feel an optical environment closer 

to no than to ne, as it should be in the vicinity of defects cores, associated with high local 

disorder for the LC director. This also shows that no coupling between GNPs occurs in the 

direction perpendicular to the oily streaks, which demonstrates a GNP organization in single 

linear chains parallel to oily streaks, without clusters like the ones on MoS2 (Fig. 1d). 

Moreover, for parallel polarization, no peak was observed around the wavelength for pure 

toluene (516 nm) showing that only a minority of GNPs is isolated on the substrate. A shift 

due to coupling between GNPs depends on the distance between particles and on the number 

of coupled particles. 
[24]

 The larger width of the extinction peak for parallel polarization (Fig. 

4a) shows that chains have a certain dispersion of length and/or separation between coupled 

GNPs. For five different areas on the same sample, the peak was red-shifted between 34 nm 

and 44 nm. Calculated extinction spectra for GNP chains, in no with a number of particles 

separated by 1.5nm of thiol, going from 2 to infinity gave red shifts ranging from 17 nm to 40 

nm with respect to the toluene reference. Long chains of closed-packed GNPs, longer than 8 

GNPs, may consequently be formed in majority. The shift value is only limited by the 

minimal separation between GNPs, associated with direct contact between thiol coatings. 

These results finally demonstrate that well-oriented 1D chains are formed, in agreement with 

results obtained for fluorescent QDs, which must be localized in regions as small as 5 nm, 

within oily streaks defects. Doubling the GNPs concentration (6 x10
16

 GNP.L
-1

) leads to a 

red-shift for both polarizations: 36 nm for perpendicular one and 50 nm for parallel one (Fig. 
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4c). The smaller red-shift observed for perpendicular polarization shows that a limited 

assembly of coupled GNPs occurs also perpendicular to oily streaks, corresponding to an 

overall shape still elongated along the oily streaks direction similar to a rod or a ribbon. 

Therefore, the anisotropy remains effective at high concentration, when the most stable traps 

within defects core have already been occupied. Variations of concentration allow tuning the 

extinction shift between perpendicular polarizations, in relation with the length and width of 

ribbons. A maximum value of 44 nm has been measured so far for single chains.  

Our result agrees with the idea that NPs behave as impurities: they are stabilized by 

the gain in defects core energy in defects like wall, whereas the trapping of particles larger 

than the defect core is also due to a gain in elastic energy. 
[12, 13, 25, 26]

  The core energy per unit 

area of the wall is of the order of K/l, where K=10
-11

 J.m
-1

 is the curvature modulus, l=1 nm is 

the penetration length, and the core size is of the order of l. 
 [11, 17] 

The trapping potential is 

a
2
K/l # 80kT, where a=5 nm is the NP diameter, leading to a very stable and localized 

trapping. The small size of the defect is specific to smectic defects, as opposed to nematic 

defects, and constitutes a key point for successful aligning trapping of NPs. A limit size of the 

NPs is expected below which gain in core energy becomes smaller than thermal energy. 

Possibly, the trapping sites correspond to edge dislocations within walls joining highly 

disoriented layers, 
[5]

 which are expected at the base of the oily streaks. 
[16]

 Dislocations have 

also been observed within disclinations on MoS2 surfaces.
 [16]

 As the concentration increases, 

the chains are transformed in aligned ribbons suggesting a profile of trapping efficiency, 

associated with a gain in elastic energy outside the defects cores, in the direction 

perpendicular to the defects, which becomes progressively occupied by NPs. 

The causes of NP trapping in defects are complex and yet to be clarified. On one hand, 

the formation of chains may be the result of a random process of diffusion and aggregation of 

NPs. In nematics containing nm-size macromolecules, this process leads to the segregation of 

molecules into defects, but also leaves a significant fraction of molecules outside the defects 
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in the form of aggregates. 
[26] 

In contrast, regions as wide as several µm between the defects 

appeared almost completely depleted of NPs on rubbed polymer substrate, as if NPs were 

attracted to the defects by a long-range interaction. In nematics, !m-size particles are known 

to create defects and elastic distortions of the molecular director that produce forces between 

particles and defects. 
[8, 9]

 It is known that NPs with alkylthiols (inducing homeotropic 

anchoring) produce a disordering effect in LCs. 
[27]

 In the smectic phase, the distortion around 

NPs may be enhanced.
 [28]

 The question remains whether NPs produce a local disturbance of 

the smectic film, on a scale comparable with their size, or they create a distortion over a much 

larger scale that may be coupled with the long-range elastic distortion associated with defects. 

In the latter case, the distortion may produce a 'guided' diffusion of the NPs towards the 

singularity of the distorted texture, in analogy with !m size particles in the nematic phase. 

Three kinds of defects have been identified on MoS2, all of which constitute stable 

trapping sites for NPs: grain boundary, curvature wall, and disclination, in order of decreasing 

trapping efficiency. This is compatible with an attraction between GNPs and defects related to 

the range of the distortion within the LC bulk. Grain boundaries involve the largest 

disorientation of the layers at opposite side of the boundary. Straight vertical walls (Fig. 1(a)) 

are more effective than disclination, because they have an extension equal to the LC film 

thickness whereas the disclinations on MoS2 have a diameter of the order of 100 nm. 
[16]

 

 

In conclusion, we have demonstrated that smectic defects can constitute efficient traps 

for NPs as small as 5nm, due to the combination of highly localized trapping sites 

characterized by deep trapping energy profile and large-scale elastic deformations induced in 

the LC film. In oily streaks, they can be precisely oriented along directions of anisotropy 

imposed by the substrate. This allowed us to produce arrays of straight chains of single NPs 

separated by distances varying between some !m and 1.5 nm when the NP concentration is 

increased by four orders of magnitude, finally transforming into thick chains when it is further 
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increased. As a consequence, LSPR of GNPs/LC systems can be tuned by polarization, in a 

matter controllable by the concentration of GNPs. These results also open the route for 

alignments of a vast number of NP types. 

 

Experimental 

 

The optical properties of GNPs were investigated with a LOT Oriel MS260i spectrometer 

coupled to an upright optical microscope (Olympus BX 51) to probe a 40x40 !m
2
area. QDs 

fluorescence was investigated with an inverted Olympus IX71 optical microscope with an oil-

immersed objective (x100, NA=1.4) connected to a CCD camera. GNPs visualization was 

performed on a field emission SEM, Zeiss Supra 40. 
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