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2-Step Nilpotent Lie algebra and C
∞
-Algebras

Michel Dubois-Violette and Todor Popov

Communicated by

Abstract. We consider the free 2-step nilpotent graded Lie algebra and its
cohomology ring. The homotopy transfer induces a homotopy commutative
algebra on its cohomology ring which we describe.

1. Homotopy algebras

The homotopy associative algebras, or A∞-algebras were introduced by Jim
Stasheff in the 1960’s as a tool in algebraic topology for studying ‘group-like’ spaces.
Homotpy algebras received a new attention and further development in the 1990’s
after the discovery of their relevence into a multitude of topics in algebraic geometry,
symplectic and contact geometry, knot theory, moduli spaces, deformation theory...

Definition 1.1. (A∞-algebra) A homotopy associative algebra, orA∞-algebra,
over K is a Z-graded vector space A =

⊕

i∈Z
Ai endowed with a family of graded

mappings (operations)

mn : A⊗n → A, deg(mn) = 2− n n > 1

satisfying the Stasheff identities SI(n) for n > 1

SI(n) :
∑

r+s+t=n

(−1)r+stmr+1+t(Id
⊗r ⊗ms ⊗ Id⊗t) = 0 r > 0, t > 0, s > 1

where the sum runs over all decompositions n = r+ s+ t. Throughout the text we
assume the Koszul sign convention (f ⊗ g)(x⊗ y) = (−1)|g||x|f(x) ⊗ g(y).

A morphism of two A∞-algebrasA and B is a family of graded mapsfn : A⊗n →
B for n > 1 with deg fn = 1− n such that the following conditions hold
∑

r+s+t=n

(−1)r+stfr+1+t(Id
⊗r ⊗ms ⊗ Id⊗r) =

∑

16r6n

(−1)Smr(fi1 ⊗ fi2 ⊗ . . .⊗ fir )
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where the sum is on all decompositions i1+ . . .+ ir = n and the sign (−1)S on RHS
is determined by S = (r− 1)(i1− 1)+ (r− 2)(i2− 1)+ . . .+2(ir−2− 1)+ (ir−1− 1).
The morphism f is a quasi-isomorphism of A∞-algebras if f1 is a quasi-isomorphism.
It is strict if fi = 0 for all i 6= 1. The identity morphism of A is the strict morphism
f such that f1 is the identity of A.

We define the shuffle product Shp,q : A⊗p ⊗ A⊗q → A⊗p+q throughout the
expression

(a1 ⊗ . . .⊗ ap)� (ap+1 ⊗ . . .⊗ ap+q) =
∑

σ∈Shp,q

sgn(σ) aσ−1(1) ⊗ . . .⊗ aσ−1(p+q)

where the sum runs over all (p, q)-shuffles Shp,q, i.e., over all permutations σ ∈ Sp+q

such that σ(1) < σ(2) < . . . < σ(p) and σ(p+ 1) < σ(p+ 2) < . . . < σ(p+ q) .

Definition 1.2. (C∞-algebra [9]) A homotopy commutative algebra, or C∞-
algebra, is an A∞-algebra {A,mn} such that each operation mn vanishes on non-
trivial shuffles

(1.1) mn ((a1 ⊗ . . .⊗ ap)� (ap+1 ⊗ . . .⊗ an)) = 0 , 1 6 p 6 n− 1 .

In particular for m2 we have m2(a⊗ b± b⊗ a) = 0, so a C∞-algebra such that
mn = 0 for n > 3 is a (super-)commutative DGA.

A morphism of C∞-algebras is a morphism of A∞-algebras vanishing on non-
trivial shuffles fn ((a1 ⊗ . . .⊗ ap)� (ap+1 ⊗ . . .⊗ an)) = 0 , 1 6 p 6 n− 1 .

2. Homotopy Transfer Theorem

Lemma 2.1. Every cochain complex (A, d) of vector spaces over a field K has
its cohomology H•(A) as a deformation retract.

One can always choose a vector space decomposition of the cochain complex
(A, d) such that An ∼= Bn ⊕ Hn ⊕ Bn+1 where Hn is the cohomology and Bn is
the space of coboundaries, Bn = dAn−1. We choose a homotopy h : An → An−1

which identifies Bn with its copy in An−1 and is 0 on Hn ⊕Bn+1. The projection

p to the cohomology and the cocycle-choosing inclusion i given by An
p

// Hn

i
oo

are chain homomorphisms, satisfying the additional side conditions

hh = 0, hi = 0, ph = 0 .

With these choices done the complex (H•(A), 0) is a deformation retract of (A, d)

h
!!(A, d)

p
// (H•(A), 0)

i
oo , pi = IdH•(A) , ip− IdA = dh+ hd .

Let now (A, d, µ) be a DGA, i.e., A is endowed with an associative product µ
compatible with d. The cochain complexes (A, d) and its contraction H•(A) are
homotopy equivalent, but the associative structure is not stable under homotopy
equivalence. However the associative structure on A can be transferred to an A∞-
structure on a homotopy equivalent complex, a particular interesting complex being
the deformation retract H•(A). For a friendly introduction to homotopy transfer
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theorems in much boarder context we send the reader to the textbook [12], see
chapter 9.

Theorem 2.1 (Kadeishvili [9]). Let (A, d, µ) be a (commutative) DGA over
a field K. There exists a A∞-algebra (C∞-algebra) structure on the cohomology
H•(A) and a A∞(C∞)-quasi-isomorphism

fi : (⊗
iH•(A), {mi}) → (A, {d, µ, 0, 0, . . .})

such that the inclusion f1 = i : H•(A) → A is a cocycle-choosing homomorphism
of cochain complexes. The differential m1 on H•(A) is zero (m1 = 0) and m2 is
the strictly associative operation induced by the multiplication on A. The resulting
structure is unique up to quasi-isomorphism.

Kontsevich and Soibelman [10] gave an explicit expressions for the higher op-
erations of the induced A∞-structure as sums over decorated planar binary trees
with one root where all leaves are decorated by the inclusion i, the root by the
projection p the vertices by the product µ of the (commutative) DGA (A, d, µ)
and the internal edges by the homotopy h. The C∞-structure implies additional
symmetries on trees.
We will make use of the graphic representation for the binary operation on H•(A)

i
��
==

==
==

==

i
����
��
��
��

m2(x, y) := pµ(i(x), i(y)) or m2 = µ

p

��

and the ternary one m3(x, y, z) = pµ(i(x), hµ(i(y), i(z))) − pµ(hµ(i(x), i(y)), i(z))
being the sum of two planar binary trees with three leaves

i

!!C
CC

CC
CC

CC
CC

CC
CC

CC
CC

i
  
BB

BB
BB

BB

i
����
��
��
��

µ

h
����
��
��
��

m3 = µ

p

��

−

i
��
??

??
??

??

i
~~||
||
||
||

i

����
��
��
��
��
��
��
��
�

µ

h

��
??

??
??

??

µ

p

��

3. Homology and cohomology of Lie algebra g

A non-minimal projective(in fact free) resolution of the trivial Ug-module K,

C(g)
ǫ
→ K is given by the standard Chevalley-Eilenberg chain complex C•(g) =
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(Ug⊗K ∧pg, dp) with differential maps

dp(u⊗ x1 ∧ . . . ∧ xp) =
∑

i

(−1)i+1uxi ⊗ x1 ∧ . . . ∧ x̂i ∧ . . . ∧ xp

+
∑

i<j

(−1)i+ju⊗ [xi, xj ] ∧ x1 ∧ . . . ∧ x̂i ∧ . . . ∧ x̂j ∧ . . . ∧ xp(3.1)

The homologies Hn(g,K) of the Lie algebra g with trivial coefficients are given by
the homologies of the derived complex K⊗Ug C•(g)

TorUg
n (K,K) ∼= Hn(K⊗Ug C•(g)) = Hn(g,K) .

The complex K⊗UgC•(g) is the chain complex with degrees
∧•

g = K⊗UgUg⊗
∧•

g

and differentials ∂p := id ⊗Ug dp :
∧p

g →
∧p−1

g induced by the extension as

coderivation of the Lie bracket ∂2 := −[ · , · ] :
∧2

g → g.
The dual cochain complex HomUg(C(g),K) = (

∧•
g∗, δ) has coboundary map

δp :
∧p

g∗ →
∧p+1

g∗ (being transposed to the differential ∂p+1) which is the exten-

sion as derivation of the dualization of the Lie bracket δ1 := [ · , · ]∗ : g∗ →
∧2

g∗.
One calculates the cohomologies1 of the Lie algebra g as

(3.2) ExtnUg(K,K) ∼= Hn(HomUg(C(g),K)) = Hn(g,K) .

Hence the algebra (
∧•

g∗, δ) equipped with δ is a (super)commutative DGA and
the Yoneda algebra Ext•Ug(K,K) =

⊕

n Ext
n
Ug(K,K) has structure of commutative

associative algebra. Moreover due to the Kadeishvili theorem the Yoneda algebra
Ext•Ug(K,K) = H•(g,K) is a C∞-algebra which stems from the homotopy transfer
of the wedge product ∧ on cohomology classes

Hi(g,K) ∧Hj(g,K) → Hi+j(g,K) .

4. Abelian Lie algebra h = V

Let us take as a basic example the abelian Lie algebra h, that is, the free
nilpotent Lie algebra generated by a finite dimensional vector space V of degree
1. The Lie bracket of h is trivial [V, V ] = 0. According to Poincaré-Birkhoff-
Witt theorem the universal enveloping algebra of the abelian Lie algebra h = V is
isomorphic to the symmetric algebra

U(h) ∼= S(V ) .

The Chevalley-Eilenberg complex C•(h) = S(V ) ⊗K Λ•V yields the resolution of
the trivial U(h)-module K

0 → S(V )⊗ ΛdimV V → S(V )⊗ ΛdimV −1V → · · ·

· · · → S(V )⊗ Λ2V → S(V )⊗ V → S(V ) → K → 0 .(4.1)

The derived complex K⊗Uh C(h) has zero differential and the Chevalley-Eilenberg
resolution turns out to be minimal(which is not the case in general)

Hn(h,K) ∼= Hn(K ⊗Uh C(h)) ∼= ΛnV .

1In the presence of metric one has δ := ∂∗(see below)
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The Chevalley-Eilenberg resolution coincides with the Koszul complex K(A) =
A ⊗ (A!)∗ of the symmetric algebra A = S(V ). The Koszul dual algebra of the
symmetric algebra is the exteriour algebra S(V )! = ΛV ∗. A quadratic algebra is
said to be a Koszul algebra when its Koszul complex K•(A) = A⊗ (A!

•)
∗ is acyclic

everywhere except in degree 0(where its homology is K). Then the Koszul complex
yields a minimal projective (in fact free) resolution by (left) A-modules of the trivial
A-module K

K(A)
ǫ
→ K → 0 .

In particular the resolution 4.1 is the same as the the resolution by the Koszul com-
plex Kn(S(V )) = S(V )⊗ ΛnV ∗ thus the algebra S(V ) is Koszul algebra. One has
another equvalent definition of Koszul algebra based on the following proposition;

Proposition 4.1. A finitely generated quadratic algebra A is Koszul iff its
Yoneda algebra ExtA(K,K) is generated in degree 1. One has then ExtA(K,K) ∼=
A!.

Indeed the Yoneda algebra ExtS(V )(K,K) of the symmetric algebra S(V ) is
just the exteriour algebra

ExtnS(V )(K,K) = (TorS(V )
n (K,K))∗ = ΛnV ∗

which is obviously generated by V ∗, i.e., in degree 1, by the wedge product.
Through the homotopy transfer the Yoneda algebra ExtS(V )(K,K) inherits a C∞-
structure but it is easy to show (by degree preserving argument) that the latter
C∞-algebra is formal, i.e., all higher multiplications are trivial, mn = 0 for n 6= 2.

5. Homology of Free 2-nilpotent algebra g = V ⊕ Λ2V

Let g be the free graded 2-step nilpotent Lie algebra generated by vector space
V in degree 1, g = V ⊕ [V, V ]. In other words we consider the graded Lie algebra
g with Lie bracket

[u, v] =

{

u ∧ v ∈ Λ2V
0 otherwise

We denote the Universal Enveloping Algebra(UEA) Ug by PS and refer to it as
parastatistics algebra. 2 Throughout this note we will consider the generators space
V to be an ordinary vector space V which corresponds to a parafermionic algebra
PS(V ) = Ug. The case of a Z2-space of generators V = V0 ⊕ V1, that is, PS(V ) is
the Universal Enveloping Algebra of a Lie super-algebra g = g0̄ ⊕ g1̄(which would
include the parabosonic algebras) will be treated elsewhere. More on parastatistics
algebras and their application to combinatorics the reader could find in the articles
[5, 11].

2Such cubic algebras arise through the exchange relations between the operators in a quan-
tization procedure intoduced by H. S. Green [7] for particles obeying more general statistics than
Bose-Einstein or Fermi-Dirac, coined parabosons and parafermions.
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The parastatistics algebra PS(V ) generated by a finite dimensional vector space
V in degree 1 is the positively graded algebra

PS(V ) := Ug = U(V ⊕
∧2

V ) = T (V )/([[V, V ], V ]) .

We shall write simply PS when the space of generators V is clear from the context.
The homologies Hn(g,K) of the 2-nilpotent Lie algebra g are the homologies

of the chain complex
∧n

g =
∧n

(V ⊕
∧2

V ) =
⊕

s+r=n

∧s

(
∧2

V )⊗
∧r

(V )

with differentials ∂n :
∧s(

∧2V )⊗
∧r(V ) →

∧s+1(
∧2V )⊗

∧r−2(V ) are given by

∂n : ei1j1 ∧ . . . ∧ eisjs ⊗ e1 ∧ . . . ∧ er 7→
∑

i<j

(−1)i+jeij ∧ ei1j1 ∧ . . . ∧ eisjs ⊗ e1 ∧ . . . ∧ êi ∧ . . . ∧ êj ∧ . . . ∧ er .

The differential ∂ identifies a pair of degree 1 generators ei, ej ∈ V with one degree
2 generator eij := (ei ∧ ej) = [ei, ej ] ∈ Λ2V .

The cohomologies Hn(g,K) arise from the dualized complex with coboundary

map δn :
∧n

g∗ →
∧n+1

g∗ which is transposed to the differential ∂n+1

δn : e∗i1j1 ∧ . . . ∧ e∗isjs ⊗ e∗l1 ∧ . . . ∧ e∗lr 7→(5.1)
s
∑

k=1

∑

ik<jk

(−1)i+je∗i1j1 ∧ . . . ∧ ê∗ikjk ∧ . . . ∧ e∗isjs ⊗ e∗ik ∧ e∗jk ∧ e∗l1 ∧ . . . ∧ . . . ∧ e∗lr .

In the presence of metric g one has an identification V
g
∼= V ∗, and

∧•
g

g
∼=
∧•

g∗.

The adjoint operator ∂∗
n :

∧n
g →

∧n+1
g is defined by g(∂∗

nv, w) = g(v, ∂n+1w).
One can show that independently of the metric g chosen the action of ∂∗

n takes the
form

∂∗
n : ei1j1 ∧ . . . ∧ eisjs ⊗ el1 ∧ . . . ∧ elr 7→(5.2)

s
∑

k=1

∑

ik<jk

(−1)i+jei1j1 ∧ . . . ∧ êikjk ∧ . . . ∧ eisjs ⊗ eik ∧ ejk ∧ el1 ∧ . . . ∧ . . . ∧ elr .

We will see in the following that after the identification
∧•

g
g
∼=
∧•

g∗ the map

∂∗ g
= δ will play the role of homotopy for the chain complex (

∧•
g, ∂•), and vice

versa the boundary map ∂
g
= δ∗ is a homotopy for the cochain complex (

∧•
g∗, δ•).

The complexes (
∧n

g, ∂n, ∂
∗
n) and (

∧n
g∗, δn, δ∗n) are bigraded by two different

degrees; the homological degree n := r + s counting the number of Lie algebra
generators and the tensor degree t := 2s+ r also called weight. The cohomologies
Hn(g,K) can have components of different weight t, Hn(g,K) =

⊕

t H
n(g,K)t and

the weight t is in fact the Adams grading on Yoneda algebra ExtnUg(K,K)t [13].
The differential and the homotopy, δ = ∂∗ and ∂ = δ∗ do not alter the weight t,
but raise and lower the homological degree n.
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The operations mk in homotopy algebra are bigraded by homological and
Adams gradings of bidegree (k, t) = (2 − k, 0). The bi-grading impose the van-
ishing of many higher products.

5.1. Homology of g as a GL(V )-module. A Schur module Vλ is an irre-
ducible polynomial GL(V )-module labelled by a Young diagram λ. The basis of a
Schur module Vλ is in bijection with semistandard Young tableaux which are fillings
of the Young diagram λ with the numbers of the set {1, . . . , dimV }. The action of
the linear group GL(V ) on the space V of the generators of the Lie algebra g in-
duces a GL(V )-action on the universal enveloping algebra PS = Ug ∼= S(V ⊕Λ2V )

and on the space
∧•

g ∼=
∧•

(V ⊕
∧2

V ).
The maps ∂ and ∂∗ both commute with the GL(V )-action. It follows that

the homology and cohomology carry structure of GL(V )-modules hence can be
decomposed into irreducibles.

The Laplacian ∆ = ⊕n>0∆n is defined to be the self-adjoint operator

∆n = ∂n+1∂
∗
n+1 + ∂∗

n∂n ∈ End(
∧n

g) .

Its kernel is a complete set of representatives for the homology classes in Hp(g,K)

ker∆n
∼= Hn(g,K) .

The decomposition of the GL(V )-module Hn(g,K) into irreducible polynomial rep-
resentations Vλ is given by the following theorem;

Theorem 5.1 (Józefiak and Weyman [8], Sigg [14]). The homology H•(g,K)

of the 2-nilpotent Lie algebra g = V ⊕
∧2

V decomposes into irreducible GL(V )-
modules

(5.3) Hn(g,K) = Hn(
∧•

g, ∂) ∼= TorPS
n (K,K)(V ) ∼=

⊕

λ:λ=λ′

Vλ

where the sum is over self-conjugate Young diagrams λ such that n = 1
2 (|λ|+ r(λ)).

5.2. Homological interpretation of the Littlewood formula. We recall
the beautiful result of Józefiak and Weyman [8] giving a representation-theoretic
interpretation of the Littlewood formula

(5.4)
∏

i

(1− xi)
∏

i<j

(1− xixj) =
∑

λ:λ=λ′

(−1)
1

2
(|λ|+r(λ))sλ(x) .

Here the sum is over the self-dual Young diagrams λ, sλ(x) stands for the Schur
function and r(λ) stands the rank of λ which is the number of diagonal boxes in λ.

One knows that for the graded algebra PS there exists a minimal resolution
by projective modules

(5.5) P• : 0 → Pd → · · · → Pn → · · · → P2 → P1 → P0
ǫ
→ K → 0 .

Here the length d of the resolution is the projective dimension of the algebra PS

which is d = dimV (dimV +1)
2 . Since PS is positively graded and, in the category of

positively graded modules over connected locally finite graded algebras, projective
module is the same as free module [4], we have Pn

∼= PS ⊗En where En are finite
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dimensional vector spaces. Thus we deal with a minimal resolution of K by free
PS-modules and the minimality implies that the derived complex K ⊗PS P• has
vanishing differentials, i.e., TorPS

• (K,K) = H•(K ⊗PS P•) = K ⊗PS P•. Then

the multiplicity spaces En = TorPS
n (K,K) are fixed by Theorem 5.1 thus the data

Hn(g,K) = TorPS
n (K,K) encodes the minimal free resolution P• (cf. (5.5)) which

is unique(up to isomorphism).
The Euler characteristics of P• implies an identity about the GL(V )-characters

chPS(V ) . ch

(

⊕

λ:λ=λ′

(−1)
1

2
(|λ|+r(λ))Vλ

)

= 1 .

The character of a Schur module Vλ is the Schur function, ch Vλ = sλ(x). Due to

the Poincaré-Birkhoff-Witt theorem chPS(V ) = ch S(V ⊕
∧2

V ) thus the identity
reads

∏

i

1

(1 − xi)

∏

i<j

1

(1− xixj)

∑

λ:λ=λ′

(−1)
1

2
(|λ|+r(λ))sλ(x) = 1 .

But the latter identity is nothing but rewriting of the Littlewood identity (5.4).
The moral is that the Littlewood identity reflects a homological property of the
algebra PS, namely the above particular structure of the minimal projective (free)
resolution of K by PS-modules.

5.3. Ext•PS(K,K) as C∞-algebra.

Theorem 5.2. The cohomology H•(g,K) ∼= Ext•PS(K,K) of the free 2-nilpotent

graded Lie algebra g = V ⊗
∧2

V is a homotopy commutative algebra which is
generated in degree 1 (i.e., in H1(g,K)) by the operations m2 and m3.

Proof. We start by choosing a metric g on the vector space V and an or-

thonormal basis g(ei, ej) = δij . The choice induces a metric on
∧•

g
g
∼=
∧•

g∗.

The isomorphisms V ∼= V ∗ and TorPS
n (K,K) ∼= ExtnPS(K,K) and the theorem

5.1 imply the decomposition of H•(g,K) into irreducible GL(V )-modules

Hn(g,K) ∼= Hn(
∧

g∗, δ) ∼= ExtnPS(K,K) ∼=
⊕

λ:λ=λ′

Vλ

where the sum is over self-conjugate diagrams λ such that n = 1
2 (|λ| + r(λ)).

The adjoint of the boundary map ∂, δ
g
:= ∂∗ is the differential in the DGA

(
∧

g∗, δ) while δ∗
g
:= ∂ plays the role of a homotopy. In view of lemma 2.1 we have

the cohomology H•(
∧•

g∗, δ•) as deformation retract of the complex (
∧•

g∗, δ•),

pi = IdH•(
∧

•g∗) , ip− Id∧•g∗ = δδ∗ + δ∗δ , δ∗
g
= ∂ .

Here the projection p identifies the subspace ker δ ∩ ker δ∗ with H•(
∧•

g∗), which
is the orthogonal complement of the space of the coboundaries imδ. The cocycle-
choosing homomorphism i is Id on H•(

∧•
g∗) and zero on coboundaries.

We apply the Kadeishvili homotopy transfer Theorem 2.1 for the commutative
DGA (

∧•
g∗, µ, δ•) and its deformation retract H•(

∧•
g∗) ∼= H•(g,K) and conclude

that the cohomology H•(g,K) is a C∞-algebra.
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The Kontsevich and Soibelman tree representations of the operations mn pro-
vide explicit expressions. Let us take µ to be the super-commutative product ∧
on the DGA (

∧•
g∗, δ•). The projection p maps onto the Schur modules Vλ with

self-conjugated Young diagram λ = λ′.
The binary operation on the generators ei ∈ H1(g,K) is trivial, one gets

m2(ei, ej) = p(ei ∧ ej) = 0 p(V(12)) = 0.

Hence H•(g,K) could not be generated in H1(g,K) as algebra with product m2.
The ternary operation m3 restricted to H1(g,K) is nontrivial, indeed one has

m3(ei, ej , ek) = p {ei ∧ ∂(ej ∧ ek)− ∂(ei ∧ ej) ∧ ek} = p {eij ∧ ek − ei ∧ ejk}

= p {(eij ∧ ek + ejk ∧ ei + eki ∧ ej)− eki ∧ ej} = eik ∧ ej ∈ H2(g,K)

The completely antisymmetric combination in the brackets (. . .) spans the Schur
module V(13), p(eij ∧ ek + ejk ∧ ei + eki ∧ ej) = 0 yields a Jacobi-type identity. The

monomials eij ∧ ek modulo V(13) span a Schur module V(2,1) ∈ H2(g,K) with basis
in bijection with the semistandard Young tableaux

eik ∧ ej ↔
i j

k
and eij ∧ ek ↔

i k

j
.

We check the symmetry condition on ternary operation m3 in C∞-algebra;
indeed m3 vanishes on the (signed) shuffles Sh1,2

m3(ei � ej ⊗ ek) = m3(ei, ej, ek)−m3(ej , ei, ek) +m3(ej , ek, ei) = 0.

Similarly one gets m3(ei ⊗ ej � ek) = 0 on shuffles Sh2,1.
On the level of Schur modules the ternary operation glues three fundamental

GL(V )-representations V� into a Schur module V(2,1). By iteration of the process
of gluing boxes we generate all elementary hooks Vk := V(k+1,1k),

m3(V�, V�, V�) = V

m3

(

V�, V , V�

)

= V

. . .

m3(V0, Vk, V0) = Vk+1 .

In our context the more convenient notation for Young diagrams is due to Frobenius:
λ := (a1, . . . , ar|b1, . . . br) stands for a diagram λ with ai boxes in the i-th row on
the right of the diagonal, and with bi boxes in the i-th column below the diagonal
and the rank r = r(λ) is the number of boxes on the diagonal.

For self-dual diagrams λ = λ′, i.e., ai = bi we set Va1,...,ar
:= V(a1,...,ar|a1,...ar)

when a1 > a2 > . . . > ar > 0 (and set the convention Va1,...,ar
:= 0 otherwise). Any

two elementary hooks Va1
and Va2

can be glued together by the binary operation
m2, the decomposition of m2(Va1

, Va2
) ∼= m2(Va2

, Va1
) is given by

m2(Va1
, Va2

) = Va1,a2
⊕ (

a2
⊕

i=1

Va1+i,a2−i) a1 > a2
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where the “leading” term Va1,a2
has the diagram with minimal height. Hence any

m2-bracketing of the hooks Va1
, Va2

. . . , Var
yields3 a sum of GL(V )-modules

m2(. . .m2(m2(Va1
, Va2

), Va3
), . . . , Var

) = Va1,...,ar
⊕ . . .

whose module with minimal height is precisely Va1,...,ar
. We conclude that all

elements in the C∞-algebra H•(g,K) can be generated in H1(g,K) by m2 and
m3. �

One could draw a parallel between the latter theorem for the cubic algebra
PS and the proposition 4.1 for Koszul algebra; in both cases the Yoneda algebra
Ext•PS(K,K) is generated only in Ext1PS(K,K). Although we have the notion of N -
Koszul algebras for the N -homogeneous algebras [2, 3], it turns out that the cubic
algebra PS is not 3-Koszul, beside the exceptional case when dim V = 2. Instead
the algebra PS = Ug falls in the class of Artin-Schelter-regular algebras [1], being
an UEA of positively graded Lie algebra (for a proof see [6]). The parallel between
the quadratic Koszul algebra S(V ) and the cubic AS-regular regular algebra PS(V )
suggests that the C∞-algebra Ext•PS(K,K) is a generalization of a Koszul dual
algebra of PS in the realm of the homotopy algebras, an idea that has been put
forward in [13].

The analogy would be complete if we had the following conjectural proposition.

Proposition 5.1. The cohomology H•(g,K) ∼= Ext•PS(K,K) of the free 2-

nilpotent graded Lie algebra g = V ⊗
∧2V can be endowed with a structure of

C∞-algebra having trivial higher multiplications mk = 0, k > 4.

So far we were able to prove this conjecture only in dimensions dimV 6 3.
Our proof rests entirely on the bigrading (2 − k, 0) of the multiplication mk by
homological and tensor degree in the C∞-algebra Ext•PS(K,K). The bigrading
arguments work only for dimV = 2 and dimV = 3 thus for a complete proof the
conjecture would need more refined methods.
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