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2-Step Nilpotent Lie algebra and C ∞ -Algebras

We consider the free 2-step nilpotent graded Lie algebra and its cohomology ring. The homotopy transfer induces a homotopy commutative algebra on its cohomology ring which we describe. p

Homology and cohomology of Lie algebra g

A non-minimal projective(in fact free) resolution of the trivial U g-module K, C(g) ǫ

Homotopy algebras

The homotopy associative algebras, or A ∞ -algebras were introduced by Jim Stasheff in the 1960's as a tool in algebraic topology for studying 'group-like' spaces. Homotpy algebras received a new attention and further development in the 1990's after the discovery of their relevence into a multitude of topics in algebraic geometry, symplectic and contact geometry, knot theory, moduli spaces, deformation theory... Definition 1.1. (A ∞ -algebra) A homotopy associative algebra, or A ∞ -algebra, over K is a Z-graded vector space A = i∈Z A i endowed with a family of graded mappings (operations)

m n : A ⊗n → A, deg(m n ) = 2 -n n 1
satisfying the Stasheff identities SI(n) for n 1

SI(n) :

r+s+t=n (-1) r+st m r+1+t (Id ⊗r ⊗ m s ⊗ Id ⊗t ) = 0 r 0, t 0, s 1 where the sum runs over all decompositions n = r + s + t. Throughout the text we assume the Koszul sign convention (f ⊗ g)(x ⊗ y) = (-1) |g||x| f (x) ⊗ g(y).

A morphism of two A ∞ -algebras A and B is a family of graded mapsf n : A ⊗n → B for n 1 with deg f n = 1 -n such that the following conditions hold r+s+t=n (-1) r+st f r+1+t (Id ⊗r ⊗ m s ⊗ Id ⊗r ) = where the sum is on all decompositions i 1 + . . .+ i r = n and the sign (-1) S on RHS is determined by S = (r -1)(i 1 -1) + (r -2)(i 2 -1) + . . . + 2(i r-2 -1) + (i r-1 -1). The morphism f is a quasi-isomorphism of A ∞ -algebras if f 1 is a quasi-isomorphism. It is strict if f i = 0 for all i = 1. The identity morphism of A is the strict morphism f such that f 1 is the identity of A.

We define the shuffle product Sh p,q : A ⊗p ⊗ A ⊗q → A ⊗p+q throughout the expression (a 1 ⊗ . . . ⊗ a p ) ¡ (a p+1 ⊗ . . . ⊗ a p+q ) = σ∈Shp,q

sgn(σ) a σ -1 (1) ⊗ . . . ⊗ a σ -1 (p+q)
where the sum runs over all (p, q)-shuffles Sh p,q , i.e., over all permutations σ ∈ S p+q such that σ(1) < σ(2) < . . . < σ(p) and σ(p + 1) < σ(p + 2) < . . . < σ(p + q) . Definition 1.2. (C ∞ -algebra [START_REF] Kadeishvili | The A∞-algebra Structure and Cohomology of Hochschild and Harrison[END_REF]) A homotopy commutative algebra, or C ∞algebra, is an A ∞ -algebra {A, m n } such that each operation m n vanishes on nontrivial shuffles (1.1)

m n ((a 1 ⊗ . . . ⊗ a p ) ¡ (a p+1 ⊗ . . . ⊗ a n )) = 0 , 1 p n -1 .
In particular for m 2 we have m

2 (a ⊗ b ± b ⊗ a) = 0, so a C ∞ -algebra such that m n = 0 for n 3 is a (super-)commutative DGA. A morphism of C ∞ -algebras is a morphism of A ∞ -algebras vanishing on non- trivial shuffles f n ((a 1 ⊗ . . . ⊗ a p ) ¡ (a p+1 ⊗ . . . ⊗ a n )) = 0 , 1 p n -1 .

Homotopy Transfer Theorem

Lemma 2.1. Every cochain complex (A, d) of vector spaces over a field K has its cohomology H • (A) as a deformation retract.

One can always choose a vector space decomposition of the cochain complex (A, d) such that A n ∼ = B n ⊕ H n ⊕ B n+1 where H n is the cohomology and B n is the space of coboundaries, B n = dA n-1 . We choose a homotopy h : A n → A n-1 which identifies B n with its copy in A n-1 and is 0 on With these choices done the complex (H • (A), 0) is a deformation retract of (A, d)

H n ⊕ B n+1
h 3 3 (A, d) p G G (H • (A), 0) i o o , pi = Id H • (A) , ip -Id A = dh + hd .
Let now (A, d, µ) be a DGA, i.e., A is endowed with an associative product µ compatible with d. The cochain complexes (A, d) and its contraction H • (A) are homotopy equivalent, but the associative structure is not stable under homotopy equivalence. However the associative structure on A can be transferred to an A ∞structure on a homotopy equivalent complex, a particular interesting complex being the deformation retract H • (A). For a friendly introduction to homotopy transfer theorems in much boarder context we send the reader to the textbook [START_REF] Loday | Algebraic Operads[END_REF], see chapter 9.

Theorem 2.1 (Kadeishvili [9]). Let (A, d, µ) be a (commutative) DGA over a field K. There exists a A ∞ -algebra (C ∞ -algebra) structure on the cohomology

H • (A) and a A ∞ (C ∞ )-quasi-isomorphism f i : (⊗ i H • (A), {m i }) → (A, {d, µ, 0, 0, . . .}) such that the inclusion f 1 = i : H • (A) → A is a cocycle-choosing homomorphism of cochain complexes. The differential m 1 on H • (A) is zero (m 1 = 0)
and m 2 is the strictly associative operation induced by the multiplication on A. The resulting structure is unique up to quasi-isomorphism.

Kontsevich and Soibelman [START_REF] Kontsevich | Deformations of algebras over operads and the Deligne conjecture[END_REF] gave an explicit expressions for the higher operations of the induced A ∞ -structure as sums over decorated planar binary trees with one root where all leaves are decorated by the inclusion i, the root by the projection p the vertices by the product µ of the (commutative) DGA (A, d, µ) and the internal edges by the homotopy h. The C ∞ -structure implies additional symmetries on trees. We will make use of the graphic representation for the binary operation on H

• (A) (U g ⊗ K ∧ p g, d p ) with differential maps d p (u ⊗ x 1 ∧ . . . ∧ x p ) = i (-1) i+1 ux i ⊗ x 1 ∧ . . . ∧ xi ∧ . . . ∧ x p + i<j (-1) i+j u ⊗ [x i , x j ] ∧ x 1 ∧ . . . ∧ xi ∧ . . . ∧ xj ∧ . . . ∧ x p (3.1)
The homologies H n (g, K) of the Lie algebra g with trivial coefficients are given by the homologies of the derived complex K ⊗ Ug C • (g)

Tor Ug n (K, K) ∼ = H n (K ⊗ Ug C • (g)) = H n (g, K) . The complex K⊗ Ug C • (g) is the chain complex with degrees • g = K⊗ Ug U g⊗ • g
and differentials ∂ p := id ⊗ Ug d p : p g → p-1 g induced by the extension as coderivation of the Lie bracket

∂ 2 := -[ • , • ] : 2 g → g. The dual cochain complex Hom Ug (C(g), K) = ( • g * , δ
) has coboundary map δ p : p g * → p+1 g * (being transposed to the differential ∂ p+1 ) which is the extension as derivation of the dualization of the Lie bracket

δ 1 := [ • , • ] * : g * → 2 g * . One calculates the cohomologies 1 of the Lie algebra g as (3.2) Ext n Ug (K, K) ∼ = H n (Hom Ug (C(g), K)) = H n (g, K) .

Hence the algebra (

• g * , δ) equipped with δ is a (super)commutative DGA and the Yoneda algebra Ext • Ug (K, K) = n Ext n Ug (K, K) has structure of commutative associative algebra. Moreover due to the Kadeishvili theorem the Yoneda algebra Ext

• Ug (K, K) = H • (g, K) is a C ∞ -
algebra which stems from the homotopy transfer of the wedge product ∧ on cohomology classes

H i (g, K) ∧ H j (g, K) → H i+j (g, K) .

Abelian Lie algebra h = V

Let us take as a basic example the abelian Lie algebra h, that is, the free nilpotent Lie algebra generated by a finite dimensional vector space V of degree 1. The Lie bracket of h is trivial [V, V ] = 0. According to Poincaré-Birkhoff-Witt theorem the universal enveloping algebra of the abelian Lie algebra h = V is isomorphic to the symmetric algebra

U (h) ∼ = S(V ) . The Chevalley-Eilenberg complex C • (h) = S(V ) ⊗ K Λ • V yields the resolution of the trivial U (h)-module K 0 → S(V ) ⊗ Λ dim V V → S(V ) ⊗ Λ dim V -1 V → • • • • • • → S(V ) ⊗ Λ 2 V → S(V ) ⊗ V → S(V ) → K → 0 . (4.1)
The derived complex K ⊗ Uh C(h) has zero differential and the Chevalley-Eilenberg resolution turns out to be minimal(which is not the case in general) The Chevalley-Eilenberg resolution coincides with the Koszul complex K(A) = A ⊗ (A ! ) * of the symmetric algebra A = S(V ). The Koszul dual algebra of the symmetric algebra is the exteriour algebra S(V ) ! = ΛV * . A quadratic algebra is said to be a Koszul algebra when its Koszul complex K

H n (h, K) ∼ = H n (K ⊗ Uh C(h)) ∼ = Λ n V .
• (A) = A ⊗ (A !
• ) * is acyclic everywhere except in degree 0(where its homology is K). Then the Koszul complex yields a minimal projective (in fact free) resolution by (left) A-modules of the trivial

A-module K K(A) ǫ → K → 0 .
In particular the resolution 4.1 is the same as the the resolution by the Koszul complex K n (S(V )) = S(V ) ⊗ Λ n V * thus the algebra S(V ) is Koszul algebra. One has another equvalent definition of Koszul algebra based on the following proposition;

Proposition 4.1. A finitely generated quadratic algebra A is Koszul iff its Yoneda algebra Ext A (K, K) is generated in degree 1. One has then Ext A (K, K) ∼ = A ! . Indeed the Yoneda algebra Ext S(V ) (K, K) of the symmetric algebra S(V ) is just the exteriour algebra Ext n S(V ) (K, K) = (Tor S(V ) n (K, K)) * = Λ n V *
which is obviously generated by V * , i.e., in degree 1, by the wedge product. Through the homotopy transfer the Yoneda algebra Ext S(V ) (K, K) inherits a C ∞structure but it is easy to show (by degree preserving argument) that the latter C ∞ -algebra is formal, i.e., all higher multiplications are trivial, m n = 0 for n = 2.

Homology of Free 2-nilpotent algebra

g = V ⊕ Λ 2 V
Let g be the free graded 2-step nilpotent Lie algebra generated by vector space

V in degree 1, g = V ⊕ [V, V ].
In other words we consider the graded Lie algebra g with Lie bracket

[u, v] = u ∧ v ∈ Λ 2 V 0 otherwise
We denote the Universal Enveloping Algebra(UEA) U g by P S and refer to it as parastatistics algebra. 2 Throughout this note we will consider the generators space V to be an ordinary vector space V which corresponds to a parafermionic algebra P S(V ) = U g. The case of a Z 2 -space of generators V = V 0 ⊕ V 1 , that is, P S(V ) is the Universal Enveloping Algebra of a Lie super-algebra g = g0 ⊕ g1(which would include the parabosonic algebras) will be treated elsewhere. More on parastatistics algebras and their application to combinatorics the reader could find in the articles [START_REF] Dubois-Violette | Homogeneous Algebras[END_REF][START_REF] Loday | Parastatistics Algebra, Young Tableaux and the Super Plactic Monoid[END_REF].

2 Such cubic algebras arise through the exchange relations between the operators in a quantization procedure intoduced by H. S. Green [START_REF] Green | A Generalized Method of Field Quantization[END_REF] for particles obeying more general statistics than Bose-Einstein or Fermi-Dirac, coined parabosons and parafermions.

The parastatistics algebra P S(V ) generated by a finite dimensional vector space V in degree 1 is the positively graded algebra

P S(V ) := U g = U (V ⊕ 2 V ) = T (V )/([[V, V ], V ]) .
We shall write simply P S when the space of generators V is clear from the context.

The homologies H n (g, K) of the 2-nilpotent Lie algebra g are the homologies of the chain complex

n g = n (V ⊕ 2 V ) = s+r=n s ( 2 V ) ⊗ r (V ) with differentials ∂ n : s ( 2 V ) ⊗ r (V ) → s+1 ( 2 V ) ⊗ r-2 (V ) are given by ∂ n : e i1j1 ∧ . . . ∧ e isjs ⊗ e 1 ∧ . . . ∧ e r → i<j (-1) i+j e ij ∧ e i1j1 ∧ . . . ∧ e isjs ⊗ e 1 ∧ . . . ∧ êi ∧ . . . ∧ êj ∧ . . . ∧ e r .
The differential ∂ identifies a pair of degree 1 generators e i , e j ∈ V with one degree 2 generator e ij := (e i ∧ e j ) = [e i , e j ] ∈ Λ 2 V .

The cohomologies H n (g, K) arise from the dualized complex with coboundary map δ n : n g * → n+1 g * which is transposed to the differential ∂ n+1 

s k=1 i k <j k (-1) i+j e * i1j1 ∧ . . . ∧ ê * i k j k ∧ . . . ∧ e * isjs ⊗ e * i k ∧ e * j k ∧ e * l1 ∧ . . . ∧ . . . ∧ e * lr .
In the presence of metric g one has an identification V g ∼ = V * , and

• g g ∼ = • g * .
The adjoint operator ∂ * n : n g → n+1 g is defined by g(∂ * n v, w) = g(v, ∂ n+1 w). One can show that independently of the metric g chosen the action of ∂ * n takes the form

∂ *

n : e i1j1 ∧ . . . ∧ e isjs ⊗ e l1 ∧ . . . ∧ e lr → (5.2)

s k=1 i k <j k (-1) i+j e i1j1 ∧ . . . ∧ êi k j k ∧ . . . ∧ e isjs ⊗ e i k ∧ e j k ∧ e l1 ∧ . . . ∧ . . . ∧ e lr .
We will see in the following that after the identification • g g ∼ =

• g * the map ∂ * g = δ will play the role of homotopy for the chain complex ( • g, ∂ • ), and vice versa the boundary map ∂ g = δ * is a homotopy for the cochain complex (

• g * , δ • ). The complexes ( n g, ∂ n , ∂ * n ) and ( n g * , δ n , δ * n
) are bigraded by two different degrees; the homological degree n := r + s counting the number of Lie algebra generators and the tensor degree t := 2s + r also called weight. The cohomologies H n (g, K) can have components of different weight t, H n (g, K) = t H n (g, K) t and the weight t is in fact the Adams grading on Yoneda algebra Ext n Ug (K, K) t [START_REF] Lu | A∞-algebras for ring theorists[END_REF]. The differential and the homotopy, δ = ∂ * and ∂ = δ * do not alter the weight t, but raise and lower the homological degree n.

The operations m k in homotopy algebra are bigraded by homological and Adams gradings of bidegree (k, t) = (2 -k, 0). The bi-grading impose the vanishing of many higher products.

5.1. Homology of g as a GL(V )-module. A Schur module V λ is an irreducible polynomial GL(V )-module labelled by a Young diagram λ. The basis of a Schur module V λ is in bijection with semistandard Young tableaux which are fillings of the Young diagram λ with the numbers of the set {1, . . . , dim V }. The action of the linear group GL(V ) on the space V of the generators of the Lie algebra g induces a GL(V )-action on the universal enveloping algebra P S = U g ∼ = S(V ⊕ Λ 2 V ) and on the space

• g ∼ = • (V ⊕ 2 V
). The maps ∂ and ∂ * both commute with the GL(V )-action. It follows that the homology and cohomology carry structure of GL(V )-modules hence can be decomposed into irreducibles.

The Laplacian ∆ = ⊕ n 0 ∆ n is defined to be the self-adjoint operator

∆ n = ∂ n+1 ∂ * n+1 + ∂ * n ∂ n ∈ End( n g) .
Its kernel is a complete set of representatives for the homology classes in H p (g, K)

ker ∆ n ∼ = H n (g, K) .
The decomposition of the GL(V )-module H n (g, K) into irreducible polynomial representations V λ is given by the following theorem;

Theorem 5.1 (Józefiak and Weyman [START_REF] Józefiak | Representation-theoretic interpretation of a formula of D. E. Littlewood[END_REF], Sigg [START_REF] Sigg | Laplacian and homology of free 2-step nilpotent Lie algebras[END_REF]). The homology

H • (g, K) of the 2-nilpotent Lie algebra g = V ⊕ 2 V decomposes into irreducible GL(V )- modules (5.3) H n (g, K) = H n ( • g, ∂) ∼ = Tor P S n (K, K)(V ) ∼ = λ:λ=λ ′ V λ
where the sum is over self-conjugate Young diagrams λ such that n = 1 2 (|λ| + r(λ)). 5.2. Homological interpretation of the Littlewood formula. We recall the beautiful result of Józefiak and Weyman [START_REF] Józefiak | Representation-theoretic interpretation of a formula of D. E. Littlewood[END_REF] giving a representation-theoretic interpretation of the Littlewood formula

(5.4) i (1 -x i ) i<j (1 -x i x j ) = λ:λ=λ ′ (-1) 1 2 (|λ|+r(λ)) s λ (x) .
Here the sum is over the self-dual Young diagrams λ, s λ (x) stands for the Schur function and r(λ) stands the rank of λ which is the number of diagonal boxes in λ.

One knows that for the graded algebra P S there exists a minimal resolution by projective modules (5.5)

P • : 0 → P d → • • • → P n → • • • → P 2 → P 1 → P 0 ǫ → K → 0 .
Here the length d of the resolution is the projective dimension of the algebra P S which is

d = dim V (dim V +1) 2
. Since P S is positively graded and, in the category of positively graded modules over connected locally finite graded algebras, projective module is the same as free module [START_REF] Cartan | Homologie et cohomologie d' une algèbre graduée[END_REF], we have P n ∼ = P S ⊗ E n where E n are finite dimensional vector spaces. Thus we deal with a minimal resolution of K by free P S-modules and the minimality implies that the derived complex K ⊗ P S P • has vanishing differentials, i.e., Tor P S • (K, K) = H • (K ⊗ P S P • ) = K ⊗ P S P • . Then the multiplicity spaces E n = Tor P S n (K, K) are fixed by Theorem 5.1 thus the data H n (g, K) = Tor P S n (K, K) encodes the minimal free resolution P • (cf. (5.5)) which is unique(up to isomorphism).

The Euler characteristics of P • implies an identity about the GL(V )-characters ch P S(V ) . ch

λ:λ=λ ′ (-1) 1 2 (|λ|+r(λ)) V λ = 1 .
The character of a Schur module V λ is the Schur function, ch V λ = s λ (x). Due to the Poincaré-Birkhoff-Witt theorem ch P S(V ) = ch S(V ⊕ 2 V ) thus the identity reads

i 1 (1 -x i ) i<j 1 (1 -x i x j ) λ:λ=λ ′ (-1) 1 2 (|λ|+r(λ)) s λ (x) = 1 .
But the latter identity is nothing but rewriting of the Littlewood identity (5.4). The moral is that the Littlewood identity reflects a homological property of the algebra P S, namely the above particular structure of the minimal projective (free) resolution of K by P S-modules.

Ext

• P S (K, K) as C ∞ -algebra. Theorem 5.2. The cohomology H • (g, K) ∼ = Ext • P S (K, K) of the free 2-nilpotent graded Lie algebra g = V ⊗
2 V is a homotopy commutative algebra which is generated in degree 1 (i.e., in H 1 (g, K)) by the operations m 2 and m 3 .

Proof. We start by choosing a metric g on the vector space V and an orthonormal basis g(e i , e j ) = δ ij . The choice induces a metric on

• g g ∼ = • g * .
The isomorphisms V ∼ = V * and Tor P S n (K, K) ∼ = Ext n P S (K, K) and the theorem 5.1 imply the decomposition of H • (g, K) into irreducible GL(V )-modules

H n (g, K) ∼ = H n ( g * , δ) ∼ = Ext n P S (K, K) ∼ = λ:λ=λ ′ V λ
where the sum is over self-conjugate diagrams λ such that n = 1 2 (|λ| + r(λ)). The adjoint of the boundary map ∂, δ g := ∂ * is the differential in the DGA ( g * , δ) while δ * g := ∂ plays the role of a homotopy. In view of lemma 2.1 we have the cohomology H • (

• g * , δ • ) as deformation retract of the complex (

• g * , δ • ), pi = Id H • ( • g * ) , ip -Id • g * = δδ * + δ * δ , δ * g = ∂ .
Here the projection p identifies the subspace ker δ ∩ ker δ * with H • ( • g * ), which is the orthogonal complement of the space of the coboundaries imδ. The cocyclechoosing homomorphism i is Id on H • ( • g * ) and zero on coboundaries. We apply the Kadeishvili homotopy transfer Theorem 2.1 for the commutative DGA ( • g * , µ, δ • ) and its deformation retract

H • ( • g * ) ∼ = H • (g, K) and conclude that the cohomology H • (g, K) is a C ∞ -algebra.
The Kontsevich and Soibelman tree representations of the operations m n provide explicit expressions. Let us take µ to be the super-commutative product ∧ on the DGA (

• g * , δ • ). The projection p maps onto the Schur modules V λ with self-conjugated Young diagram λ = λ ′ .

The binary operation on the generators e i ∈ H 1 (g, K) is trivial, one gets m 2 (e i , e j ) = p(e i ∧ e j ) = 0 p(V (1 2 ) ) = 0.

Hence H • (g, K) could not be generated in H 1 (g, K) as algebra with product m 2 .

The ternary operation m 3 restricted to H 1 (g, K) is nontrivial, indeed one has The completely antisymmetric combination in the brackets (. . .) spans the Schur module V (1 .

We check the symmetry condition on ternary operation m 3 in C ∞ -algebra; indeed m 3 vanishes on the (signed) shuffles Sh 1,2 m 3 (e i ¡ e j ⊗ e k ) = m 3 (e i , e j , e k ) -m 3 (e j , e i , e k ) + m 3 (e j , e k , e i ) = 0. Similarly one gets m 3 (e i ⊗ e j ¡ e k ) = 0 on shuffles Sh 2,1 .

On the level of Schur modules the ternary operation glues three fundamental GL(V )-representations V into a Schur module V [START_REF] Berger | Koszulity for nonquadratic algebras[END_REF][START_REF] Artin | Graded algebras of global dimension 3[END_REF] . By iteration of the process of gluing boxes we generate all elementary hooks

V k := V (k+1,1 k ) , m 3 (V , V , V ) = V m 3 V , V , V = V . . . m 3 (V 0 , V k , V 0 ) = V k+1 .
In our context the more convenient notation for Young diagrams is due to Frobenius: λ := (a 1 , . . . , a r |b 1 , . . . b r ) stands for a diagram λ with a i boxes in the i-th row on the right of the diagonal, and with b i boxes in the i-th column below the diagonal and the rank r = r(λ) is the number of boxes on the diagonal. For self-dual diagrams λ = λ ′ , i.e., a i = b i we set V a1,...,ar := V (a1,...,ar|a1,...ar ) when a 1 > a 2 > . . . > a r 0 (and set the convention V a1,...,ar := 0 otherwise). Any two elementary hooks V a1 and V a2 can be glued together by the binary operation m 2 , the decomposition of m

2 (V a1 , V a2 ) ∼ = m 2 (V a2 , V a1 ) is given by m 2 (V a1 , V a2 ) = V a1,a2 ⊕ ( a2 i=1 V a1+i,a2-i ) a 1 a 2
where the "leading" term V a1,a2 has the diagram with minimal height. Hence any m 2 -bracketing of the hooks V a1 , V a2 . . . , V ar yields3 a sum of GL(V )-modules m 2 (. . . m 2 (m 2 (V a1 , V a2 ), V a3 ), . . . , V ar ) = V a1,...,ar ⊕ . . . whose module with minimal height is precisely V a1,...,ar . We conclude that all elements in the C ∞ -algebra H • (g, K) can be generated in H 1 (g, K) by m 2 and m 3 .

One could draw a parallel between the latter theorem for the cubic algebra P S and the proposition 4.1 for Koszul algebra; in both cases the Yoneda algebra Ext • P S (K, K) is generated only in Ext 1 P S (K, K). Although we have the notion of N -Koszul algebras for the N -homogeneous algebras [START_REF] Berger | Koszulity for nonquadratic algebras[END_REF][START_REF] Berger | Homogeneous algebras[END_REF], it turns out that the cubic algebra P S is not 3-Koszul, beside the exceptional case when dim V = 2. Instead the algebra P S = U g falls in the class of Artin-Schelter-regular algebras [START_REF] Artin | Graded algebras of global dimension 3[END_REF], being an UEA of positively graded Lie algebra (for a proof see [START_REF] Floystad | Artin-Schelter regular algebras of dimension five[END_REF]). The parallel between the quadratic Koszul algebra S(V ) and the cubic AS-regular regular algebra P S(V ) suggests that the C ∞ -algebra Ext • P S (K, K) is a generalization of a Koszul dual algebra of P S in the realm of the homotopy algebras, an idea that has been put forward in [START_REF] Lu | A∞-algebras for ring theorists[END_REF].

The analogy would be complete if we had the following conjectural proposition.

Proposition 5.1. The cohomology H • (g, K) ∼ = Ext • P S (K, K) of the free 2nilpotent graded Lie algebra g = V ⊗ 2 V can be endowed with a structure of C ∞ -algebra having trivial higher multiplications m k = 0, k 4.

So far we were able to prove this conjecture only in dimensions dim V 3. Our proof rests entirely on the bigrading (2 -k, 0) of the multiplication m k by homological and tensor degree in the C ∞ -algebra Ext • P S (K, K). The bigrading arguments work only for dim V = 2 and dim V = 3 thus for a complete proof the conjecture would need more refined methods.

(- 1 )

 1 S m r (f i1 ⊗ f i2 ⊗ . . . ⊗ f ir )2010 Mathematics Subject Classification. Primary 17B35, 17B56; Secondary 18G10, 17D98. Partially supported by ...

  . The projection p to the cohomology and the cocycle-choosing inclusion i given by A n p G G H n i o o are chain homomorphisms, satisfying the additional side conditions hh = 0, hi = 0, ph = 0 .

1

  In the presence of metric one has δ := ∂ * (see below)

  δ n : e * i1j1 ∧ . . . ∧ e * isjs ⊗ e * l1 ∧ . . . ∧ e * lr → (5.1)

m 3 (

 3 e i , e j , e k ) = p {e i ∧ ∂(e j ∧ e k ) -∂(e i ∧ e j ) ∧ e k } = p {e ij ∧ e k -e i ∧ e jk } = p {(e ij ∧ e k + e jk ∧ e i + e ki ∧ e j ) -e ki ∧ e j } = e ik ∧ e j ∈ H 2 (g, K)

  3 ) , p(e ij ∧ e k + e jk ∧ e i + e ki ∧ e j ) = 0 yields a Jacobi-type identity. The monomials e ij ∧ e k modulo V (1 3 ) span a Schur module V (2,1) ∈ H 2 (g, K) with basis in bijection with the semistandard Young tableaux e ik ∧ e j ↔

	i j k	and	e ij ∧ e k ↔	i k j

The operation m 2 is associative thus the result does not depend on the choice of the bracketing.
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