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1. ABSTRACT 

 

Knee orthotic devices are widely proposed by physicians and medical practitioners for 

preventive or therapeutic objectives in relation with their effects, usually known as to 

stabilize joint or restrict ranges of motion. This study focuses on the understanding of 

force transfer mechanisms from the brace to the joint thanks to a Finite Element Model. 

A Design Of Experiments approach was used to characterize the stiffness and comfort 

of various braces in order to identify their mechanically influent characteristics. Results 

show conflicting behavior: influent parameters such as the brace size or textile stiffness 

improve performance in detriment of comfort. Thanks to this computational tool, novel 

brace designs can be tested and evaluated for an optimal mechanical efficiency of the 

devices and a better compliance of the patient to the treatment. 

2. INTRODUCTION 

 

The knee is the largest joint in the body and is vulnerable to injury during sport 

activities and to degenerative conditions such as arthrosis. Knee injuries are common 

and account for 15-50% of all sports injuries [1]. Knee braces are prescribed for various 

knee syndromes such as ligament tears or disruptions, patellofemoral syndrome, 

iliotibial band syndrome, knee arthrosis and knee laxities [2]. These physio-pathological 

conditions involve pain and/or functional instability. These conditions are prevalent and 

are a huge burden on individuals and healthcare systems. 

 

Numerous brace action mechanisms have been proposed and investigated such as 

proprioceptive improvements, strain decrease on ligaments, neuromuscular control 

enhancement, joint stiffness increase and corrective off-loading torque for 

unicompartimental knee osteoarthritis [3,4]. Studies aiming to justify the use of knee 

orthoses in medical practice were reviewed by [3–5]. The following conclusions have 

been reported: 

1. Mechanical/physiological effects have been highlighted, but their level and 

mechanisms remain poorly known. 

                                                 
1
PhD Student, Ecole Nationale Supérieure des Mines, CIS-EMSE, CNRS:UMR5146, LCG, F-42023 

Saint-Etienne, France 
2
Professor, Ecole Nationale Supérieure des Mines, CIS-EMSE, CNRS:UMR5146, LCG, F-42023 Saint-

Etienne, France 
3
Doctor of Medicine, Laboratory of Exercise Physiology (LPE EA 4338), University Hospital of Saint-

Etienne, 42055 Saint-Etienne CEDEX 2 
4
Research Associate, Ecole Nationale Supérieure des Mines, CIS-EMSE, CNRS:UMR5146, LCG, F-

42023 Saint-Etienne, France 
5
Professor, Ecole Nationale Supérieure des Mines, CIS-EMSE, CNRS:UMR5146, LCG, F-42023 Saint-

Etienne, France
 

 



2. Only a few high-level clinical studies exist, and the effectiveness of bracing 

versus no bracing on postoperative outcomes has not been conclusively 

demonstrated. 

Possible explanations of 1 having no perceptible effect on 2 are that mechanical action 

levels are too low, or that patients do not comply to the orthopedic treatment and do not 

wear enough the device due to comfort issues. What is more, these studies are based on 

questionable methods and results lack authority. As a consequence of these 

uncertainties, medical practitioners and manufacturers still lack a simple evaluation tool 

for knee orthoses. A french committee of experts highlighted this problem [6] and stated 

that orthoses must be evaluated by taking both the mechanisms of action and the desired 

therapeutic effects into account.  

 

In order to answer these issues, an original Finite Element Model approach has been 

developed. This model was built in agreement and cooperation with medical 

practitioners and orthotic industrials, in a tentative of linking design problems, brace 

ability to prevent a given pathology and patient comfort. As there are a huge variety of 

orthoses on the market, the focus was placed on mass-produced knee braces, in 

opposition to individualized orthotic devices. They are usually made of synthetic 

textiles and may incorporate bilateral hinges and bars, straps, silicone anti-sliding pads 

and patella hole. Different hinge systems exist in order to reproduce knee kinematics. A 

typical design of a usual brace is depicted in Fig. 1(a). They are prescribed either for 

prophylactic or functional purposes. 

 

 

Fig. 1: Mass-produced knee orthosis: usual commercially available model (a) and FE 

model (b). 

 

3. METHODS 

 

3.1 Finite element model of the braced knee 

 

The model was developed under Abaqus
®
 v6.10-2. This generic model is not aimed to 

be patient specific, but to understand the force transfer mechanisms between the rigid 

parts of the knee brace and the joint through the brace fabric, the patient skin and soft 

tissues. 3D geometry of the human leg was obtained from a segmented PET-CT 

(Positron Emission Tomography - Computed Tomography) scan. The leg was scaled in 



order to reach the dimensions of a median French male leg (2006 French Measurement 

Campaign). It features undeformable bones, homogenized soft tissues (muscles, fat, 

tendons and fascias), skin and a fitted brace, as depicted in Fig. 1(b).  

 

Soft tissues were meshed with 160 000 quadratic tetrahedral elements. The material was 

defined as homogeneous, isotropic, quasi-incompressible and hyper-elastic. A Neo-

Hookean strain energy function was used as described in [7,8]. The model parameters 

for the leg were identified by [7] for a passive muscle (G = 3-8 kPa) and by [8] for a 

contracted muscle (G = 400 kPa). K was set to 10×G in order to enforce quasi-

incompressibility. 

 

The skin was meshed with 11 000 quadrilateral shell elements of thickness 1mm, as 

already modeled by [9]. The material was defined as homogeneous, isotropic, quasi-

incompressible and hyper-elastic. An Ogden strain energy function was used  as 

described in [9]. Values of  and  have been identified by [9] on the forearm (  = 35 

and  = 15kPa). A pre-stress of 4 kPa was applied in circumferential and longitudinal 

directions of the skin at the start of the analysis. 

 

Regarding the orthosis, the textile consisted of 30 000 quadrilateral shell elements and 

each strap of 1600 quadrilateral shell elements. The bars were modeled as rigid bodies. 

Mechanical behavior of fabrics has been already successfully modeled using shell 

elements [10]. The material was defined as homogeneous, orthotropic and linear elastic. 

The constitutive equations, written in vectorial form, relative to the warp and weft 

directions, are then: 

 

 

(1) 

and 

 

 

(2) 

where Nij and Mij are the tensions and bending moments of the fabric, ij and ij the 

strains and bending strains, Ei the tensile rigidities, G12 the shear rigidity, ij the 

Poisson’s ratios, Fi the bending rigidities, 12 the torsional rigidity and i parameters 

analogous to Poisson’s ratios. Tensile rigidities and Poisson’s ratios were obtained from 

unidirectional tensile tests on an Instron
®
 machine whereas bending rigidities were 

measured using a KES-F device (Kawabata Evaluation System for Fabrics) [10,11]. 

Samples were taken from 4 commercially available orthoses and their straps. 

 

Undeformable bars of the orthosis were connected using hinge connectors with a 

blocking feature, allowing them to pivot with the joint but not in the other way. A basic 

Coulomb friction model was used for the orthosis/skin and skin/soft tissues contacts in 

which contact pressure is linearly related to the equivalent shear stress with a constant 

friction coefficient . Values of brace for different fabric/skin systems are available in 

the literature, ranging from 0.3 to 0.7 [12,13]. Concerning the skin/soft tissues contact, 

no data was found in the literature for friction coefficient measurements. This parameter 

leg was assumed to be 0.1. Skin was attached to soft tissues at the top and bottom of the 

leg.  



 

A quasi-static analysis was performed using the Explicit solver. A joint kinematic was 

imposed, either a 20 mm front drawer, a 15° varus, a 20° pivot or a 45° flexion. A single 

analysis completed in about 4 hours on 8 CPUs at 2.4 Ghz. 

 

3.2 Design Of Experiments 

 

In order to characterize and grade the influence of brace design characteristics and 

patient-related specificities, 8 key parameters were identified. Their ranges or levels 

were chosen in agreement with existing brace designs and from data available in the 

literature. These parameters are detailed in Tab. 1. 

 

N° Parameter 
Associated manufacturer/ 

patient characteristic 

Study range or 

levels 

1 
Tensile and bending 

stiffness of the fabric 

Thread type and weaving 

technique of the fabric 

E1 = E2 = 200 → 

1000 N/m 

2 Initial radius of the brace Brace size 35 → 70 mm 

3 Brace length Brace length 250 / 350 / 500 mm 

4 
Tensile and bending 

stiffness of the straps 
Strap material 

E = 200 → 25000 

N/m 

5 Initial stress in the strap Strap tightening 200 → 25000 N/m 

6 Strap shape - 
Parallel horizontal 

straps / Helical straps 

7 
Brace/skin friction 

coefficient brace 

Patient’s skin humidity, anti-

sliding interface material 
0.15 → 0.5 

8 Soft tissues stiffness Muscle contraction 5.5 / 400 kPa 

Tab. 1: Identified parameters and their area of study. 

 

After normalizing the factors to a [-1;1] interval, 100 numerical simulations were 

chosen using an 8 dimension stratified latin hypercube sampling, which authorizes both 

continuous factors and given levels. 4 responses were output from the simulations: the 

slope of the reaction force/moment vs displacement/rotation curve for the drawer, varus 

and pivot (stiffness of the orthosis in a given direction) and the average contact pressure 

applied by the brace on the skin at the end of the flexion step. With the intention of 

comparing the parameters, the responses were normalized in such a way that their 

standard deviation was 0.5 and their mean 0. Finally, a linear regression was performed 

to find a first order, no-interaction polynomial response surface. The linearized effect of 

each parameter is the corresponding polynomial coefficient. A Fisher test with 91 

degrees of freedom was used to determine how significant each factor is.   

 

4. RESULTS  

 

Before normalization, the results ranged as (mean ± standard deviation): drawer 

stiffness (1.64 ± 1.15 N/mm), varus stiffness (0.30 ± 0.28 N.m/°), pivot stiffness (0.053 

± 0.041 N.m/°) and average contact pressure (498 ± 357 Pa). The results of the 

parametric study are depicted in Fig. 2. The influence of each factor depends on the 

mechanical load, although the initial brace radius is a key parameter in each case. Other 

rather influent parameters were the fabric stiffness and the muscle contraction. Almost 

non-influent parameters were identified such as the strap shape and the friction 

coefficient. The influence of remaining parameters depends on the response. It is 



noteworthy that the contact pressure response is opposed to the stiffness responses, 

showing that a stiffer orthosis is also less comfortable. This trend is wrong for three 

parameters: the brace length, the strap stiffness and the strap tightening. 

 

 

Fig. 2: Comparison of the effect of each parameter for different response surfaces. 

 

5. DISCUSSION 

 

The FE model is subject to limitations because it is not patient-specific. Even if it has 

not been demonstrated, it is highly probable that several patient-specific leg factors 

influence the mechanical response of the brace-leg system. These factors may include 

mechanical properties of the different leg constituents (skin, soft tissues) as well as the 

quantity of adipose tissue or the geometry of the leg itself. Nevertheless, the purpose of 

this work is not to compute the actual efficiency and comfort of a particular brace-leg 

system, but to understand the general mechanical mechanisms governing these 

phenomena. In that way, the developed generic model is perfectly suited, even if work 

remains to be done in validating and exploiting it. Besides, modeling choices may be 

subject to caution as most mechanical properties and friction models are derived from 

literature. Regarding the Design Of Experiments, the Root Mean Square Error (RMSE) 

of the linear response surface is quite high, indicating that the actual responses are 

probably not linear and that interactions between parameters exist. More FE simulations 

are required in order to compute such response surfaces with good reliability. Finally, 

the exploitation of the outcomes of this study indicates that manufacturers should focus 

on brace length and straps in order to increase joint stiffening without altering the brace 

comfort. 

 

6. CONCLUSION 

 

An adaptable FE model was successfully developed and used in a Design Of 

Experiments approach. Results showed that joint stiffening of knee braces may be 



increased by adjusting mechanically influent design parameters but caution must be 

exercised as brace stiffening results, in most cases, in an increase in discomfort. Only 

brace length and strap-related parameters efficiently stiffen the joint without altering 

comfort. Future work consists in validating the FE results using experimental means and 

developing an optimization method to contribute to the design of optimized orthoses.  

 

7. REFERENCES 

 

[1]  De Loës, M., Dahlstedt, L. J. and Thomée, R.,  A 7-year study on risks and 

costs of knee injuries in male and female youth participants in 12 sports, Scand. J. Med. 

Sci. Sports, 2000, Vol. 10, 90–97. 

[2]  Skinner, H., Current Diagnosis and Treatment in Orthopedics, McGraw-Hill 

Professional Publishing, 2006, Blacklick, OH, USA. 

[3]  Thoumie, P., Sautreuil, P., and Mevellec, E., Orthèses de genou. Première 

partie : Évaluation des propriétés physiologiques à partir d’une revue de la littérature, 

Ann. Readapt. Med. Phys., 2001, Vol. 44, 567–580. 

[4]  Thoumie, P., Sautreuil, P., and Mevellec, E., Orthèses de genou. Évaluation de 

l’efficacité clinique à partir d’une revue de la littérature, Ann. Readapt. Med. Phys., 

2002, Vol. 45, 1–11. 

[5]  Genty, M. and Jardin, C., Place des orthèses en pathologie ligamentaire du 

genou. Revue de la littérature, Ann. Readapt. Med. Phys., 2004, Vol. 47, 324–333. 

[6]  Ribinik, P., Genty, M. and Calmels, P., Évaluation des orthèses de genou et de 

cheville en pathologie de l’appareil locomoteur. Avis d’experts, J. Traumatol. Sport, 

2010, Vol. 27, 121–127. 

[7]  Dubuis, L., Avril, S., Debayle, J. and Badel, P., Identification of the material 

parameters of soft tissues in the compressed leg, Comput. Meth. Biomech. Biomed. 

Eng., 2012, Vol. 15, 3-11. 

[8]  Iivarinen, J. T., Korhonen, R. K., Julkunen, P. and Jurvelin, J. S., Experimental 

and computational analysis of soft tissue stiffness in forearm using a manual indentation 

device, Med. Eng. Phys., 2011, Vol. 33, 1245–1253. 

[9]  Flynn, C., Taberner, A. and Nielsen, P., Mechanical characterisation of in vivo 

human skin using a 3D force-sensitive micro-robot and finite element analysis, 

Biomech. Model. Mechanobiol., 2010, Vol. 10, 27–38. 

[10]  Yu, W. R., Kang, J. and  Chung, K., Drape Simulation of Woven Fabrics by 

Using Explicit Dynamic Analysis, J. Text. Inst., 2000, Vol. 91, 285–301. 

[11]  Wu, Z., Au, C. K., and Yuen, M., Mechanical properties of fabric materials for 

draping simulation, Int. J. Cloth. Sci. Tech., 2003, Vol. 15, 56–68. 

[12]  Sanders, J. E., Greve, J. M., Mitchell, S. B. and Zachariah, S. G., Material 

properties of commonly-used interface materials and their static coefficients of friction 

with skin and socks, J. Rehabil. Res. Dev., 1998, Vol. 35, 161–176. 

[13]  Gerhardt, L. C., Lenz, A., Spencer, N. D., Münzer, T. and Derler, S., Skin-

textile friction and skin elasticity in young and aged persons, Skin Res. Technol., 2009, 

Vol. 15, 288–298. 

 


