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ON THE NUMBER OF SIMPLE ARRANGEMENTS OF FIVE

DOUBLE PSEUDOLINES

JULIEN FERTÉ, VINCENT PILAUD, AND MICHEL POCCHIOLA

Abstract. We describe an incremental algorithm to enumerate the isomorphism
classes of double pseudoline arrangements. The correction of our algorithm is based on
the connectedness under mutations of the spaces of one-extensions of double pseudoline
arrangements, proved in this paper. Counting results derived from an implementation
of our algorithm are also reported.

1. Introduction

An arrangement of double pseudolines is a finite set of separating simple closed curves
embedded in a real two-dimensional projective plane such that any two curves have
exactly four intersection points, cross transversally at these points, and induce a cell
decomposition of their underlying projective plane. Two arrangements of double pseu-
dolines are said to be isomorphic if one is the image of the other by a homeomorphism
of their underlying projective planes. There is a unique isomorphism class of arrange-
ments of two double pseudolines and Figure 1 depicts representatives of the thirteen
isomorphism classes of simple arrangements of three double pseudolines where, as usual,
a simple arrangement is an arrangement where no three curves meet at the same point.

In this paper we prove that the one-extension spaces of double pseudoline arrange-
ments are connected under mutations. This connectedness result yields an incremental
enumeration algorithm that takes as input the class of isomorphism classes of arrange-
ments of n double pseudolines and returns as output the class of isomorphism classes of
arrangements of n+1 double pseudolines. The key feature of this enumeration algorithm
is that its working space is proportional to the size of the input and not to the size of the
output; it turns out to be sufficient in practice for the enumeration of simple arrange-
ments of five double pseudolines using a relatively modest amount of process time: we
establish in this paper that their number is 181 403 533.

Double pseudoline arrangements have been introduced recently by Luc Habert and
the third author of the paper as a combinatorial abstraction of finite families of disjoint
convex bodies of real two-dimensional projective geometries, in connection with their
study of primitive operations for efficient visibility graph algorithms for planar convex
shapes. More precisely they have shown that the class of isomorphism classes of double
pseudoline arrangements coincides with the class of isomorphism classes of dual arrange-
ments of finite families of pairwise disjoint convex bodies of projective geometries, and
they have exploited this latter result to give an axiomatic characterization of the class of
chirotopes of finite families of pairwise disjoint oriented convex bodies of projective ge-
ometries very similar to classical axiomatic characterizations of the class of chirotopes of
finite families of points of projective geometries known under the generic name of (rank
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04 24 07 6 18 4 37 6 15 2 43 2

22 4 33 2 32 2 25 2 25∗ 1 36 12

64 24

Figure 1. Representatives of the thirteen isomorphism classes of simple
arrangements of three double pseudolines. Each arrangement is labelled
at its left bottom corner with the 2-sequence of its numbers of two-cells
of size 2 and 3, and at its right bottom corner with the order of its
automorphism group.

three) oriented matroids. (The chirotope of a finite family of pairwise disjoint oriented
convex bodies of a projective geometry is defined as the map that assigns to each triple
of convex bodies the set of relative positions of the bodies of the triple with respect
to the lines of the projective geometry—the primitive operations to which we referred
above consist precisely in the evaluation of the chirotope of the input configuration to
the visibility graph algorithm.) These results provide our main motivation to enumerate
double pseudoline arrangements (cf. [14]).

The paper is organized as follows. In Section 2 we recall definitions and structural
properties of arrangements of double pseudolines that on one hand motivate the paper
and on the other hand are used subsequently in the technical developments. These struc-
tural properties are the axiomatic characterization of the class of isomorphim classes of
double pseudoline arrangements in terms of chirotopes, the connectedness of mutation
graphs, and the so-called Pumping Lemma and Geometric Representation Theorem. Still
in Section 2 we establish an enhanced version of the Pumping Lemma using the Geomet-
ric Representation Theorem. In Section 3 we prove the connectedness result mentioned
above using the enhanced version of the Pumping Lemma. In Section 4 we describe
our incremental algorithm; in particular we explain how to add a double pseudoline to
an arrangement of double pseudolines, a procedure that we believe to be of indepen-
dant interest. In Section 5 we report some of the counting results for simple as well
as non-simple arrangements of double pseudolines that we have obtained from our im-
plementation of the incremental algorithm. (Counting results for the subclass of the
so-called Möbius arrangements are also reported; this subclass captures exactly the class
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of chirotopes of affine configurations of disjoint convex bodies.) Finally in Section 6
we conclude by a short series of questions and possible developments suggested by this
research. Throughout the paper we assume the reader to be familiar with the basic
terminology of pseudoline arrangements [12, 3, 4, 13, 9].

2. Preliminaries

2.1. Projective arrangements of double pseudolines. Let P be a real two-dimen-
sional projective plane. In our drawings we will represent it by a circular diagram with
antipodal boundary points identified. A simple closed curve in P is a pseudoline if it
is non-separating (or equivalently, non-contractible), and a double pseudoline otherwise.
The complement of a pseudoline γ has one connected component: a topological disk Dγ .
The complement of a double pseudoline γ has two connected components: a Möbius strip
Mγ and a topological disk Dγ . Observe that a pseudoline avoiding a double pseudoline
is necessarily included in the Möbius strip surrounded by the double pseudoline (Fig. 2).

Figure 2. A projective plane represented by a circular diagram with an-
tipodal points identified, a pseudoline, a double pseudoline, an arrange-
ment of two double pseudolines, and a one-marked arrangement of two
double pseudolines.

An arrangement of double pseudolines in P is a finite set of double pseudolines such
that any two double pseudolines have exactly four intersection points, cross transver-
sally at these points, and induce a cell decomposition of P (Fig. 2). We call it full if
the intersection of the topological disks surrounded by its double pseudolines is empty.
The order of an arrangement is its number of curves. As usual a simple arrangement is
an arrangement where no three curves meet at the same point. A marked arrangement
of double pseudolines is an arrangement of double pseudolines augmented with an ar-
rangement of pseudolines such that any pseudoline avoids one double pseudoline of the
arrangement and intersects the other ones in exactly two points. A T-marked arrange-
ment of double pseudolines is an arrangement of double pseudolines augmented with an
arrangement of pseudolines such that any pseudoline intersects one double pseudoline of
the arrangement in exactly one point and intersects the other ones in exactly two points.

Two arrangements are isomorphic if there is a homeomorphism of their underlying
projective planes that sends one arrangement onto the other. The reader will easily check
that there is a unique isomorphism class of arrangements of two double pseudolines, a
unique isomorphism class of one-marked arrangements of two double pseudolines, and
(less easily) that there are thirteen isomorphism classes of simple arrangements of three
double pseudolines of which only one is full. They are depicted in Figure 1. In this
paper, we are interested in enumerating isomorphism classes of arrangements of double
pseudolines. The number of isomorphism classes of arrangements of order n will be
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denoted by pn, the number of isomorphism classes of full arrangements of order n will
be denoted by tn, and the number of isomorphism classes of one-marked arrangements
of order n will be denoted by dn. The corresponding number for simple arrangements
will be denoted by pSn, t

S
n and dSn .. Thus p2 = pS2 = dS2 = 1, t2 = tS2 = 0, pS3 = 13 and

tS3 = 1.

2.2. Chirotopes. An indexed oriented arrangement is an arrangement whose curves
are oriented and one-to-one indexed with some indexing set. The chirotope of an in-
dexed oriented arrangement is the application that assigns to each triple of indices the
isomorphism class of the subarrangement indexed by this triple.

As for pseudoline arrangements, the isomorphism class of an indexed oriented ar-
rangement of double pseudolines only depends on its chirotope. Furthermore, given an
application χ that assigns to each triple of indices the isomorphism class of an oriented
arrangement of double pseudolines indexed by this triple, the two following properties
are equivalent

(1) χ is the chirotope of an indexed oriented arrangement,
(2) the restriction of χ to the set of triples of any subset of at most five indices is

the chirotope of an indexed oriented arrangement [14].

This result, called the Axiomatization Theorem for double pseudoline arrangements,
provides a strong motivation for enumerating arrangements of at most five double pseu-
dolines. In particular the number ρn of chirotopes on n double pseudolines (on a given
indexing set) is given by the sum

(1)
∑

k 6=0

n!2n

k
gn(k)

where gn(k) is the number of arrangements of n double pseudolines with automorphism
groups of order k; thus

∑
k 6=0 gn(k) = pn. The corresponding numbers for simple ar-

rangements will be denoted by ρSn and gSn (k). For example we read from the data of
Figure 1 that gS3 (1) = 1, gS3 (2) = 5, gS3 (4) = 2, gS3 (6) = 2, gS3 (12) = 1, gS3 (24) = 1
and that gS3 (k) = 0 for k /∈ {1, 2, 4, 6, 12, 24}; consequently there are ρS3 = 214 simple
chirotopes on three double pseudolines.

2.3. Möbius arrangements. Let M be a Möbius strip and let M = M ∪ {∞} be
its one-point compactification. An arrangement of double pseudolines in M is an ar-
rangement of double pseudolines in M with the property that the intersection of the
topological disks surrounded by the double pseudolines of the arrangement is nonempty
and contains the point at infinity ∞. An indexed oriented Möbius arrangement is a
Möbius arrangement whose double pseudolines are one-to-one indexed and oriented; the
arrangement is called acyclic if the orientations of the double pseudolines are coherent,
in the sense that the double pseudolines are homotopic as oriented curves1.

As for projective double pseudoline arrangements (i) two Möbius arrangements are
called isomorphic if one is the image of the other by a homeomorphism of their under-
lying Möbius strips, and (ii) the chirotope of an indexed oriented Möbius arrangement

1In other words the curves are oriented according to the choice of a generator of the (infinite cyclic)
fundamental group of the underlying Möbius strip.
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is defined as the map that assigns to each triple of indices the isomorphism class of
the (indexed and oriented) subarrangement indexed by this triple. The Axiomatization
Theorem for projective arrangements extends word for word for Möbius arrangements
as well as acyclic Möbius arrangements.

We denote by qn the number of isomorphism classes of Möbius arrangements of order
n, by rn the number of isomorphism classes of acyclically oriented Möbius arrangements
of order n, and by τn the number of isomorphism classes of indexed oriented acyclic
Möbius arrangements of order n. The number τn of acyclic Möbius chirotopes on n
double pseudolines is given by the sum

(2)
∑

k 6=0

n!2

k
hn(k)

where hn(k) is the number of Möbius arrangements of n double pseudolines with auto-
morphism groups of order k. The corresponding numbers for simple arrangements will
be denoted by qSn , r

S
n , τ

S
n , and hSn(k).

2.4. Mutations. A mutation is a local transformation of an arrangement Γ that only
destroys, or creates, or inverts a fan of Γ; more precisely, it is a homotopy of arrangements
in which only one curve γ moves, reaching or leaving or first reaching and then leaving
a single vertex of the remaining arrangement Γ \ {γ} (Fig. 3).

moving curve

I-mutation

D-mutation C-mutation

Figure 3. A mutation destroys, creates, or inverts a fan supported by
the moving curve. (D-,C- and I- for destroying, creating and inverting.)
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As for pseudoline arrangements iterating this local transformation is in fact sufficient
to obtain all possible arrangements of given order: any two arrangements of the same
order are homotopic via a finite sequence of mutations followed by an isotopy; in other
words the graph of mutations on isomorphism classes of arrangements of given order is
connected. The graph of mutations on simple arrangements of three double pseudolines
is depicted in Figure 4.
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Figure 4. The graph of mutations on simple arrangements of three dou-
ble pseudolines.

This connectedness result is proved in [14] by reduction to the case of arrangements of
pseudolines. The argument consists in mutating each double pseudoline of the arrange-
ment until it becomes thin (that is, until there remains no vertex of the arrangement
inside its enclosed Möbius strip), and to observe that arrangements of thin double pseu-
dolines behave exactly as simple pseudoline arrangements. The fact that an arrangement
can be mutated until all its double pseudolines become thin is ensured by the following
crucial lemma:
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Lemma 1 (Pumping Lemma [14]). Let Γ be a simple arrangement of double pseudolines
and let γ be a distinguished double pseudoline of Γ. Assume that there is a vertex of Γ
lying in the interior of the Möbius strip Mγ bounded by γ. Then there is a triangular
face of Γ supported by γ and included inMγ . �

Observe that the Pumping Lemma allows to turn any arrangement of double pseu-
dolines into a marked arrangement with any prescribed numbers of pseudolines missing
the double pseudolines (Fig. 5).

Figure 5. Pumping vertices out of the Möbius strip of a double pseu-
doline and turning an arrangement into a marked one.

From the connectedness property of mutation graphs it ensues an enumeration al-
gorithm that simply consists in traversing the graph of mutations starting from any
given arrangement. This algorithm is sufficient in practice for the enumeration of (not
necessarily simple) arrangements of three or four double pseudolines but already fails
for simple arrangements of five double pseudolines because of random-access memory
limitations.

In order to go a little bit further (and particularly, to enumerate arrangements of five
double pseudolines), we show that the mutation graph on the space of one-extensions of
any given arrangement is connected. From this result we derive a simple enumeration
algorithm for the class of arrangements of order n+1 based on the traversal of the graphs
of mutations of the one-extension spaces of the arrangements of order n whose working
space is only proportional to the number of isomorphism classes of double pseudoline
arrangements of order n times the space of encoding of an arrangement. It turns out
that this incremental algorithm is sufficient in practice for the enumeration of simple
arrangements of five double pseudolines.

2.5. Geometric representation theorem. A (real two-dimensional) projective geom-
etry is a topological projective point-line incidence geometry (P,L) whose point space P
is a projective plane and whose line space L is a subspace of the space of pseudolines
of P; as usual the dual of a point p of a projective geometry is denoted p∗ and is defined
as its set of incident lines.

The duality principle for projective geometries asserts that the dual (L,P∗) of a pro-
jective geometry (P,L) is still a projective geometry, i.e., L is a projective plane and P∗

is a subspace of the space of pseudolines of L; in particular the dual of a finite point set is
an arrangement of pseudolines. The Geometric Representation Theorem for pseudoline
arrangements asserts that the converse is true: any arrangement of pseudolines is iso-
morphic to the dual arrangement of a finite set of points of a projective geometry. (This
is an easy consequence of the duality principle for projective geometries combined with
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the embedabbility of any arrangement of pseudolines in the line space of a projective
geometry [10], see the discussion in [14].)

The Geometric Representation Theorem for pseudoline arrangements has the following
extension for marked arrangements of double pseudolines: first, the dual of a convex body
of a projective geometry—defined as its set of tangent lines, i.e., the set of lines touching
the body but not its interior—is a double pseudoline in the line space of the projective
geometry; second, the dual arrangement of a finite set of pairwise disjoint marked convex
bodies is a marked arrangement of double pseudolines; third, any marked arrangement
of double pseudolines is isomorphic to the dual arrangement of a finite set of pairwise
disjoint marked convex bodies of a projective geometry [14]. In other words: the class
of isomorphism classes of marked arrangements of double pseudolines coincides with the
class of isomorphism classes of dual arrangements of finite families of disjoint marked
convex bodies of projective geometries. Similarly the Geometric Representation Theorem
for marked Möbius arrangements asserts that their class coincides with the class of dual
arrangements of finite families of disjoint marked convex bodies of affine geometries [14].

From this result, it is easy, using continuous motions, to derive the following extension
of the Pumping Lemma.

Lemma 2. Let Γ be an arrangement of double pseudolines and let γ ∈ Γ. Assume that
there is a vertex of Γ lying in the interior of the Möbius stripMγ bounded by γ and that
the vertices of Γ supported by γ are simple (i.e., have degree four). Then there is at least
two fans of Γ included in Mγ and supported by γ. �

This enhanced version of the Pumping Lemma allows to mutate any double pseudoline
until it becomes thin while keeping fixed any one of its points. Replacing the resulting
thin double pseudoline by one of its core pseudoline and putting back in the arrangement
the mutated double pseudoline we get a T-marked version of the initial arrangement with
one pseudoline touching the arrangement at the point kept fixed (Fig. 6).

Figure 6. Pumping vertices out of the Möbius strip of a double pseu-
doline while keeping fixed one of the points of the double pseudoline and
turning an arrangement into a T-marked one.

By a repeated application of this T-marking operation one can turn any double pseu-
doline arrangement into a T-marked version with any prescribed pattern of touching
points. In particular if we choose as set of touching points the set of pairs (γ, x) where
γ ranges over the set of double pseudolines of the arrangement Γ and where x ranges
over the set Vγ of vertices of the arrangement lying on γ we obtain a linearization of
the arrangement Γ, i.e., an arrangement of pseudolines ℓ(γ, x), x ∈ Vγ , γ ∈ Γ, such that
(1) the sub-arrangement of ℓ(γ, x), x ∈ Vγ , is a cyclic arrangement with a distinguished
central cell Cγ (the one including the topological disk Dγ), (2) the family of boundaries
of the Cγ , γ ∈ Γ, is an arrangement of double pseudolines isomorphic to Γ (Fig. 7).
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x

γ ℓ(γ, x)

γ′

ℓ(γ′, x)

Figure 7. Two steps of the linearization process of an arrangement of
two double pseudolines.

If we think of our double pseudoline arrangement Γ as the dual of a configuration of
smooth convex bodies ∆, this linearization process corresponds to insert a point p(γ, x)
on the intersection between x and the convex body δ corresponding to γ and to replace
δ by the convex hull Cδ of the p(γ, x), x ∈ γ, with respect to any line avoiding δ. The
dual arrangement of the convex bodies Cδ is then isomorphic to the arrangement Γ.
Concatening this linearization algorithm with any algorithmic version of the Geometric
Representation Theorem for pseudoline arrangements (e.g. [1]) we thus get an algorithmic
version of the Geometric Representation Theorem for double pseudoline arrangements
(Fig. 8).

−→−→

linearization GRT for pseudoline arrang.

Figure 8. Concatening the linearization process of an arrangement with
a constructive version of the Geometric Representation Theorem for pseu-
doline arrangements yields to a constructive version of the Geometric
Representation Theorem for double pseudoline arrangements.

The enhanced version of the Pumping Lemma will be used both in our enumeration
algorithm—to insert a double pseudoline in a given double pseudoline arrangement—and
in the proof of the connectedness of the space of one-extensions of a given arrangement,
proof to which we now come.

3. Connectedness of the spaces of one-extensions

A one-extension of an arrangement of n double pseudolines Γ is an arrangement of
n + 1 double pseudolines Γ′ of which Γ is a subarrangement. The double pseudoline of
Γ′ not in Γ is called the one-extension element.
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For example Figure 9 depicts representatives of the twenty-three simple (isomorphism
classes of) one-extensions of an arrangement of two double pseudolines, with the curved
double pseudoline in the role of the one-element extension.

04 07 18 181 37 15

151 43 431 22 221 33

331 32 321 322 25 251

25∗ 25∗1 25∗2 36 64

Figure 9. Representatives of the twenty-three isomorphism classes of
simple one-extensions of an arrangement of two double pseudolines with
the curved double pseudoline in the role of the one-extension element.

Theorem 3. Let Γ′ and Γ′′ be two one-extensions of an arrangement of double pseu-
dolines Γ. Then Γ′ and Γ′′ are homotopic via a finite sequence of mutations followed
by an isotopy during which the only moving curves are the one-extension elements of Γ′

and Γ′′.

Proof. Let γ be a double pseudoline of Γ and let γ′ and γ′′ be the one-extension ele-
ments of Γ′ and Γ′′, respectively. Using continuous motions—thanks to the Geometric
Representation Theorem—one can easily reduce the analysis to the following case

(1) γ′ is a thin double pseudoline in Γ′, i.e., a double pseudoline whose Möbius strip
is free of vertices of Γ;

(2) γ and γ′ are touching at σ′: by this we mean that σ′ is one the two 2-cells of
size two of the subarrangement {γ, γ′} and that σ′ is also a 2-cell of the whole
arrangement Γ′;

(3) similarly γ′′ is a thin double pseudoline in Γ′′, and γ and γ′ are touching at σ′′;
(4) γ′ and γ′′ coincide in the disk Dγ , and σ′ = σ′′;
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(5) Mγ′ is a tubular neighbourhood of a pseudoline γ′∗ with the property that γ′∗
intersects any double pseudoline of Γ in exactly two points, the intersection points
being transversal; similarlyMγ′′ is a tubular neighbourhood of a pseudoline γ′′∗
with the property that γ′′∗ intersects any double pseudoline of Γ in exactly two
points, the intersection points being transversal;

(6) γ′∗ and γ′′∗ coincide in Dγ , and intersect finitely many in Mγ , the intersection
points being transversal;

(7) Mγ′ ∪Mγ′′ is a tubular neighbourhood of γ′∗ ∪ γ′′∗ .

Let Γ′
∗ = Γ∪{γ′∗} and, similarly, let Γ′′

∗ = Γ∪{γ′′∗}. It should be clear to the reader that
the proof of our theorem boils down to show that the mixed arrangements Γ′

∗ and Γ′′
∗

are homotopic via a finite sequence of mutations during which the only moving curves
are the pseudolines γ′∗ and γ′′∗ . This is precisely here that we are going to use Lemma 2.
But before using this lemma we define a γ-curve as a connected component of the trace
onMγ of a double pseudoline of Γ \ {γ}, we observe that the pseudoline γ′∗ intersects a
γ-curve in at most one point (necessarily a transversal intersection point), and similarly
that the pseudoline γ′′∗ intersects a γ-curve in at most one point. Let now τ be a copy
of γ and let Γτ be the symmetric difference between Γ and {γ, τ}. If τ is thin in Γτ we
are done modulo an isotopy. Otherwise Lemma 2 asserts that there exists a fan ∆ of the
arrangement Γτ supported by τ , included in Mτ , and missing the 2-cell σ′. Modulo a
finite sequence of mutations in Γ′

τ or in Γ′′
τ or in both Γ′

τ and in Γ′′
τ during which the only

moving curves are γ′∗ or γ′′∗ or both γ′∗ and γ′′∗ one can assume that ∆ misses γ′∗ and γ′′∗ .
We then perform a mutation of ∆ in Γτ with τ in the role of the moving curve—during
this process we do not touch at σ′. By repeated application of this process we arrive at
the situation where τ is thin in Γτ and where γ′∗ and γ′′∗ are included inMτ , excepted
their common part in Dγ—which is included in Dτ . At this point we are done modulo
an isotopy. �

In other words Theorem 3 asserts that the space of one-extensions of an arrangement
of double pseudolines is connected under mutations. Figure 10 depicts the graph of mu-
tations on simple one-extensions of an arrangement of two double pseudolines. Similarly
one can define a k-extension of an arrangement of n double pseudolines Γ as an arrange-
ment of n + k double pseudolines Γ′ of which Γ is a subarrangement and show that
the space of k-extensions of an arrangement of double pseudolines is connected under
mutations. Finally we mention that similar results hold for marked arrangements and
their k-extensions.

4. The incremental algorithm

4.1. Description. A pointed arrangement is an arrangement with a distinguished dou-
ble pseudoline. We always use the notation A• for a pointed arrangement and A for its
non-pointed version (and similarly for sets of pointed arrangements). We also use the
notation Sub(A) for the set of subarrangements of an arrangement A.

Let An denote the set of isomorphism classes of arrangements of n double pseu-
dolines, and pn be its cardinality. Our algorithm enumerates An from an enumera-
tion a1, a2, . . . , apn−1

of An−1, by mutating an added distinguished double pseudoline to
the ai.
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04

07

18 181

37

15 151
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Figure 10. The graph of mutations on the simple one-extensions of an
arrangement of two double pseudolines.

For each i ∈ {1, . . . , pn−1}, the algorithm enumerates the subset S•
i of arrangements

of A•
n containing ai as a subarrangement, by mutations of a distinguished added double

pseudoline. From the set Si, it selects the subset Ri of arrangements with no subar-
rangements in {a1, . . . , ai−1}. In other words, Ri is the subset of arrangements of An

whose first subarrangement, in the sequence a1, . . . , apn−1
, is ai. Thus, An is the disjoint

union of the Ri.
An alternative approach2 for counting arrangements is to enumerate the subsets S•

i

and to compute, for each arrangement A• of S•
i , the number σ(A•) of double pseudolines

2We thank Luc Habert for this suggestion.
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Algorithm 1 Incremental enumeration

Require: An−1 = {a1, . . . , apn−1
}.

Ensure: An.

for i from 1 to pn−1 do

A• ← add a pointed double pseudoline to ai.
if Sub(A) ∩ {a1, . . . , ai−1} = ∅ then

write A.
end if

Q• ← [A•]. S• ← {A•}.
while Q• 6= ∅ do

A• ← pop Q•.
T ← list the fans of A• supported by its pointed double pseudoline.
for t ∈ T do

B• ← mutate the fan t in A•.
if B• /∈ S• then

if Sub(B) ∩ {a1, . . . , ai−1} = ∅ and B /∈ S then

write B.
end if

push(B•, Q•). S• ← S• ∪ {B•}.
end if

end for

end while

end for

α of A such that A pointed at α is isomorphic to A•. Then

pn =
1

n

pn−1∑

i=1

∑

A•∈S•

i

σ(A•).

The main advantage of this version is to reduce the number of accesses to the data base
of arrangements of order n− 1; an advantage which turns to be crucial in case the data
base does not fit in main memory. However, it only counts pn and can not provide a
data base for An.

4.2. Adding a double pseudoline. One of the important steps of the incremental
method is to add a double pseudoline to an initial arrangement. Our method uses three
steps (see Fig. 11):

(1) duplicate a double pseudoline: we choose one arbitrary double pseudoline γ,
duplicate it, drawing a new double pseudoline γ′ completely included in the
Möbius stripMγ and we denote R any rectangle delimited by γ and γ′.

(2) flatten: we pump the double pseudoline γ′ such that no vertex of the arrange-
ment lies in the Möbius strip Mγ′ . During this process, we do not touch the
rectangle R.

(3) add four crossings: we replace the rectangle R by four crossings between γ and γ′.
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(a) (b) (c)

Figure 11. Three steps to insert a double pseudoline in a double pseu-
doline arrangement: duplicate a double pseudoline (a), flatten it (b) and
add four crossings (c).

If we think of our double pseudoline arrangement as the dual of a configuration of
convex bodies, this method corresponds to: (1) choosing one convex C and drawing a
new convex C ′ inside C; (2) flattening the convex C ′ until it becomes almost a single
point, maintaining it almost in contact with the boundary of C; and (3) moving C ′

outside C.

4.3. Encoding an arrangement. In order to manipulate arrangements, one can en-
code it in several different ways. We used two different encodings (one for an easy
manipulation of it and one for short storage):

(1) flag representation: a flag of an arrangement Γ is a triple (v, e, f) consisting
of a vertex v, an edge e and a face f of Γ, such that v ∈ e ⊂ f . The three
involutions σ0, σ1, σ2, that change the vertex, the edge and the face of a flag
(cf. Fig. 12), completely determine Γ (see, e.g., [11]). This representation is
convenient to perform all the necessary elementary operations we need to perform
on arrangements (such as mutations, extensions, etc.).

2

0
1

Figure 12. The three involutions σ0, σ1 and σ2.

(2) encoding: In the enumeration process, once we have finished to manipulate an
arrangement Γ, we still have to remenber it and to test whether the new ar-
rangements we find afterwards are or not isomorphic to Γ. For this, we compute



August 18, 2010 15

another representation of Γ, which is shorter than the flag representation, and
which allows a quick isomorphism test.

We first associate to each flag φ = (v, e, f) of the arrangement Γ a word wφ

constructed as follows. Let γ1 be the double pseudoline containing e, and, for all
2 ≤ p ≤ n, let γp be the pth double pseudoline crossed by γ1 on a walk starting at
φ and oriented by σ0σ1σ2σ1. This walk also defines a starting flag φi for each γi.
We walk successively on γ1, . . . , γn, starting from φi and in the direction given
by σ0σ1σ2σ1, and index the vertices by 1, 2, . . . , V in the order of appearance.
For all i, let wi denote the word formed by reading the indices of the vertices of
γi starting from φi. The word wφ is the concatenation of w1, w2, . . . , wn. Finally,
we associate to the arrangement Γ the lexicographically smallest word among
the wφ where φ ranges over all the flags of Γ.

5. Results

We have implemented this algorithm in the C++ programming language. The docu-
mentation (as well as the source code) of this implementation is available upon request
to the authors.

5.1. Numbers of arrangements and numbers of chirotopes. This implementation
provided us with the following table for the values of pSn, t

S
n , pn, tn, d

S
n , dn, ρ

S
n , ρn, q

S
n ,

qn, τ
S
n , and τn.

n 0 1 2 3 4 5

pSn 1 1 1 13 6 570 181 403 533
tSn 0 0 0 1 615 NC

pn 1 1 1 46 153 528 NC

tn 0 0 0 5 18 648 NC

dSn 0 1 1 67 355 153 NC

dn 0 1 1 398 NC NC

ρSn 1 1 1 214 2 415 112 NC

ρn 1 1 1 1 086 58 266 120 NC

qSn 1 1 1 16 11 502 238 834 187
rSn 1 1 1 22 22 620 NC

qn 1 1 1 59 245 351 NC

rn 1 1 1 92 488 303 NC

τSn 1 1 1 118 541 820 NC

τn 1 1 1 531 11 715 138 NC

Table 1. Numbers of arrangements and numbers of chirotopes.

Apart the trivial cases of n = 0, 1, 2 only the values of pS3 , t
S
3 , q

S
3 , r

S
3 , q

S
4 , r

S
4 and τS3

were known previously. The comparaison of the data of the lines qn and rn confirms the
intuition that very few Möbius arrangements are isotopic to their mirror image.



16 JULIEN FERTÉ, VINCENT PILAUD, AND MICHEL POCCHIOLA

5.2. Mixed arrangements. In our presentation, we concentrated on the enumeration
of double pseudoline arrangements or, equivalently by the Geometric Representation
Theorem, on the enumeration of dual arrangements of configurations of pairwise disjoint
convex bodies of projective (or affine) geometries. It is also interesting to enumerate
dual arrangements of configurations of disjoint points and convex bodies. This class is
captured by the notion of mixed arrangements and can be enumerated using the same
algorithm.

Figure 13. The three mixed arrangements of size two.

A mixed arrangement in the projective plane P is a finite set of pseudolines and
double pseudolines in P such that (i) any two pseudolines have a unique intersection
point; (ii) a pseudoline and a double pseudoline have exactly two intersection points and
cross transversally at these points; and (iii) any two double pseudolines have exactly four
intersection points, cross transversally at these points, and induce a cell decomposition
of P (Fig. 13). The Geometric Representation Theorem for mixed arrangements in a
projective plane asserts that their class coincides with the class of dual arrangements
of configurations of disjoint points and convex bodies of projective geometries [14]. A
mixed arrangement in the Möbius strip M is a mixed arrangement in the projective
planeM with the property that the intersection of the topological disks surrounded by
the pseudolines and double pseudolines of the arrangement is nonempty and contains
the point at infinity. The Geometric Representation Theorem for mixed arrangements
in a Möbius strip asserts that their class coincides with the class of dual arrangements
of configurations of disjoint points and convex bodies of affine geometries [14].

Our incremental enumeration algorithm for double pseudoline arrangements extends
easily to mixed arrangements in the projective plane and in the Möbius strip. Our im-
plementation provided us with the following four tables for the numbers of isomorphism
classes of mixed arrangements composed of n pseudolines and m double pseudolines in
the projective plane or in the Möbius strip. The sequences of pSn,0, q

S
n,0, pn,0 and qn,0

appear in the database of The On-Line Encyclopedia of Integer Sequences3 under the
code numbers A006248, A006247, A063800, and A063854 respectively.

3http://www.research.att.com/~njas/sequences/A006248
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pSn,m 0 1 2 3 4 5

0 1 1 1 13 6 570 181 403 533
1 1 1 4 626 4 822 394
2 1 2 48 86 715
3 1 5 1 329
4 1 25 80 253
5 1 302
6 4 9 194
7 11 556 298
8 135
9 4 382
10 312 356

Table 2. Simple projective mixed arrangements.

qSn,m 0 1 2 3 4 5

0 1 1 1 16 11 502 238 834 187
1 1 1 7 1 499 9 186 477
2 1 3 140 245 222
3 1 13 5 589
4 2 122 416 569
5 3 2 445
6 16 102 413
7 135 7 862 130
8 3 315
9 158 830

Table 3. Simple Möbius mixed arrangements.

pn,m/qn,m 0 1 2 3 4
0 1/1 1/1 1/1 46/59 153 528/245 351
1 1/1 1/1 9/17 6 998/15 649
2 1/1 3/5 265/799
3 1/1 16/45 18 532/74 559
4 2/3 159/832
5 4/11 4 671/37 461
6 17/93 342 294/NC

7 143/2 121
8 4 890/122 508
9 461 053/NC

Table 4. Projective/Möbius mixed arrangements.
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5.3. Automorphism groups. Our implementation provided us with the following val-
ues for the sequences (k, gSn (k)), k ∈ {u | g

S
n (u) 6= 0}, in the case n = 2, 3, and 4

(8, 1)

(1, 1)(2, 5)(4, 2)(6, 2)(12, 1)(24, 2)

(1, 6 042)(2, 466)(3, 15)(4, 26)(6, 14)(8, 1)(12, 3)(16, 1)(24, 2)

from which we have deduced that ρS2 = 1, ρS3 = 214 and ρS4 = 2415 112. The corre-
sponding sequences for not necessarily simple projective arrangements, simple Möbius
arrangements, and not necessarily simple Möbius arrangements are in order

(8, 1)

(1, 10)(2, 20)(4, 5)(6, 7)(12, 1)(24, 3)

(1, 150 042)(2, 3 288)(3, 58)(4, 84)(6, 45)(8, 2)(12, 5)(16, 1)(24, 3),

(4, 1)

(1, 6)(2, 6)(4, 2)(6, 2)

(1, 11 088)(2, 387)(3, 6)(4, 12)(6, 7)(8, 2),

and

(4, 1)

(1, 33)(2, 20)(4, 3)(6, 3)

(1, 242 815), (2, 2 466), (3, 16), (4, 38), (6, 13), (8, 3).

These data confirm the intuition that most of the arrangements have trivial automor-
phism groups, excepted in the basic case of (projective or Möbius) arrangements of three
double pseudolines. For example only 528 of the 6570 simple projective arrangements
of four double pseudolines have a non trivial automorphism group. The two simple pro-
jective arrangements of four double pseudolines with automorphism groups of maximal
order (i.e., 24) are depicted in the Figure 14.

Figure 14. The three projective arrangements of four double pseudo-
lines whose automorphism groups have the maximal size 24.
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5.4. Running time. Let us briefly comment on running time. Observe that our al-
gorithm can be parallelized very easily (separating each enumeration of Si and Ri, for
i ∈ {1, . . . , pn−1}). In order to obtain the number of simple projective arrangements of
five double pseudolines we used four processors of 2GHz for almost 3 weeks: to say it
differently each iteration of the for-to loop of our enumeration algorithm takes roughly
twenty minutes. The working space was bounded by max |S•

i | = 279 882 (times the
space of the encoding of a single configuration, i.e., about 80 characters). Finding the
number of not necessarily simple arrangements of five double pseudolines is doable using
a similar working space but much more process time.

Finally, Fig. 15 shows the evolution of the ratio between the sizes of the sets Ri and
S•
i (during the enumeration of simple projective arrangements of five double pseudo-

lines). We have also observed that
∑
|S•

i |/
∑
|Ri| ≃ 5, which confirms that hardly any

configurations of five convex bodies have symmetries.
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|Ri|/|Si*|

Figure 15. Percentage of new configurations.

5.5. Statistics on mutation graphs. We provide in Table 5 the distribution of the
number xn of simple projective arrangements of four double pseudolines with n neigh-
boords in their mutation graph (the number of edges of this mutation graph is therefore
54544 and its average degree is 8). Still in Table 5 we provide the distribution of the
number yn of simple projective arrangements of four double pseudolines with n trian-
gular faces. In particular we see that there are two simple projective arrangements of
four double pseudolines with the maximum number (16) of triangular faces. They are
depicted in Figure 16.

Finally, as a matter of example, we provide in Appendix A the graph of D- and
C-mutations on the space of arrangements of three double pseudolines.
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n xn yn
1 6 0
2 28 0
3 69 9
4 149 69
5 317 219
6 655 566
7 951 942
8 1288 1336
9 1228 1306
10 959 1056
11 587 649
12 240 289
13 79 102
14 13 22
15 1 3
16 0 2

Table 5. Number xn of vertices of degree n in the mutation graph of
simple arrangements of four double pseudolines and number yn of simple
arrangements of four double pseudolines with n triangular faces.

Figure 16. The two simple projective arrangements of four double pseu-
dolines with the maximum number (16) of triangular faces.



August 18, 2010 21

6. Further developments

The following questions and developments (among others) may be treated in a subse-
quent paper:

(1) Developing further implementation: it will be interesting to add to our imple-
mentation the two following functionalities related to the Geometric Represen-
tation Theorem : computing the dual arrangement of a configuration of convex
bodies and conversely, computing a configuration of convex bodies whose dual
arrangement is given.

(2) Drawing an arrangement: we have seen a method to add a pseudoline in an
arrangement. Combined with a planar-graph-drawing algorithm, this provides an
algorithm to draw an arrangement in the unit disk. For example, the number of
one-marked arrangements composed of m double pseudolines can be interpreted
as the number of drawings of the arrangements composed ofm double pseudolines
with the property that the number of crossings between the arrangement and the
boundary of the unit disk is minimum, i.e., 2m − 2. Similarly, the number of
mixed arrangements composed of one pseudoline and m double pseudolines can
be interpreted as the number of drawings of the arrangements composed of m
double pseudolines with the property that the number of crossings between the
arrangement and the boundary of the unit disk is 2m.

(3) Generation: the Axiomatization Theorem for double pseudoline arrangements
affirms that the huge list of more than one hundred and eighty one millions
of arrangements of at most five double pseudolines is an axiomatization of the
class of double pseudoline arrangements. Due to its size this list seems hardly
computationally workable for the generation of arrangements. However it is
possible, as explained in [14], to reduce this axiomatization to a (relatively) short
list of axioms with a clear combinatorial or geometrical interpretation of each
axiom in a maner very similar to the known simple axiomatizations of pseudoline
arrangements [3, 15]. This open the door to the generation of double pseudoline
arrangements with prescribed properties using, for example, satisfiability solvers
as proposed in [16, 17], see also [5, 7, 2, 8, 6]. In particular it will be interesting to
generate the arrangements that maximize the number of connected components
of the intersection of the Möbius strips surrounded by the double pseudolines. If
we think of the arrangement as the dual of a configuration of (disjoint) convex
bodies this means that we seek for the configurations with the maximal number
of connected components of transversals.

(4) Realizability : it is well-known that certain pseudoline arrangements are not re-
alizable in the standard projective geometry P2(R). Inflating pseudolines into
thin double pseudolines in such an arrangement give rise to non-realizable double
pseudoline arrangements. Are there smaller examples? Are all arrangements of
at most five double pseudolines realizable?
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Node code order autom. fvector nbr simple vertices Neighbors

#12 24 60 0 #6 #20

#20 6 61 3 #11 #12 #30

#15 6 34 3 #8 #22

#16 2 34 3 #8 #9 #23 #26

#18 2 43 3 #9 #11 #25 #28

#6 6 34 3 #3 #11 #12

#27 2 34 6 #17 #35

#30 4 62 6 #19 #20 #38

#8 2 24 6 #4 #13 #15 #16

#26 2 34 6 #16 #17 #34

#28 1 44 6 #17 #18 #19 #36 #37

#22 2 34 6 #13 #15 #31

#23 1 33 6 #13 #14 #16 #33 #34

#25 2 41 6 #14 #18 #36

#9 1 25 6 #4 #5 #14 #16 #17 #18

#11 2 35 6 #5 #6 #18 #19 #20

#3 4 16 6 #1 #5 #6

#40 4 34 6 #31 #32

#38 6 63 9 #29 #30 #45

#19 2 36 9 #10 #11 #28 #29 #30

#36 1 42 9 #24 #25 #28 #44

#37 2 45 9 #28 #29 #44

#17 1 26 9 #9 #10 #24 #26 #27 #28

#33 2 33 9 #21 #23 #42

#31 2 35 9 #21 #22 #39 #40

#35 1 33 9 #24 #27 #43

#34 1 33 9 #23 #24 #26 #42

#13 1 24 9 #7 #8 #21 #22 #23

#14 1 24 9 #7 #9 #23 #24 #25

#4 2 15 9 #2 #7 #8 #9

#5 2 17 9 #2 #3 #9 #10 #11

#1 6 06 9 #0 #2 #3

#32 2 24 9 #21 #40 #41

#45 24 64 12 #38

#29 6 37 12 #19 #37 #38

#39 12 36 12 #31

#0 24 04 12 #1

#10 4 18 12 #5 #17 #19

#2 6 07 12 #1 #4 #5

#44 2 43 12 #36 #37

#24 1 25 12 #14 #17 #34 #35 #36

#7 2 15 12 #4 #13 #14

#21 2 25 12 #13 #31 #32 #33

#42 2 33 12 #33 #34

#43 2 32 12 #35

#41 4 22 12 #32

Table 6. The graph of D- and C-mutations on the space of projective
arrangements of three double pseudolines.
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#12

#20 #15 #16 #18 #6

#27#30 #8 #26 #28 #22 #23 #25 #9 #11 #3 #40

#38 #19 #36 #37 #17 #33 #31 #35 #34 #13 #14 #4 #5 #1 #32

#0#2#10#29 #7#44 #21 #42 #24#43 #41#39#45

Figure 17. The graph of D- and C-mutations on the space of projective
arrangements of three double pseudolines.
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