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Abstract—Pore water and solid phase distributions of oxygen, manganese, and nitrogen from hemipelagic 
and shelf sediments sometimes indicate a close coupling between the manganese and nitrogen redox cycles. 
Reaction coupling must be sustained in part by biological reworking of Mn-oxide-rich surface sediments into 
underlying anoxic zones. Surface sediment from Long Island Sound (USA) was used in laboratory experi-
ments to simulate such intermittent natural mixing processes and subsequent reaction evolution. Mixed 
sediment was incubated anoxically under either diffusively open (plugs) or closed conditions (jars). In closed 
anoxic incubations, pore water NO3

2 increased regularly to a maximum (up to 17 mM) after one to several 
days, and was subsequently depleted. Mn21 was produced simultaneously with NO3

2. N O2
2 was also clearly 

produced and subsequently reduced, with a formation-depletion pattern consistent with coupled nitrification-
denitrification in the anoxic sediment. Manipulative additions of Mn-oxides (5–10 mmol g21 net) demon-
strated that net anoxic NO3

2 production correlated directly with initial Mn-oxide content. During initial net 
NO3

2 production there was no evidence for SO 2 reduction. A direct correlation was also observed between 
anoxic nitrification rates and estimated sulfate reduction rates; the larger nitrification rates, the larger the 
eventual net sulfate reduction rates. Diffusively-open incubations using sediment plugs of four different 
thicknesses (2, 5, 10 and 20 mm) exposed to anoxic overlying water, also showed net production of pore water 
NO3

2 (;15–20 mM) despite the absence of NO3
2 in the overlying water for at least five days. In general, higher 

nitrate concentrations were maintained in the open relative to the closed incubations, due most likely to lower 
concentrations of dissolved reductants for NO3

2 in the open system. These experiments imply simultaneous 
coupling between the benthic nitrogen, manganese, and sulfur redox cycles, involving anoxic nitrification and 
sulfide oxidation to SO 2. Anoxic nitrate production during Mn reduction indicates that nitrification and 
denitrification can occur simultaneously in subsurface sediments, without vertical stratification. The existence 
of anoxic nitrification implies new reaction pathways capable of increasing coupled sedimentary nitrification-
denitrification, particularly in bioturbated or physically mixed deposits.  Ltd

1. INTRODUCTION

Benthic nitrification-denitrification represents a significant
component of the marine nitrogen cycle, particularly in organic
rich shelf and hemipelagic sediments underlying oxygenated
waters (Christensen, et al., 1987; Seitzinger, 1988; Reimers, et
al., 1992; Seitzinger and Giblin, 1996). Nitrification and deni-
trification reactions in sediments are often conceptualized as
occurring in a largely stratified reaction sequence characterized
by an upper oxic layer, dominated by aerobic nitrification, and
an underlying suboxic or anoxic region into which NO3

2 is
transported and reduced during Corg remineralization (Froelich,
et al., 1979; Jahnke, et al., 1982; Billen, 1982; Christensen and
Rowe, 1984). Burrows, tubes, and fecal structures formed by
benthic fauna superimpose various microenvironmental pat-
terns of radially or spherically distributed aerobic nitrification-
anaerobic denitrification patterns onto this overall stratified
reaction sequence (Jahnke, 1985; Kristensen, 1988; Aller,
1988; Brandes and Devol, 1995). In some sedimentary depos-
its, however, the average distributions of O2 and NO3

2 are
apparently not consistent with nitrification exclusively in oxic
regions, or with reduction of NO3

2 by Corg alone (Sørensen et
al., 1987; Bender, et al., 1989; Aller, 1990; Murray et al., 1995;

Luther, et al., 1997; Aller, et al., 1998). In particular, circum-
stantial evidence has mounted that within organic and Mn-rich
regions of continental margin sediments, the N and Mn cycles
may be closely coupled through reactions such as:

5 Mn21 1 2 NO3
2

1 4 H2O3 5 MnO2 1 N2 1 8 H1 (1)

4 MnO2 1 NH4
1

1 6 H13 4 Mn21 1 NO3
2

1 5 H2O (2)

Evidence for the oxidation of Mn21 by NO3
2 comes from the

apparent oxidation of Mn21 in surficial sediments where O2 is
absent, that is O2 and Mn21 distributions do not overlap, and
where the only additional energetically favorable oxidants
available in sufficient quantity, are NO3

2 and particulate MnO2.
Depending on the assumed form of MnO2, reaction (1) is not
thermodynamically favorable except in zones of relatively high
NO3

2 and pH (Table 1). NO3
2 maxima well below the surficial

oxic zone may sometimes result from biogenic irrigation and
oxic microzones, but anoxic nitrification during MnO2 reduc-
tion, such as defined by reaction (2), is also clearly energeti-
cally possible under typical sedimentary conditions (Table 1).
Because Mn-oxide enriched surficial sediment is rapidly mixed
into subsurface anoxic zones during normal biogenic and phys-
ical reworking, an anaerobic, lithotrophic nitrification pathway
could be a significant mode of biologically mediated N cycling.

In the present study, we experimentally simulated the natural* Author to whom correspondence should be addressed.



reworking of surficial Mn-oxides into underlying anoxic sedi-
ments and evaluated the possible occurrence of anaerobic,
lithotrophic nitrification during subsequent Mn reduction. We
show that NO3

2 can be produced during Mn-oxide reduction,
and that the rate of anoxic nitrification is directly proportional
to the quantity of Mn-oxide available. It is clear that the
juxtaposition of Mn-oxides, NO3

2, NH4
1, Corg, and Fe-sulfides

that results from bioturbation and physical mixing processes in
organic-rich deposits, creates the potential for complex coupling
between the Mn, N, C, and S redox cycles in surficial sediments.

2. MATERIAL AND METHODS

The general experimental approach was to physically mix the upper
;2 cm of sediment obtained from an organic-rich mud deposit in
central Long Island Sound, and to either enclose the mixed material in
sealed anoxic containers (closed incubation series), or expose defined
thicknesses of sediment for a set period to an anoxic overlying water
reservoir (open incubation series). Sediment and pore water were then
sampled serially or at a discrete time subsequent to mixing in order to
document net reaction patterns. Dissolved O2 penetrates only a few
millimeters into the sediment and the surface-most material (0–1 cm)
is typically enriched in Mn-oxides by normal diagenetic cycling at the
sampling site used (Aller, 1994). Mixing thus served to rapidly intro-
duce Mn-oxides into underlying anoxic sediment. The naturally present
Mn-oxides were augmented in one experimental series by addition of
variable amounts of laboratory synthesized MnO2.

2.1. Study Site and Sediment Sampling

Surface sediment was sampled at the PULSE study site in central
Long Island Sound, USA (41 10.03N, 72 57.43W) during June, Sep-
tember, and November 1997. A number of studies have been carried
out in the general location of the site, and biological, geochemical, and
physical sedimentary properties are relatively well-characterized (Sta-
tion NWC; Station P, PULSE site; e.g., Benninger, et al., 1979; Aller,
1994; Gerino, et al., 1998). Water depth averages;15 m, sediments
contain ;2% organic carbon,;2% CaCO3, and have an average
porosity of;0.8 (0–1 cm). Salinity is relatively constant between 24
and 25, and temperature varies sinusoidally between 2 and 22°C
annually. The bottom was sampled with a Smith-MacIntire grab, ob-
vious macrofauna and shell debris picked out, and the top;2 cm of
sediment removed. Sediment was sieved through a 0.45 mm Nylon
mesh and homogenized. No water was added during sieving and
homogenizing. Sediment collected in June was homogenized under N2,
initial handling of sediment in September and November was done
under air.

2.2. Closed Incubations

A portion of the sieved and homogenized sediment was removed
separately and placed in 20 ml (June and September) or 50 ml (No-
vember) polypropylene centrifuge tubes (jars). The completely filled
jars were sealed, put in plastic bags, and incubated at room temperature
in a bucket of anoxic mud obtained from the collection site (Fig. 1).
Subsequent to the manual removal of air, the bags were placed with the
upper edges at least 5 cm into the mud to ensure completely anoxic

Table 1. Change in standard free energy of the reaction R (DGR; kJ mol21) at conditions often found in marine sediments. Organic material is for
simplicity represented as carbohydrate, CH2O.

N OXIDATION DGR pH57 DGR pH58

Nitrification 2 O
2

1 NH4
1 f 2 H1 1 NO3

2 1 H2O 2341 2353
Oxidation N2 generation 3/2 MnO2 1 NH4

1 1 2 H1 f 2224 2212
3/2 Mn21 1 1/2 N2 1 3 H2O

Anoxic nitrification 4 MnO2 1 NH4
1 1 6 H1 f 2175 2141

4 Mn21 1 NO3
2 1 5 H2O

N REDUCTION
Denitrification 5/4 CH2O 1 NO3

2 1 H1 f 2596 2590
5/4 CO2 1 1/2 N2 1 7/4 H2O

Anoxic sulfide oxidation I 5/8 FeS1 4 MnO2 1 NH4
1 1 7 H1 f 2590 2550

1/2 N2 1 4 Mn21 1 5/8 SO4
22 1 5/8 Fe21 1 11/2 H2O

NH4
1 oxidation 5/3 NH4

1 1 NO3
2 f 4/3 N2 1 3 H2O 1 2/3 H1 2421 2426

Anoxic sulfide oxidation II NO3
2 1 5/8 FeS1 H1 f 2419 2413

1/2 N2 1 5/8 SO4
22 1 5/8 Fe21 1 1/2 H2O

Fe21 oxidation NO3
2 1 5 Fe21 1 12 H2Of 2319 2370

5 Fe(OH)3 1 1/2 N2 1 9 H1

Anoxic Mn21 oxidation 5/2 Mn21 1 NO3
2 1 2 H2Of 248.9 271.4

5/2 MnO2 1 1/2 N2 1 4 H1

ADDITIONAL Mn REDUCTION
Mn reduction 1/2 CH2O 1 3/2 CO2 1 1/2 H2O 1 MnO2f 2190 2190

Mn21 1 2 HCO3
2

S0 oxidation 4/3 H1 1 MnO2 1 1/3 S0f 2157 2147
Mn21 1 1/3 SO4

22 1 2/3 H2O
Anoxic sulfide oxidation III 2 H1 1 MnO2 1 1/4 FeSf 2148 2137

Mn21 1 1/4 SO2
22 1 1/4 Fe21 1 H2O

Anoxic sulfide oxidation IV 3 H1 1 MnO2 1 HS2 f Mn21 1 S0 1 2 H2O 2136 2119

C OXIDATION
Oxic respiration CH2O 1 O2f CO2 1 H2O 2521 2521
Sulfate reduction CH2O 1 1/2 SO4

22f H2S1 HCO3
2 2122 2122

Fe reduction CH2O 1 7 CO2 1 4 Fe(OH)3f 2107 2107
4 Fe21 1 8 HCO3

2 1 3 H2O

Conditions used to calculateDGR: [O2] 5 150 mM; [CO2] 5 50 mM; [HCO3
2] 5 2 000mM; pN2 5 0.781 atm; [NO3

2] 5 5 mM; [NH4
1] 5 25

mM; [Mn21] 5 100 mM; [Fe21] 5 5 mM; [SO4
22] 5 24 mM; [H2S] 5 25 mM; [HS2] 5 5 mM. Activity coefficients were assumed to be 1.

Values on the standard free energy of formation,DG°f, were taken from Berner (1980) and Stumm and Morgan (1996).



conditions (surficial O2 penetration ;1–2 mm, Fe-monosulfides
present). Temperatures were 20.7–21.6°C (June), 20–22.1°C (Sept.),
and 21.2–22.1°C (Nov.). This type of incubation is referred to as
“closed anoxic incubation” (e.g., Martens and Berner, 1974).

During the November incubation experiment, Mn-oxide was added
to two separate sediment portions before enclosure. The MnO2 used
was formed from the oxidation of Mn21 by MnO4

2 under basic con-
ditions, equilibrated with sea water, and aged;12 years at 4°C (Bal-
istrieri and Murray, 1982; Aller and Rude, 1988). The precipitate has
been inferred as the mineral phase vernadite (dMnO2) based on the
average oxidation state of the solid (O:Mn5 1.94 6 0.02), and its
X-ray diffraction pattern (Burns and Burns, 1979; Balistrieri and Mur-
ray, 1982). In this case, the sieved and homogenized natural sediment
was split into three portions, corresponding to three different treat-
ments. No extra MnO2 was added to the first sediment portion (A),
while an estimated amount of;13 and;33 mmol g21 dry sediment
(assuming molecular weight of MnO2) of the synthesized MnO2 was
added to the second (B) and third (C) portion, respectively. All three

portions were homogenized by hand using plastic spoons before pack-
ing the sediment into jars.

During each incubation series, 1–3 tubes were removed every 1–3
days, centrifuged (12 minutes, 3800 rpm), filtered (0.4mm) and the
obtained pore water analyzed for total carbonate (SCO2 or CT), alka-
linity (A T), DIN (NO3

2, NO2
2, and NH4

1), Mn21 and pH. The centri-
fuged sediment was frozen for later analyses of manganese.

2.3. Diffusively Open Incubations

Portions of the surface sediment from the June sampling were also
used for anoxic incubations under diffusivelyopen conditions. The
sieved and homogenized sediment was placed in polycarbonate tube-
sections sealed at the base (plugs), and the sediment surface was
smoothed using a stainless steel spatula. Plugs had variable thickness of
2, 5, 10 and 20 mm. The sediment-filled plugs were placed in a
polycarbonate reservoir containing filtered (0.2mm), anoxic overlying
water from the sampling location (salinity of 24). The anoxic overlying

Fig. 1. Schematic illustration of the experimental set-up used to study net reaction rates within sediments under
diffusively closed conditions (closed anoxic incubation). To ensure completely anoxic conditions the jars were placed with
their upper edges at least 5 cm into the mud. Reaction rates were inferred from the production rates of solutes to the pore
water with time of incubation.



water reservoir was in a glove bag, and was constantly purged before
(over night) and during the experiment with a mixture of N2 and CO2

gas scrubbed of O2 using an Alltech O2 trap and an O2 indicating
assembly (Fig. 2). Previous experiments have demonstrated that O2 is
maintained below detection in this set-up. The incubation was per-
formed in the dark at a temperature of 19.4–21.7°C. This type of
incubation is referred to as “diffusively open” because exchange of
solutes is possible between sediment and overlying water (e.g., Aller
and Mackin; 1989). The water reservoir was mixed by a centrally

located Teflon-coated magnetic stirring bar. Before use, the polycar-
bonate reservoirs, plug assemblies, and stirring bars were soaked in 4%
HCl for 10 days or more. After soaking they were thoroughly rinsed in
double distilled water (DDW) and soaked in DDW for at least 7 days.

Overlying water (;20 ml) was sampled periodically during the open
plug incubations forSCO2, DIN (NO3

2, NO2
2, and NH4

1) and Mn21

using a polypropylene syringe and Tygon tubing extension. Prior to
use, the assembly was washed in 4% HCl, thoroughly rinsed with
DDW and then with sample. Overlying water was filtered through

Fig. 2. Typical experimental set-up illustrating the open plug incubation technique. Anoxic sediment was incubated in
plugs (52 mm diameter; 2, 5, 10 and 20 mm thickness) under diffusively open conditions, where exchange was possible
between the sediment and overlying water. The reservoir (15.4 L of overlying water) was kept in a glove bag and to ensure
anoxic conditions, the glove bag and the overlying water were constantly purged with a mixture of oxygen free N2 and CO2 gas.



in-line polycarbonate filters (0.40mm pore size) directly into acid
cleaned polypropylene vials.

After 12 days, plugs were sampled for pore water and solid phase
composition. Plugs were individually removed from the water reservoir
using stainless steel forceps, sediment quickly transferred to a polypro-
pylene syringe (prewashed in 4% HCl and rinsed with DDW and
overlying water from the container) using a stainless steel spatula. The
front of the syringe contained a small amount (;2 cm2) of folded nylon
screen to prevent sediment extrusion. The syringe was placed into a
press which applied pressure by moving the plunger forward, and pore
water passed through an in-line mounted 0.4mm polycarbonate filter
directly into an attached receiving polypropylene syringe without air
contact (Aller, et al., 1998). The filter had been rinsed with overlying
water from the incubation reservoir. Sediment from which the pore
water was separated was frozen for later analyses of manganese in the
solid phase.

Additional plugs were incubated for the determinations of pore water
distributions of pH by direct insertion into sediment of a mini-combi-
nation electrode (Ag–AgCl) mounted on a micro-manipulator.

2.4. Analytical Methods

Sediment plug processing and pore water separation were complete
within a few minutes (,5 min) after removal from the overlying water
reservoir.

Samples forSCO2 were analyzed immediately by FIA conductivity
(Hall and Aller; 1992). DIN samples were frozen. Concentrations of
NO2

2 and NO3
2 were determined using standard colorimetric methods

(Strickland and Parsons, 1972) applied to a flow injection system
(FIA). NH4

1 was determined using flow injection conductivity (Hall
and Aller, 1992). Measurements of pH were standardized on the
Hansson pH scale (Hansson, 1973). Alkalinity was determined by
potentiometric titration and Gran evaluation according to the principles
outlined by Haraldsson et al. (1997), with a precision (1 mL sample
volume) better than 0.7% RSD. 50–100ml of concentrated HCl was
added to the Mn21 samples, producing a pH of 1–2, before storage in
a refrigerator. Dissolved manganese was determined using a Shimadzu
flame AAS. Sulfate in the pore water from the closed anoxic incuba-
tions was determined gravimetrically with BaCl2. Reactive solid phase
Mn was estimated by leaching a small portion of the sediment for 15
hours using hydroxylamine/acetic acid (Chester and Huges, 1967), and
measuring manganese in the leachate.

Porosity (w), was calculated from the weight of water loss after
drying 5 mL of sediment at 70°C for at least 24 hours (until constant
weight) at the beginning of each incubation series.

Net reaction rates in the closed incubations were calculated over
specific time intervals from least squares linear fits to concentration
versus time plots. Corrections for reversible adsorption were made for
NH4

1, assuming a linear adsorption coefficient K5 wK* rs (1 2 w),
wherers 5 2.6 g cm23, and K* 5 0.77 (K* previously measured, Aller
and Aller, 1998).

Net production or consumption rates of pore water solutes (R) in
plugs were calculated assuming the steady state relation (Aller and
Mackin, 1989):

R 5 3* DS* (CSS-CT)/L
2 (3)

where Ds is the whole molecular diffusion coefficient (Ds ;w2D0

(Ullman and Aller, 1982); D0 is the free solution diffusion coefficient
at the appropriate temperature and salinity, estimated from Li and
Gregory, 1974), Css is the average steadystate concentration in a plug of
thickness L, and CT is the overlying water solute concentration at the end
of the experiment.

3. RESULTS AND DISCUSSION

3.1. Closed Jar Incubations—Unamended

The closed incubations demonstrated time-dependent pat-
terns and rates of organic matter degradation typical of surface
sediment in central Long Island Sound (Fig. 3; Table 2). Net
remineralization rates, as evidenced by the initial linear pro-

Fig. 3. Organic matter mineralization during the June (filled circles),
September (open squares), and November (filled triangles) closed jar
incubations. A. Mobilization of total carbonate (SCO2 or CT) and
alkalinity (AT) to the pore water during the June, September, and
November incubations. B. Production of ammonium during the un-
amended and, C. amended November incubation. In the amended
incubation, no MnO2 was added to the control (A;Œ), while an amount
of 13 and 33mmol of MnO2 g21 dry sediment was added to the (B;‚)
and (C;ƒ) incubation series, respectively. The dashed lines represent
the initial production used to calculate net rates of solute mobilization.



duction rates ofSCO2 , alkalinity (AT), and NH4
1 were similar

during the June and November incubations, but somewhat
lower during the September incubation (Fig. 3; Table 2). These
measured production rates would support, for example, a

steady state flux ofSCO2 from the top 2 cm of;21, 12, and 22
mmol m22 d21 (June, Sep., Nov.), values comparable to those
observed in previous remineralization measurements in the
sediment collection area (e.g., Aller, 1980; Westrich and

Fig. 4. The evolution of pH in the pore water during the September incubation is shown as a representative example on
the behavior of pore water pH during the closed jar incubations. One to three replicate sediment samples were incubated.
Average and standard deviation of these replicates are indicated. The samples were standardized using the Hansson pH scale
(Hansson, 1973).

Table 2. Calculated net rates of solute mobilization to the pore water during the closed jar and open plug incubations.

Incubation Mn21; pw Mn21; sp KMn NH4
1 SCO2 At Nitr. Denitr. SO4

22 w

June 7.86 31.0 3.9 76 1390 2 11 26.5 2175 0.77
Sep. 24.3 252 10 52 2 828 4.0 20.61 2 0.71
Nov.; A 157 317 2.0 187 2 1450 0.44 20.32 2147 0.76
Nov.; B 152 216 1.4 171 2 1440 1.0 21.1 2211 0.76
Nov.; C 150 244 1.6 167 2 1400 2.3 20.64 2243 0.76

L Mn21; pw Mn21 sp KMn NH4
1 SCO2 AT SNO32 NO2

2 SO4
22 w

2 n.d. 384 2 623 n.d. 2 1090 68.2 2 0.77
5 42.0 363 2 108 1300 2 195 10.9 2 0.77

10 88.9 348 2 154 404 2 47.9 1.60 2 0.77
20 71.9 230 2 94.5 489 2 8.97 0.439 2 0.77

All rates are inmM d21. Net rates of nitrification (nitr.) were calculated from the initial mobilization ofSNO3
2 to the pore water. The phase of nitrate

disappearance was used to estimate net denitrification rates (denitr.). Production rates of Mn21 were estimated both from net pore water concentration
changes (pw), and from loss of solid phase reactive MnO2 (sp). The absorption coefficient, KMn, was calculated as the (Mn21; sp/Mn21; pw) ratio.
Also given are the actual plug thickness (L, mm) used during the open plug incubations, and the porosity (w). A, B and C refer to the different additions
of Mn2oxides to the sediment prior to starting the November incubation (0, 13 and 33mmol g21 dry sediment).
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Berner, 1984; Sun, et al., 1991).SCO2 and NH4
1 net production

rates were more or less constant during an initial period of four
to six days, then decreased, most likely reflecting the depletion
of labile organic matter, and/or in the case of CO2, precipitation
of solid phase carbonates (e.g., Ca, Mn-carbonates). During the
build-up of decomposition products, pore water pH decreased
exponentially from initial values near seawater, to about 7.3
(Fig. 4).

Elevated Mn21 concentrations, coupled with decreasing re-
active solid phase Mn, are evidence of net Mn reduction during
Corg remineralization within the incubation series (Fig. 5, 6).
Both the quantities of reactive Mn and the overall concentration
of dissolved Mn21 differed in the various unamended incuba-
tions. Initial reactive Mn was highest in the June and November
samples (;14 mmol g21) and lowest in September (;6 mmol
g21). Likewise, maximum pore water Mn21 concentrations
were 700–800mM during the June and November incubations,
but reached only;260mM in the September samples (Fig. 6).
The observations of the lowest net remineralization rates, as
measured bySCO2 and NH4

1 release, and the lowest reactive
Mn in the September incubation series, are consistent with
partial loss of the surface most sediment layer or homogeniza-
tion of a surface interval.2 cm during sample collection.

Nevertheless, the primary characteristics of all incubation se-
ries are relatively rapid remineralization and substantial Mn-
oxide reduction. The differences in the estimates of Mn21

production rates based on pore water net concentration changes
and those calculated from loss of solid phase reactive Mn
(Table 2), imply reversible adsorption coefficients in the range
of KMn 2–10 (simple ratio estimates), similar to those reported
from other sediments (Canfield, et al., 1993).

Although the closed incubations were anoxic, there was clear
evidence of a pattern of progressive net NO3

2 formation over a
period of 2 to 4 days (Fig. 7A). Based on the measured
remineralization rates of;1 mM SCO2 d21 (Table 2), any O2
occluded initially in the pore water could not have persisted for
more than a few hours after enclosure (Table 2). The excess
NO3

2 produced during the first few days of incubation was
subsequently depleted, but it was lost at a sufficiently slow rate
given the intensity ofSCO2 remineralization, that continued
production of NO3

2 must have occurred during the entire period
of incubation. Similarly, NO2

2 was also obviously produced
and depleted in a net sense, but again, concentrations were
sustained at a readily detectable level throughout the incuba-
tions. Maximum NO2

2 concentrations occurred after NO3
2 max-

ima, indicating a coupling between the two constituents con-

Fig. 5. Manganese in the solid phase of the sediment during the June (filled circles), September (open squares), and
November (filled triangles) closed jar incubations. The dashed lines represent the initial consumption of reactive MnO2 used
to calculate production rates of Mn21 to the pore water. Indicated are the average and standard deviations of one to three
replicate sediment samples.



sistent with denitrification. Most importantly, these time-
dependent concentration patterns directly and categorically
demonstrate the production of pore water NO3

2 and NO2
2 for

extended periods in the absence of detectable O2 or any con-
ceivable source of dissolved O2.

Although NO3
2 and NO2

2 were produced in all incubations,
the net rates of production and the maximum NO3

2 or NO2
2

concentrations attained, differed substantially between the var-
ious incubation series (e.g., maxima: 0.7–17mM NO3

2, Fig. 7;
rates: 0.4–11mM NO3

2 d21, Table 2). The anoxic nitrate
production rate measured during the June incubation was the
largest found in this investigation. The initial increase in this
case corresponded to a net nitrification rate of;11 mM d21, or
a steady state flux of;170 mmol m22 d21, assuming the rate
applied over a 2 cmdepth interval. Such a rate is similar to, or
higher than, net nitrification rates reported from other coastal
marine sediments open to O2 diffusion (Szwerinski, 1981;
Enoksson and Samuelsson, 1987). The only known sedimen-
tary constituents present under the incubation conditions with
sufficient oxidation potential and abundances capable of sus-
taining such nitrification rates are Mn-oxides. It is clear that Mn
reduction occurred simultaneously with net NO3

2 production
and at rates generally sufficient to account for the observed
NO3

2 production rates assuming stoichiometric relations such
as reaction (2) (Tables 1, 2).

3.2. Stimulation of Anoxic NO3
2 Formation by Addition

of MnO2

Addition of Mn-oxide to sediment in the November closed
incubation series stimulated the anoxic formation of NO3

2 and
increased the rate of NO3

2 formation in direct proportion to the
quantity of Mn-oxide added (Figs. 8, 9). The additions of;13
and ;33 mmol of MnO2 g21 dry sediment stimulated NO3

2

production rates 2 to 5X compared to unamended controls. The
calculated anoxic nitrification rates for the different treatments
were 0.4, 1, and 2.3mM d21, respectively (Table 2). In the
present cases, the added Mn increased the extractable, reactive
Mn by ;15–50% above the initial starting values in the un-
amended sediment, but the quantity extracted was well within
the range found in diagenetically enriched surface sediments
from Long Island Sound (e.g.,Aller, 1994). Only;20% of the
total added MnO2 was extracted by the hydroxylamine / acetic
acid leach, presumably because the aged oxides were relatively
well crystallized (Fig. 9B). The percent recovery, however, was
constant.

Further support for substantial metal-oxide reduction came
from the excess alkalinity production relative to net SO4

22

reduction observed in the incubations. Calculated rates corre-
spond to C : Sproduction / consumption ratios (AT / SO4

22) of
; 9.9 for the incubation without additional MnO2 (A), ;6.8 for
the (B) incubation, and;5.8 for the incubation with the largest

Fig. 6. Pore water concentrations of manganese during the June (filled circles), September (open squares), and November
(filled triangles) closed jar incubations. The dashed lines illustrate the initial net pore water concentration changes used to
calculate mobilization rates of Mn21.



amount of MnO2 added to the sediment (C) (Fig. 10; Table 2).
These ratios are significantly larger than that expected from the
reaction of net sulfate reduction alone (C : S;2), and are
consistent with alkalinity production during Mn reduction.
When comparing net rates of AT or SCO2 production with net
rates of sulfate and manganese reduction, there appears to be
additional alkalinity generated beyond that accountable by
Mn21 remaining in solution (Table 2). This indicates either Fe
reduction (not measured) or ion exchange of Mn21 with major
elements such as Ca21, Mg21, Na1, or K1 (not measured).

Increased metal reduction in November incubations (B) and
(C) were also indicated by pore water pH, where after 8–10
days of incubation, the pH was increased by approximately
0.05 pH units in the (B) and (C) incubations compared to the
control (A) (Fig. 11). The increased pH with additions of MnO2

is consistent with stimulated Mn-reduction (Emerson, et al.,
1982). In each incubation series, there was an initial phase of
obvious net Mn21 production. The net Mn21 build-up stabi-

lized either as reactants were depleted or consumption pro-
cesses, such as precipitation of Mn-carbonates, began to dom-
inate (Fig. 12). The initial rates of net Mn21-production, as
estimated from pore water concentrations, were found to be
more or less constant for the different treatments at 150–160
mM d21 (Table 2). However, there was a relatively lower net
alkalinity attained with increasing additions of Mn-oxides, in-
dicative of Mn-carbonate precipitation (Fig. 10A). After 8–10
days of incubation, alkalinity was found to be 6–7% higher in
(A) compared to (B) and (C).

3.3. Effect of Diffusive Exchange

The diffusively open plug incubations also demonstrated
clear evidence of NO3

2 production in sediment under anoxic
conditions, but with some important contrasts compared to the
closed incubations (Figs. 7, 8, 13). The initial overlying water
NO3

2 concentrations were completely depleted after;1 week,

Fig. 7. A. Nitrate (filled circles) and nitrite (open circles) concentrations in the pore water during the June closed jar
incubation. Nitrate and nitrite were found to be mobilized to the pore water despite anoxic conditions. The initial
mobilization of nitrate corresponds to an anoxic nitrification rate of 11mmol dm23 d21. The dashed lines indicate the initial
generation and removal of nitrate, used to calculate the nitrification and denitrification rates. B. During the September (open
squares) and November (filled triangles) closed incubations, nitrate was again found to be mobilized to the pore water. Pore
water nitrate from the June incubation is shown for comparison (filled circles).



while NH4
1 increased progressively with time, indicative of net

denitrification and the absence of O2 in the overlying water as
well as a net flux of NH4

1 from the sediment plugs (Fig. 14).
Nitrate concentrations of 14–20mM were found in the pore
water of all the plugs incubated under anoxic conditions, de-
spite the fact that no NO3

2 had been detected in the overlying
water for more than five days prior to sediment sampling (Fig.
13), and there was no hint of oxidized sediment in the plugs
(i.e., Fe-oxides). The calculated anoxic production rates of
NO3

2 for the different plug thicknesses of 2, 5, 10 and 20 mm
(based on equation 3) were 1090, 195, 48 and 9mM d21,
respectively (Table 2). Net production of NO2

2 and NH4
1 were

also evident in the plugs, with average formation rates also
varying inversely with plug thickness as for NO3

2 (Fig. 15;
Table 2).

Pore water and solid phase distributions of manganese sug-
gested that Mn-oxide reduction was occurring in all plugs at the
time the experiment was terminated and the pore water ex-
tracted (Fig. 16). Rates of Mn-reduction, as evidenced by the
production rates of Mn21 to the pore water (equation 3) at the
time of experiment termination, were (2 mm not detectable),

42, 89, and 72mM d21 (Table 2). The lack of a calculatable
production rate from the pore water data for the 2 mm plug
reflects a relatively high overlying water Mn21 concentration
that resulted from the Mn21 flux out of all plugs (i.e., small
concentration difference in equation 3). The contents of reac-
tive MnO2 in the sediment were clearly sufficient to support
Mn reduction and anoxic nitrate formation in all plugs over the
incubation period (Fig. 13, Table 2). Note the solid phase based
estimates of reaction rates tend to integrate over a longer period
of net reaction than do the pore water based estimates, the latter
reflecting conditions close to the time of plug sampling.

The inverse relations of solute production rates with sedi-
ment plug thickness are typically found for a variety of diage-
netically reactive constituents under diffusively open condi-
tions, and reflect a combination of changes in both absolute and
relative reaction rate (Aller and Aller, 1998). For example, the
lowered build-up of reactive solutes in diffusively open sedi-
ment often results in less intense back-reactions such as authi-
genic mineral precipitation (e.g., MnCO3), and thus a greater
net release of produced solutes into the contacting water res-
ervoir (e.g., Mn21, HCO3

2). In addition, there is evidence for an

Fig. 8. Nitrate concentrations in the pore water during the November closed jar incubation. Net mobilization of nitrate
to the pore water was related to the amount of solid manganese that was added to the sediment prior to the experiment. The
additions of 13 (B) and 33 (C)mmol MnO2 g21 dry sediment were reflected both in the absolute nitrate concentrations as
well as the mobilization/reduction patterns in the pore water. No Mn-oxide was added to the sediment used in the (A) series.
Indicated are the concentration changes used to estimate nitrification and denitrification rates from the mobilization and
removal of nitrate.



absolute stimulation of anaerobic microbial activity under con-
ditions of progressively greater solute exchange (Aller and
Aller, 1998).

The primary conclusion from both types of incubation treat-
ments is that NO3

2 and NO2
2 can be produced in the absence of

O2, and that N oxidation takes place simultaneously with Mn-
oxide reduction. These results are consistent with net reactions
such as reaction (2), but how is it that high nitrate concentra-
tions could be maintained for a more extended period and at a
greater concentration in the open anoxic, but not in the closed
anoxic incubations (Fig. 7, 8 and 13)? Both treatments used
exactly the same sediment, the only difference being the solute
transport regime. We think the major differences in the incu-
bations result primarily from changes in the rates of concen-
tration-dependent reactions and multiple competitive reactions,
rather than the occurrence of different reactions per se. The

concentrations of reduced solutes in the closed incubations are
higher than in the open plugs. Mn-oxides likely competitively
react with reduced C, HS2, DOC, DON, and NH4

1. Higher
concentrations of reduced reactants, for example DOC (e.g.,
Stone and Morgan, 1984), may either competitively suppress
NH4

1 oxidation or use up oxidant (MnO2) more rapidly than in
a diffusively open case where a portion of reduced solutes
escape into overlying water. In a similar way, NO3

2, once
anoxically produced, is also exposed to higher concentrations
of potential reductants (e.g., DOC, DON, NH4

1, HS2). Thus,
local consumption rates for NO3

2 in the closed system are likely
higher than in the open one. When sediment is otherwise
equivalent, and the diffusively open system is not so thin that
eventual concentration build-ups vanish, a higher concentration
of NO3

2 should be sustained in the diffusively open case (higher
production, lower consumption reactions). It is also possible
that the open system results in diffusive loss of a dissolved

Fig. 9. A. There was a direct linear relation between measured
concentrations of manganese in the solid phase of the sediment and net
anoxic nitrification rates, as evidenced by the initial mobilization of
nitrate to the pore water. The additions of Mn-oxides stimulated net
nitrate production rates 2.3 (B) and 5.2 (C) times compared to the
control series (A). B. The relation between the amount of manganese
that was added before starting the incubations, and that extracted by the
hydroxylamine/acetic acid leach, indicated that only about 20% of the
added MnO2 was extracted.

Fig. 10. A. Generation of alkalinity to the pore water during the
November closed jar incubation. There was a relatively decreasing net
alkalinity production attained with increasing additions of MnO2, in-
dicating possible Mn-carbonate precipitation. B. Evolution of sulfate in
the pore water during the first five days of the November closed jar
incubation. Lack of net sulfate reduction during the initial stage of the
incubation suggests the occurrence of net anoxic sulfateproduction
simultaneously as anoxic nitrification. No MnO2 was added to the
control (A), while 13 and 33mmol of MnO2 g21 dry sediment were
added to the (B) and (C) incubation series, respectively.



inhibitor of anoxic nitrification, thereby increasing production
rates.

Because of pH gradients in the diffusively open plugs (Fig.
17), it is possible that oxidation of Mn21 by NO3

2 (reaction 1)
could occur more favorably in surficial regions of the sediment
sections or in the overlying water reservoir (pH-dependent
DGR, Table 2). Under such circumstances, or in the case of an
oxic surface layer in the presence of oxygenated overlying
water, an internal redox cycle could be set up in the sediment
whereby production of a dissolved oxidized Mn (possibly che-
lated Mn31; Luther et al., 1994; Kostka et al., 1995) in a
surface zone could diffusively supply oxidant to an underlying
anoxic region.

3.4. Anaerobic, Lithotrophic Nitrification and
Denitrification

We interpret the experimental results to indicate that anoxic
nitrification occurs in sediments and, because of the favorable
energetics, that the overall reaction is likely to be microbially
mediated through a process of anaerobic, lithotrophic nitrifica-
tion associated with Mn-oxide reduction (reaction 2). The de-
pletion of NO3

2 and NO2
2 subsequent to their formation is

additional evidence that denitrification is closely coupled to
lithotropic nitrification. The abundance of potential reductants
of NO3

2 in anoxic sediments implies that denitrification may
not be strictly coupled to C oxidation as is often depicted. In
particular, NH4

1, Fe21, HS2 (S0, FeS, FeS2), and Corg are
known reductants utilized by bacteria during denitrification
(Bender, et al., 1989; Straub, et al., 1996; Luther, et al., 1997).
The very rapid denitrification that would occur in subsurface
sediments subsequent to anoxic nitrification is a likely reason
why anoxic nitrification as a net reaction is not always evident
in pore water profiles.

One consequence of a lithotrophic based nitrification cycle is
that a greater proportion of benthic O2 uptake could be directed
to the N cycle indirectly through Mn-oxidation/reduction. Par-
ticle bioturbation and physical mixing processes would then
play a dominant role in controlling solid phase oxidant trans-
port into underlying sediments and promoting coupled lithotro-
phic nitrification-denitrification. The occurrence of a subsur-
face internal nitrification-denitrification cycle with small net
production of NO3

2 would complicate interpretation of N2
production rates from NO3

2 profiles (underestimates), and
might cause discrepancies between various types of estimates

Fig. 11. The evolution of pH in the pore water during the November closed jar incubation. After 8–10 days of incubation,
the pH was increased by approximately 0.05 pH units in the (B) and (C) incubations compared to the control (A). This
relative pH increase with increasing additions of Mn-oxides is consistent with increasing acid consumption following
Mn-reduction. Indicated are average and standard deviation of one to three replicate sediment samples.



Fig. 12. Manganese in the pore water during the November closed jar incubation. Following the initial phase of Mn21

production, net Mn21 build-up slowed down as reactants became limiting and consumption reactions were initiated (e.g. the
formation of Mn-carbonates). Dashed lines represent initial mobilizations used to estimate net Mn21 production rates.

Fig. 13. Nitrate was found to be produced anoxically in all plugs, despite that no nitrate had been detected in the overlying
water for more than five days. Calculated anoxic nitrification rates were 1090, 195, 47.9 and 8.97mmol dm23 d21 for the
2, 5, 10 and 20 mm plugs, respectively.



of denitrification (e.g., Devol, 1991). Most likely, these types of
reactions are of importance in nearshore sediments where an-
oxic sediments are more or less constantly mixed with Mn-
oxides from the oxidized surface layers, and in organic-rich,
hemipelagic sediments close to hydrothermal vent sites. Luther
et al. (1997) suggested that the direct formation of N2 through
the oxidation of organic-N and ammonium by Mn-oxides (Ta-
ble 1) was probably the most important process for N2 forma-
tion in Mn-rich sediments. However, it is clear from the present
results that lithotrophic nitrification may be an intermediate
step in eventual denitrification, and that the relative importance
of the myriad possible pathways remains to be demonstrated in
the field.

The documentation of an apparent lithotrophic nitrification
pathway emphasizes the potential complex redox reaction web
that can occur in physically and biologically mixed surface
sediments. Previous experiments have shown that the rework-
ing of Mn-oxides into anoxic sediments can be coupled to the
biogenic oxidation of labile sulfides (HS2, FeS) to S0 and
SO4

22 (Burdige and Nealson, 1986; Aller and Rude, 1988;
King, 1988). Overall reactions such as (4), (abiogenic; Burdige
and Nealson, 1986) and (5), (biogenic, Aller and Rude, 1988;
King, 1988) were proposed.

3 H1 1 MnO2 1 HS23 Mn21 1 S0 1 2 H2O (4)

8 H1 1 4 MnO2 1 FeS3 4 Mn21 1 SO4
22

1 Fe21 1 4 H2O

(5)
The apparent occurrence of lithotrophic nitrification suggests
that additional coupled reactions, such as a combination of
reactions (2) and (5), are likely to occur in parallel (6) or in
series (7), resulting in overall sedimentary redox reactions such
as:

8 NO3
2

1 5 FeS1 8 H13 4 N2

1 5 SO4
22

1 5 Fe21 1 4 H2O (6)

Fig. 14. A. The evolution of nitrate (filled circles) and nitrite (open
circles) in the overlying water during the open plug incubations. The
depletion of nitrate after a week, in conjunction with low and decreas-
ing concentrations of nitrite, support the assumptions of anoxic condi-
tions at the termination of the experiments. B. Ammonium concentra-
tions in the overlying water increased progressively with time of
incubation, although mobilization rates decreased when the labile or-
ganic material in the plugs was depleted.

Fig. 15. A. NH4
1 in pore water of anoxic plug series demonstrated net

production in all cases, and the differences between overlying and pore
water concentrations implied increasing net production with decreasing
plug thickness (Table 2). B. Nitrite was also found to be produced
during the anoxic incubation. Measured pore water concentrations
(0.7–1.2mM) were significantly higher than the concentration obtained
in the overlying water. This implied flux of nitrite from the sediment to
the overlying water could, however, not be detected as increased
concentrations of nitrite in the overlying water with time of incubation.
Most likely, this observation reflected consumption of nitrite during
denitrification.



5 FeS1 32 MnO2 1 8 NH4
1

1 56 H13 4 N2

1 5 SO4
22

1 5 Fe21 1 32 Mn21 1 44 H2O (7)

By utilizing the nitrate formed during anoxic nitrification, bac-
teria such asThiobacillus denitrificans could generate sulfate
anoxically in a consortium with lithotrophic nitrifiers (e.g.,
Baalsrud and Baalsrud, 1954). These reactions are sufficiently
energetic to support chemoautotrophic C fixation (DGR’s in
Table 1). We note that the lack of net SO4

22 depletion and the
hint of net SO4

22 production during the initial stages of our
incubation experiments (e.g. Nov.) suggest the occurrence of

such sulfide oxidation reactions simultaneously with net NO3
2

production (Fig. 10). In summary, a significant consequence of
biogenic and physical reworking of Mn-oxides into underlying
anoxic sediment is likely to be the serial redox reaction cou-
pling of O2, Mn, N, Fe, S, and C by opportunistic microbial
consortia (Fig. 18).

Although we have emphasized redox interactions between
the major oxidants, there may be additional effects on hetero-
trophic processes that result from nonsteady-steady introduc-
tion of Mn-oxide into anoxic sediments. Initially, the presense
of Mn-oxide and produced NO3

2 seemed to inhibit reduction of
pore water sulfate, due either to competitive utilization of
higher energy oxidants (Lovley and Phillips, 1986), or the
coupled redox reactions outlined previously. Following the
initial period of no net sulfate reduction, the rates of sulfate
reduction that eventually occurred in the Mn-oxide amended
incubations (Nov) were modestly stimulated in direct propor-
tion with the quantity of Mn-oxide added (Fig. 10B, Table 2).
Assuming the proportional increases are real, such stimulation
could result from 1) degradation of microbial biomass gener-
ated during the initial pulse introduction of the energetically
favorable Mn-oxide; (2) degradation of partially oxidized deg-
radation products formed during the period of enhanced Mn-
reduction; and (3) removal and immobilization of inhibitory
metabolites by adsorptive uptake onto the relatively fresh oxide
surfaces.

Fig. 16. A. Pore water concentrations of manganese in the 2, 5, 10
and 20 mm plugs after terminating the open plug experiment. The
concentration gradients between the overlying water and the pore water
indicated a diffusive transport of manganese from the plugs towards the
overlying water. This gradient increased with increasing plug thickness
and the calculated manganese production rates for the plugs were n.d.,
42, 89, and 72mmol dm23 d21, respectively. B. Concentrations of
manganese in the solid phase of the sediment. The pore water and solid
phase distributions of manganese indicated that manganese reduction
was occurring in the sediment. Clearly, the contents of reactive MnO2

in the sediment were sufficient to support Mn reduction and anoxic
nitrification in all plugs over the incubation period. Net production rates
of Mn21, estimated from loss of reactive Mn-oxide, were 384, 363, 348
and 230mmol dm23 d21 for the 2, 5, 10 and 20 mm plugs, respectively.
Indicated are average together with maximum and minimum concen-
trations of duplicate sediment samples.

Fig. 17. One possible explanation why nitrate could be maintained
for a more extended period and at greater concentrations in the open
anoxic, but not in the closed anoxic incubations, may be due to elevated
pH gradients close to the sediment-water interface in the diffusively
open plugs. The pH dependent reaction of anoxic Mn21 oxidation (5
Mn21 1 2 NO3

2 1 4 H2Of 5 MnO2 1 N2 1 8 H1) may occur more
favorable in surficial regions of the sediment or in the overlying water
reservoir, where the pH is higher. An internal cycle could thus be
sustained where a dissolved oxidant (chelated Mn31 ?) in the
surface zone could be supplied to the underlying anoxic region with
lower pH.



4. CONCLUSIONS

Introduction of Mn-oxides from oxidized surface sediment
into underlying anoxic regions during biogenic or physical
mixing results in anoxic nitrification and net production of
NO3

2 and NO2
2.

Anoxic nitrification rates are proportional to the quantity of
Mn-oxide available in the solid phase.

Anoxic nitrification occurs simultaneously with Mn-oxide
reduction, implying the likely microbial coupling of the two
reactions through an anaerobic pathway of lithotrophic nitrifi-
cation.

Because of the multiple possible reduction reactions for
NO3

2 under anoxic conditions (Corg, DOC, NH4
1, Fe21, HS2

(S0, FeS, FeS2)), higher net NO3
2 production is observed in

diffusively open versus closed systems having greater metab-
olite concentrations.

The juxtaposition of pulsed inputs of Mn-oxides with re-
duced constituents in anoxic deposits makes likely the close
coupling of the O2, Mn, N, S, and C cycles in a complex redox
web rather than a simple succession in surface sediments.

Such redox coupling are likely to be of greatest importance
in nearshore sediments with active biological and physical
reworking, and in regions near hydrothermal vents where ox-
idized metals frequently contact reduced solutes and organic-
rich deposits.
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Mn cycling, together with denitrification coupled in series or parallel to organic matter oxidation through any of several
possible diagenetically produced reductants (e.g., HS2, Fe21, or NH4
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