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5Université Grenoble 1/CNRS, LPMMC UMR 5493 - B.P. 166, 38042 Grenoble, France
(Dated: January 18, 2013)

We introduce a calorimetric approach to probe persistent currents in normal metal rings. The heat
capacity of a large ensemble of silver rings is measured by nanocalorimetry under a varying magnetic
field at different temperatures (60 mK, 100 mK and 150 mK). Periodic oscillations versus magnetic
field are detected in the phase signal of the temperature oscillations, though not in the amplitude
(both of them directly linked to the heat capacity). The period of these oscillations (Φ0/2, with
Φ0 = h/e the magnetic flux quantum) and their evolution with temperature are in agreement with
theoretical predictions. In contrast, the amplitude of the corresponding heat capacity oscillations
(several kB) is two orders of magnitude larger than predicted by theory.

PACS numbers: 73.23.-b, 73.23.Ra, 68.65.-k, 64.70.Nd

INTRODUCTION

At very low temperatures T , a small isolated metal
ring carries a weak but non-dissipative current that is
not destroyed even by the presence of disorder in the
ring [1]. It follows from very general arguments that this
persistent current I is periodic in the magnetic flux Φ
threading the ring [2, 3]:

I(Φ, T ) =

∞∑
m=1

Im(T ) sin

(
2πm

Φ

Φ0

)
, (1)

where Φ0 = h/e is the magnetic flux quantum. The
typical magnitude of the persistent current in a ring of
circumference L is I ∼ eETh/h̄, where ETh = h̄D/L2 is
the Thouless energy and D is the diffusion coefficient de-
termined by the scattering of electrons from the disorder
in the ring. For L ∼ 1 µm, we find I ∼ 1 nA. The pre-
cise value of I and the direction in which this current is
flowing are determined by the configuration of impurities
and are thus random.

Due to the weak magnitude of the persistent current,
only the first two harmonics m = 1, 2 in Eq. (1) were
observed experimentally [4–10]. They were also in the
focus of numerous theoretical studies (see Refs. [11–18]
for a representative selection of theoretical works). The
ensemble of the existing literature indicates that the sta-
tistical properties of the first harmonics I1 can be un-
derstood within the model of noninteracting electrons,
whereas the second harmonics I2 is dominated by inter-
action effects. In the experiments performed on single
rings [5, 9] or on small ensembles of identical rings [7, 10],
both the first and the second harmonics of I have been

detected. Hence, the measured period of current oscilla-
tion with Φ is Φ0. The mean values of I1 and I2, their
variances, and possibly the full probability distributions
can be measured [18]. On the contrary, if large ensembles
of rings (up to 107 rings in Ref. [4]) are used [4, 8], aver-
aging over all the rings of the ensemble inevitably takes
place and one only has access to the average current 〈I〉.
Because 〈I1〉 = 0 [19], the measured signal is mainly due
to the second harmonics 〈I2〉 6= 0. The observed current
then oscillates with a period Φ0/2.

The properties of the first harmonics I1 of the persis-
tent current are nowadays relatively well understood. If
early observations were somewhat contradictory [5, 7],
more recent works have demonstrated an impressive
agreement between experiment and the noninteracting
electron theory [9, 10, 18]. The second harmonics I2,
on the contrary, still represents a challenge for both the-
ory and experiment. Even though a consensus exists on
the importance of electron-electron interactions to ex-
plain its properties, the calculation assuming repulsive
interactions [12, 14] yields the magnitude of 〈I2〉 which
is significantly smaller than the one measured in the ex-
periments. In addition, the paramagnetic response of
the rings at small magnetic field predicted by the theory,
disagrees with observations [4, 8]. Diamagnetic response
can be obtained in a theory assuming attractive interac-
tions [13]. However, interactions which are sufficiently
strong to reproduce the experimentally observed values
of 〈I2〉 would induce a transition to the superconduct-
ing state at temperatures which are too high to be com-
patible with known properties of (some of the) metals
used in the persistent current experiments: copper, gold,
and silver. Indeed these metals do not exhibit super-
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conductivity even at the lowest temperatures accessible
experimentally (down to 0.1 mK [16]). A possible solu-
tion to this problem has been recently proposed by Bary-
Soroker et al. [17]: a tiny amount of magnetic impurities
can destroy the superconductivity but has little impact
on the persistent current. Two new parameters — the
spin-scattering rate 1/τs and the bare superconducting
transition temperature T 0

c of the material without mag-
netic impurities — appear in the theory and allow for
a reasonable explanation of the experiments reported in
Refs. [4] and [7].

Motivated by the recent progress in the research on
persistent currents in normal metal rings, we propose
here a new way of detecting these currents. Our approach
is radically different from the one employed in all previous
experiments: if these anterior works relied on the mea-
surement of the rings’ magnetic moment (either using a
more or less sophisticated version of a SQUID magne-
tometer [4, 5, 7, 9], coupling the rings to a supercon-
ducting microresonator [8], or using an elegant microme-
chanical detector [10]), we propose to focus on the rings’
heat capacity. Our idea stems from the basic principles
of thermodynamics. On the one hand, the heat capacity
at constant pressure is given by Cp = −T (∂2F/∂T 2)p,
where F is the thermodynamic free energy. On the other
hand, the persistent current is I = −∂F/∂Φ. Therefore,
we find

∂C

∂Φ
= T

∂2I

∂T 2
. (2)

From here on we omit the subscript ‘p’ of the heat capac-
ity to lighten the notation. Equations (1) and (2) imply
that

C(Φ, T ) = C(0, T )

+

∞∑
m=1

Cm(T )

[
1− cos

(
2πm

Φ

Φ0

)]
, (3)

where Cm(T ) = (TΦ0/2πm)∂2Im(T )/∂T 2. The heat ca-
pacity C is therefore also a periodic function of the mag-
netic flux Φ.

Equation (2) shows that the dependence of C on Φ is
intimately related to the dependence of I on T . This
link between C and I was already exploited by Yang and
Zhou to investigate the impact of spin-orbit coupling on
both the persistent current and the heat capacity in the
model of noninteracting electrons [20], as well as by (some
of the) present authors to study the entrance of magnetic
vortices into superconducting loops [21–23]. The exper-
iments reported here are, however, much more involved
than those performed in the superconducting state: not
only we work at much lower temperatures (T ∼ 100 mK
instead of T ∼ 1 K), but also the variations of the heat
capacity to detect are much weaker (∆C ∼ kB instead of
∆C ∼ 103 kB).

FIG. 1: (a) Scanning electron microscope (SEM) image of a
single silver mesoscopic ring, the scale bar represents 200 nm.
(b) SEM image of the array of rings.

EXPERIMENTAL SETUP

Our sample (Fig. 1) is composed of N = 5× 106 iden-
tical, noninteracting silver rings (2r = 600 nm diameter,
w ' 140 nm arm width, d = 34 nm thickness, total mass
m = 330 ng). The silver rings are deposited by e-gun
evaporation under 10−6 mb vacuum. Thanks to the high
purity of the silver the phase coherence length is large,
of about 10 µm at the temperature of 100 mK, which
is far above the diffusive ring circumference L [24]. The
specific heat of silver at T = 0.1 K can be estimated to
be of the order of 10−6 J/gK, and hence the magnetic-
field-independent part of the heat capacity of the rings
is expected to be 3 × 10−14 J/K. The rings have been
patterned by electron beam lithography on the thermal
sensor made of a suspended silicon membrane (size 4 mm
× 4 mm, thickness ∼ 5 µm). The transducers, a copper
heater and a highly sensitive NbN thermometer are in-
tegrated on each side of the membrane (see Fig. 2), the
silver rings being located between the two elements [25].

A sketch of the ac calorimetry technique that we use is
given in Fig. 2 and described in detail in previous articles
[26–28]. It consists in applying an ac current through the
heater; here at a frequency felec = 30 Hz. This induces
oscillations Tac(t) of the temperature of the suspended
membrane. These oscillations are detected by the ther-
mometer. For a specific experimentally determined oper-
ating frequency, quasi-adiabatic conditions are fulfilled,
allowing measurements of the specific heat. The typical
signal obtained from the lock-in amplifier is composed of
a modulus measuring a root mean square (RMS) voltage
proportional to the temperature oscillation of the mem-
brane (TRMS

ac ∝ V RMS
ac ) and of a phase ϕ, both related to

the heat capacity through the equations:

Tac(t) =
P0

ωC
cos(2ωt+ ϕ), (4)

tan(∆ϕ) =
2ωC

K
, (5)

where P0 is the power dissipated in the heater, ω =
2πfelec the electrical excitation frequency, C the heat ca-
pacity of the membrane and K the thermal conductance
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FIG. 2: Schematic drawing of the experimental set-up of heat
capacity measurement on a suspended silicon membrane. The
internal oscillation signal of the lock-in ]1 is used to pilot
the voltage current convertor used to apply the current to
the heater. The lock-in ]2 is used to measure the resistance
of the heater, and then estimate the power dissipated. The
oscillation of temperature Tac is measured on the lock-in ]1
at the second harmonic (2f). The scale bar represents 1 mm.

between the membrane and the heat bath (for more de-
tails see [21, 26, 27, 29]). The setup is cooled down to
very low temperatures using a dilution fridge, equipped
with a superconducting coil supplying a magnetic field
H normal to the plane of the rings. As compared to pre-
vious measurements [21–23], the thermometry has been
adapted to work at very low temperature and the arm
width has been increased from 40 µm to 150 µm to al-
low measurements at a higher frequency. Consequently,
δTdc = Tmembrane − Tcryostat decreased and we were able
to obtain temperatures compatible with the purpose of
our study (T ' 70 mK on the membrane for a regulated
temperature of 50 mK of the sample holder) [29].

EXPERIMENTAL RESULTS

Figure 3 shows a scan of the heat capacity versus the
temperature of the membrane. The heat capacity mea-
sured at the lowest temperature is around 10 pJ/K, with
the error not exceeding 0.1 pJ/K. It must be noticed
that this value corresponds to the heat capacity of the
whole sample (rings + membrane). In the inset of Fig. 3,
we show a histogram of the noise measurement obtained
from the upper panel of this figure, indicating a noise of
' 0.8 nV/

√
Hz.

FIG. 3: (color online) Top panel: voltage at twice the ex-
citation frequency versus time at T = 200 mK. Inset of the
bottom panel: histogram of the noise extracted from the mea-
surement presented in the top panel. Bottom panel: heat ca-
pacity C of silver rings versus temperature in the absence of
magnetic field.

Our experimental method to detect persistent currents
is based on scanning the heat capacity versus the applied
magnetic field, at a constant temperature. During the
measurement, two components of the temperature oscil-
lation are recorded: the modulus and the phase. Both
bring physical informations about the heat capacity vari-
ations (see equations (4) and (5)).

A typical scan is shown in Fig. 4. Starting at H =
0 mT, we slowly increase the field to 50 mT by small steps
(' 1 mT). C is measured at each H for signal integration
times of the order of 10 seconds. In order to improve
the sensitivity and to detect the very weak oscillations,
we realized a hundred of identical scans by carrying out
cycles between H = −50 mT and H = 50 mT. These
data are averaged during the signal processing described
below.

The measurements were performed at three different
temperatures: T = 60, 100 and 150 mK. For each of
them, the temperature of the sensor membrane oscillates
with an amplitude of∼ 10% compared to the control tem-
perature. The background in H2 observed on the curves
may be attributed in part to the magnetoresistance of
the copper heater.
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FIG. 4: Phase of the temperature oscillation (at the top) and
modulus of the temperature oscillations, expressed in terms
of heat capacity using Eq. (4)(at the bottom), of mesoscopic
silver rings versus magnetic field measured at T = 150 mK.

DATA PROCESSING

In order to detect a periodicity in our data, a Fourier
analysis of the phase of the temperature oscillation and of
its amplitude, expressed in terms of heat capacity using
Eq. (4), has been performed. As a first step, the low
frequency trend observed in every scan has been removed
with a third-order polynomial regression. As a second
step, the power spectral densities have been calculated
as follows. The autocorrelation function of the signal
x(H) (where x is the modulus or the phase),

Γx(H) = lim
M→∞

1

2M

∫ M

−M
x(H ′)x(H ′ −H)dH ′, (6)

is first estimated for every scan. Averaging over a hun-
dred of scans is then performed to reduce the noise.
The power spectral density Sx(ν) is calculated as the
Fourier transform of the averaged autocorrelation func-
tion Γ̄x(H). The power spectral densities (refered to PSD
in the following) of both the phase of the temperature os-
cillation and the modulus of the heat capacity (extracted
from equations 4) for the three temperatures 60, 100 and
150 mK are displayed in Fig. 5 .

We first stress that the high peaks observed for all
curves at a low frequency ν ∼ 0.05 mT−1 are a remi-
niscence of the trend which has not been completely re-
moved by the polynomial regression. These peaks do not
carry any useful signal. Unfortunately, they can mask
any physically interesting signatures of persistent cur-
rents that might be present at low frequencies and would
correspond to the first harmonics C1 of the heat capacity.

In addition to the low-frequency peak, our spectral
analysis of the phase of the temperature oscillation (up-
per panel of Fig. 5) reveals peaks at ν ' 0.11 mT−1

FIG. 5: (Color online) Power spectral densities of the aver-
age signal for phase (upper panel (a)) and in the lower panel
(b), the PSD of the modulus of the heat capacity (extracted
from the equation 4). In the upper panel the red and the
blue curves have been shifted from the green for clarity, and
in the medium panel only the red curve has been shifted by
10−30 (J/K)2.mT. The vertical straight lines delimit the fre-
quency range in which signatures of persistent currents are
expected.

(the period is 9 mT). This value corresponds to a half of
flux quantum through a ring of 264 nm in radius. Our
rings have the inner radius of 220 nm and the outer ra-
dius of 360 nm. Thus, the observed spectral peak is in
the range of frequencies in which signatures of the second
harmonics of heat capacity oscillations, C2, are expected.
However, as it can be seen from the lower panel of Fig. 5,
no clear signature of spectral peaks at ν ' 0.11 mT−1 is
observed in the modulus of heat capacity, although the
phase and the modulus of the oscillating heat capacity
signal are related through Eq. (5). The reason for ob-
serving a peak in the phase signal but not in the modulus
signal most probably resides in a lower sensitivity on the
modulus signal. At 100 mK, the sensitivity obtained for
the modulus is ∼ 10−14 J/K or ∼ 10−20 J/K (∼ 100 kB)
per ring (a sensitivity of ∆C/C ' 5×10−4) as compared
to the sensitivity obtained for the phase estimated to be
of the order of ∆ϕ/ϕ ' 3× 10−5.

In order to compare our measurements with theoretical
predictions, we estimated the average amplitude of the
second harmonics of heat capacity oscillations, |〈C2(T )〉|,
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T (mK) Area A (degree2) Phase ϕ (degree) tanϕ K(W/K) |〈C2〉| (J/K) |〈C2〉|/ring (kB)

60 2.9×10−8 2.4×10−4 4.2×10−6 7.5×10−9 8.5×10−17 1

100 25.1×10−8 7.1×10−4 1.2×10−5 1.8×10−8 6.1×10−16 9

150 4.5×10−8 3×10−4 5.2×10−6 2.7×10−8 3.5×10−16 5

TABLE I: The amplitude of the second harmonics of heat capacity oscillations |〈C2〉| is extracted from the curves of Fig. 5
(upper panel). First, the area A of the spectral peak is estimated (second column). For this purpose, we fit the curves of the
upper panel of Fig. 5 with smooth polynomials and evaluate the integral of the difference between the data and the fit taken
between the vertical lines. Next, the associated heat capacity is calculated using Eq. (5) with ϕ =

√
2A (column 5). Finally,

the heat capacity is divided by the number of rings N = 5× 106 to obtain the signal per ring (last column).

from the area below the curves of Fig. 5 (see Table I).

COMPARISON WITH THEORY

We compare our results with the predictions of two
theoretical models: the model of Ambegaokar and Eck-
ern (AE) [12] and the model of Bary-Soroker, Entin-
Wohlman and Imry (BEI) [17]. Both models rely on
taking into account interactions between electrons in the
rings, but the interactions are repulsive in the AE model
and attractive in the BEI model. In order to suppress
the superconductivity that strong attractive interactions
may induce, the latter model includes scattering of elec-
trons by magnetic impurities.

Even if the applicability of the AE model to realistic
experiments is made questionable by the disagreement of
the sign of the current that it predicts with measurements
[8], it is still of great interest to describe experimental
data [10]. Using Eq. (18) of Ref. [12] and our Eq. (2), we
readily obtain:

〈CAE
2 (T )〉 = kB ×

[
4

9π
N(0)V̄

]
kBT

ETh
exp

(
− kBT

3ETh

)
, (7)

where N(0) is the electronic density of states at Fermi
energy and V̄ is the mean value of the attractive in-
teraction potential [12]. Using the data from Ref. [8],
where silver rings similar to ours were studied, we esti-
mate N(0)V̄ ' 0.37 and ETh/kB ' 40 mK. The resulting
dependence of 〈CAE

2 〉 on temperature is shown in Fig. 6
by a dashed line, with the scale given on the right. The
theoretical Eq. (7) reproduces the trend of the temper-
ature dependence of our data that has a maximum at
T ' 3ETh/kB ≈ 100 mK. But the values of |〈CAE

2 〉| are
2 orders of magnitude smaller than the data.

In the BEI model, assuming attractive interactions in
combination with scattering on magnetic impurities [17],
we find:

〈CBEI
2 (T )〉 = −kB × 4T

ETh

kB

∞∑
n=−∞

∫ ∞
0

dx sin(2πx)

× ∂2

∂T 2

{
Ψ′[Fn(x, T, T 0

c , τs)]

ln(T/T 0
c ) + Ψ[Fn(x, T, T 0

c , τs)]−Ψ(1/2)

}
, (8)

FIG. 6: (Color online) Average amplitude of the second har-
monic C2 of the heat capacity oscillations with the magnetic
field. Points show the experimental results from Table I, with
the scale on the left. Lines show theoretical predictions: Eq.
(7) (dashed blue line) and Eq. (8) (solid red line), scale on
the right.

where Ψ(x) and Ψ′(x) are the digamma function and
its derivative, respectively, τs is the spin-scattering time,
T 0
c is the bare superconducting transition temperature in

the absence of magnetic impurities (i.e. at τs →∞), and
Fn(x, T, T 0

c , τs) = (1+ |n|)/2+(1/2πτs+πx2ETh/kB)/T .
The minus sign in Eq. (8) reflects the diamagnetic na-
ture of the persistent current in this model, in contrast
to the paramagnetic current leading to Eq. (7). It fol-
lows from the comparison of the theory with previous
measurements of persistent currents [4, 7] that it is rea-
sonable to choose T 0

c = 0.1ETh/kB [17]. At the same
time, s = 1/πT 0

c τs should exceed 0.87 to suppress the
superconductivity at all temperatures. We set s = 1 and
show the absolute value of the resulting heat capacity
|〈CBEI

2 〉| in Fig. 6 by a solid line.
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DISCUSSION

Interestingly, the two theoretical approaches consid-
ered above yield very similar results both for the mag-
nitude of heat capacity oscillations (|〈C2〉| ∼ 10−2 kB)
and for its temperature dependence (maximum values of
|〈C2〉| reached at T ≈ 100 mK for experimental parame-
ters). Whereas the latter temperature dependence is in
agreement with our measurements, the predicted magni-
tude of the heat capacity oscillations is far too small to
explain the observed |〈C2〉| ∼ kB. This discrepancy may
result from the insufficiencies of the theoretical models,
as well as from the uncontrolled errors in the estimation
of the absolute values of heat capacities in our experi-
ment.

On the theory side, the two models considered here
were previously shown to be compatible with experiments
(see Refs. [12] and [17]). They provided reasonable re-
sults for the magnitude and the temperature dependence
of persistent currents measured in Refs. [4] and [7]. It
should be noted, however, that, on the one hand, the
heat capacity is proportional to the second derivative of
the persistent current I with respect to temperature [see
Eq. (2)] and hence, it is sensitive to fine details of the
temperature dependence of I that might not be captured
by the theory. Equation (8), for example, changes sign
for T ≈ 30 mK, leading to a peculiar low-temperature
behavior of the heat capacity in Fig. 6. This is due to
the change of the shape of 〈I2(T )〉 curve from convex
to concave. Also the surface states (evanescent states),
when included in the theoretical model, may modify its
predictions significantly [30]. In addition, it was noticed
by several authors that other phenomena (such as, e.g.,
the fluctuations of electron spin density [31] or the ambi-
ent electromagnetic field [32]) may induce magnetic flux-
periodic currents in mesoscopic rings. These currents can
be comparable or even larger than the persistent currents.
Given the large signals measured in our experiments and
taking into account that our calorimetric technique may
be particularly sensitive to currents that dissipate heat,
we believe that it is likely that these phenomena may be
important in our setup. Because Eq. (2) does not hold
for these non-equilibrium processes, it remains to be seen
if and how they could be included into the theoretical
model.

The disagreement between theory and experiment seen
in Fig. 6 might also stem from the difficulties in obtaining
quantitatively correct values of heat capacity, intrinsic to
the extreme difficulty of the measurements: measuring
very low thermal signals at extremely low temperatures.
These difficulties are obvious already from the compar-
ison of the heat capacities extracted from the absolute
value and the phase of the voltage signal measured in
our experiment (compare the two panels of Fig. 5).

CONCLUSION

We introduced a calorimetric approach to the study
of persistent currents in mesoscopic rings made of nor-
mal metals. The approach relies on the measurement
of periodic variations of heat capacity of a large ensem-
ble of rings with magnetic field. Under the experimental
conditions reported here, the approach was at the limit
of its sensitivity, the signal being strongly masked by
noise. Despite this, we estimated the amplitude of heat
capacity oscillations to be of the order of several kB per
ring at ∼ 100 mK. The amplitude is two orders of mag-
nitude larger than expected from the existing theories
which, however, correctly predict the range of tempera-
tures where the heat capacity signal is maximum. Fur-
ther experiments and theoretical investigations are nec-
essary to elucidate the sources of this discrepancy.

Both experiment and theory suggest that, in contrast
to the persistent current I, the heat capacity C of an en-
semble of mesoscopic rings is not a monotonic function of
temperature. In particular, the average value of its sec-
ond harmonic C2 vanishes for T → 0. More experiments
having better sensitivity will be necessary to evidence the
real position of this maximum.
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