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This paper is a survey of existing estimation methods for pharmacokinetic/pharmacodynamic (PK/PD) models based on stochastic differential equations (SDEs). Most parametric estimation methods proposed for SDEs require high frequency data and are often poorly suited for PK/PD data which are usually sparse. Moreover, PK/PD experiments generally include not a single individual but a group of subjects, leading to a population estimation approach. This review concentrates on estimation methods which have been applied to PK/PD data, for SDEs observed with and without measurement noise, with a standard or a population approach. Besides, the adopted methodologies highly differ depending on the existence or not of an explicit transition density of the SDE.

Introduction

Pharmacokinetics (PK) aims at describing the relationship between the dose administered and the exposure to the drug, i.e. the total concentration of drug in the body. Pharmacodynamics (PD) quantifies the relationship between the drug exposure and the response to this exposure. PK/PD models are often described by differential systems derived from physiology. In general, the proposed models are deterministic, that is, the observed kinetic/dynamic is driven exclusively by internal deterministic mechanisms. However, real pharmacological processes are always exposed to influences that are not completely understood or not feasible to model explicitly. Ignoring these phenomena in the modeling may affect the estimation of PK/PD parameters and the derived conclusions. Therefore there is an increasing need to extend the deterministic models to models including a stochastic component. A natural extension of deterministic differential equations model is a system of stochastic differential equations (SDEs), where relevant parameters have been modeled as suitable stochastic processes, or stochastic processes have been added to the driving system equations [START_REF] Ditlevsen | Introduction to stochastic models in biology[END_REF].

The first papers encouraging the introduction of random fluctuations in PK/PD were published by D' Argenio and Park (1997) and Ramanathan (1999a,b). The authors underline that PK/PD have contributions from both deterministic and stochastic components: drug concentrations follow determinable trends but the exact concentration at any given time is not completely determined.

For example, [START_REF] Ramanathan | A method for estimating pharmacokinetic risks of concentrationdependent drug interactions from preclinical data[END_REF] proposes a stochastic one-compartment PK model with a variable elimination rate. More sophisticated PK/PD models have then been proposed with multiple compartments, non-linear or time-inhomogeneous absorption or elimination (see for example [START_REF] Ferrante | A stochastic compartmental model with long lasting infusion[END_REF]Tornøe et al., 2004a;Ditlevsen and De Gaetano, 2005b;Ditlevsen et al., 2005;[START_REF] Picchini | Modeling the euglycemic hyperinsulinemic clamp by stochastic differential equations[END_REF].

Parameter estimation for SDE has been highly tackled in the statistical literature, often motivated by financial applications (see [START_REF] Sørensen | Parametric inference for diffusion processes observed at discrete points in time: A survey[END_REF], for a review). However, many suggested solutions require high frequency data and are not suited for PK/PD data where designs are usually sparse. Especially, estimation methods based on approximations of the continuous-time observation likelihood (namely the Girsanov formula), which require a high number of data and a small time step between two successive observations, are not adapted. Moreover, PK/PD data are more and more analyzed through a population approach when data from several subjects are considered simultaneously. This yields to PK/PD models with random parameters. Combining SDE with a population approach is quite appealing but raises inference challenges.

In this paper, we concentrate our review on estimation methods adapted to the particular characteristics of PK/PD data. After a short presentation of some examples of PK/PD SDEs in Section 2, we introduce some preliminary comments on the likelihood functions depending on the considered observation model (with and without measurement noise) in Section 3. Section 4 is about estimation methods for standard PK/PD SDE: when SDEs are directly observed, the reader is introduced to techniques based on (i) exact maximum likelihood estimator when explicit solution is available or (ii) Hermite expansion of the transition density, (iii) approximation of the spectral density if the SDE has no explicit solution. When the SDE is observed with an additive measurement error, methods are based on (iv) Kalman filter and its extended version or (v) Monte Carlo approximation of the likelihood. Section 5 discusses estimation methods within a population approach: we detail methods based on (i) exact maximum likelihood estimator when linear SDE with random effect and no measurement noise are considered, (ii) Gauss-Hermite quadrature to approximate the likelihood, possibly coupled with (iii) Hermite expansion of the transition density, (iv) Bayesian approach, (v) Kalman filter and linearization of the likelihood, (vi) Expectation-Maximisation algorithm. The paper finishes with some discussion (Section 6).

Stochastic PK/PD models

In this section, we present some stochastic compartmental PK/PD models that have been proposed in the literature. This list is far from being exhaustive but aims at presenting typical situations, each of them involving a different level of statistical inference difficulty.

where V is the volume of the compartment. This equation has an explicit solution: C t = D V e -ket . Now, assume that k e is not constant in time but randomly fluctuates around a mean value as k e + ξ t , where ξ t is a Gaussian white noise process. Then ξ t dt can be written as γdB t , where B t is a Brownian motion and γ is a constant parameter. Incorporating this noise into the deterministic model, C t becomes a stochastic process, solution of the following SDE:

dC t = -k e C t dt + γC t dB t , C 0 = D V . (1) 
That process -known as geometric Brownian motion-has an explicit expression

C t = D V e -ket exp - γ 2 2 t + γB t .
This stochastic process, which is log-normal, only takes positive values, which is noticeable when modeling concentration. Parameters to be estimated are θ = (k e , V, γ).

A stochastic one compartment PK model with first-order absorption has also been considered

by [START_REF] Ferrante | A stochastic compartmental model with long lasting infusion[END_REF]:

dC t = (k a /V -k e C t )dt + γdB t , C 0 = D V , (2) 
where k a is the absorption rate. This process -known as an Ornstein-Uhlenbeck process-has an explicit expression

C t = D V e -ket + k a V k e (1 -e -ket ) + γ t 0 e -ke(t-s) dB s ,
and is Gaussian with explicit mean and variance. Parameters to be estimated are θ = (k e , k a , V, γ).

Multi compartments PK models have also been extended to stochastic versions. For example, a two compartments model is described by the deterministic system

dC1t dt = -k 1 C 1t + k 2 C 2t -k e C 1t dC2t dt = k 1 C 1t -k 2 C 2t (3) 
where C 1t , C 2t are both compartments concentrations, and k 1 , k 2 are transfer constants. [START_REF] Cuenod | Parameter estimation and change-point detection from dynamic contrast enhanced mri data using stochastic differential equations[END_REF] propose a stochastic version of (3) with independent Brownian motions B 1t , B 2t on each equation and diffusion coefficients γ 1 , γ 2 :

dC 1t = (-k 1 C 1t + k 2 C 2t -k e C 1t ) dt + γ 1 dB 1t dC 2t = (k 1 C 1t -k 2 C 2t ) dt + γ 2 dB 2t . (4) 
The yielding stochastic process has an explicit Gaussian solution. Parameters to be estimated are Ditlevsen and De Gaetano (2005b) add a Brownian motion only on the second compartment C 2t of (3), with a diffusion coefficient γ 2 :

θ = (k 1 , k 2 , k e , γ 1 , γ 2 ).
dC 1t = (-k 1 C 1t + k 2 C 2t -k e C 1t ) dt dC 2t = (k 1 C 1t -k 2 C 2t ) dt + γ 2 dB 2t . (5) 
This leads to a hypoelliptic SDE, that is, a stochastic differential system in which only a few equations include a volatility term, the other equations being of ODE type. No explicit solution exists for this SDE. Parameters to be estimated are then θ = (k 1 , k 2 , k e , γ 2 ).

SDEs have also been proposed for glucose kinetics using data from intravenous glucose tolerance test. For example, [START_REF] Tornøe | Grey-box modelling of pharmacokinetic/pharmacodynamic systems[END_REF] develop a stochastic non-linear multi-compartments glucose minimal model. No explicit solution exists for this complex SDE.

Stochastic coupled PK/PD models

Several papers propose a stochastic model for simultaneous analysis of PK/PD data. In that case, either only the PK model, or only the PD model or both models are considered stochastic.

For example, [START_REF] Ferrante | A stochastic formulation of the gompertzian growth model for in vitro bactericidal kinetics: parameter estimation and extinction probability[END_REF] consider a stochastic PD model (Gompertz) of the bacterial count N t under antibiotic effect coupled to a two dimensional deterministic PK model for the antibiotic concentration C t :

dN t = (r -bN t log N t -kC t )N t dt + γdB t C t = Dka V (ka-ke) (e -ket -e -kat ), (6) 
with r the intrinsic growth rate, b the growth deceleration rate, k the bacterial effect of the drug, D the dose of antibiotic, V the volume of distribution, k a and k e the absorption and elimination constants, respectively. Log-transformation of this non-linear time-inhomogenous SDE has an explicit solution (see [START_REF] Ferrante | A stochastic formulation of the gompertzian growth model for in vitro bactericidal kinetics: parameter estimation and extinction probability[END_REF]. Parameters to be estimated are θ = (k e , k a , V, r, b, k, γ).

Another example is given by [START_REF] Tornøe | Grey-box modelling of pharmacokinetic/pharmacodynamic systems[END_REF] with a stochastic first-order elimination one-compartment PK model and an indirect response PD model (Emax):

dC t = -k e C t + γ C dB 1t dR t = k in -k out 1 + Ct EC50+Ct R t dt + γ R dB 2t , (7) 
where R t is the state variable for the PD response, EC 50 is the drug concentration causing 50% of maximal stimulation, γ C and γ R are two diffusion coefficients. This system has no explicit solution.

Parameters to be estimated are θ = (k e , k in , k out , EC 50 , γ C , γ R ).

More complex PK/PD systems have also been introduced in the literature. [START_REF] Picchini | Modeling the euglycemic hyperinsulinemic clamp by stochastic differential equations[END_REF] propose for instance a two dimensional SDE for the oscillations of glycemia occurring in response to hyperinsulinisation and to constant glucose infusion. 

Preliminary comments on estimation

We now introduce a general model and the notations used through out the whole paper. Two observations models are considered, depending if the PK/PD SDE is directly observed or observed with an additive measurement noise. The likelihood functions are presented in these two contexts.

Corresponding estimation methods are detailed in Section 4. Observation models with a PK/PD population approach and corresponding estimation methods are gathered in Section 5.

SDE model

The studied biological process is assumed to be modeled by (X t ) t≥0 a stochastic process in X ∈ R p defined as the solution of the multidimensional SDE:

dX t = µ(X t , t, θ)dt + Γ(X t , θ)dB t X 0 = x 0 (θ) (8) 
where θ ∈ Θ ⊂ R d is the parameter vector and Θ is the set of parameters, µ(X t , t, θ) : R p ×R×R d → R p is the drift function, Γ(X t , θ) : R p × R d → M(R p ), a p × p matrix, is the volatility function, (B t ) t≥0 denotes a p-dimensional Brownian motion and x 0 (θ) is the initial condition. If the drift and the volatility functions are independent of time t, then the system is said to be homogenous, otherwise it is inhomogenous. The initial condition may be random but for sake of simplicity, we assume it deterministic in this paper. The aim is to estimate the parameter θ from (maybe noisy and partial) observations of X t .

We assume the solution of SDE (8) to exist, and the law of X t given θ and X s = x s for any s < t, to have a strictly positive density, the transition density, w.r.t. the Lebesgue measure on X :

x → p X (x, t -s|x s , θ) > 0, x ∈ X .
This existence is ensured by regularity properties on the drift and volatility functions (see Lipster and Shiryaev, 2001, for instance). Note that this assumption does not imply the transition density to be explicit, it happens only in few cases.

Observation models and likelihood functions

In the first papers published on the estimation of PK/PD SDEs, processes were supposed to be exactly observed, no observation noise was considered. This assumption, rather unrealistic for PK/PD data, has the great advantage to simplify the likelihood, as presented in section 3.2.1. In section 3.2.2, the more realistic assumption of discrete and noisy observations of PK/PD SDE is introduced, as well as the corresponding likelihood.

Discretely and directly observed diffusions

Assume that (X t ) t≥0 is directly observed at discrete times t 1 , . . . , t n . We denote indistinctly by X j or X tj the observation at time t j and

X 1:n = (X t1 , • • • , X tn ) = (X 1 , • • • , X n ). Set ∆ j = t j -t j-1 .
Let p X denote the density of X 1:n given θ. By Markov property, p X is the product of the n -1 transition densities. Thus the likelihood function L(θ;

X 1:n ) is L(θ; X 1:n ) = p X (X 1:n |θ) = n j=1 p X (X tj , ∆ j |X tj-1 , θ). (9) 
When p X is explicit, the likelihood (9) is explicit and exact maximum likelihood estimators (MLE) can be computed (see Section 4.1.1). Difficulties in the parameter estimation arise when the transition density p X is not explicit. In that case, approximate estimators have been proposed

in the literature (see Section 4.1.2).

Discretely observed diffusions with observation noise

Let y 1:n = (y 1 , . . . , y n ) be the noisy observations of the diffusion process (X t ) t≥0 at time t 1 , . . . , t n .

We assume that y j ∈ R q , with q ≤ p, is derived from the following statistical model

y j = h(X tj , θ) + g(X tj , θ) ε j , ε j ∼ i.i.d. N (0, I q ) dX t = µ(X t , t, θ)dt + Γ(X t , θ)dB t X 0 = x 0 (θ) (10) 
where h(x, θ) and g(x, θ) are two functions from R p ×R d in R q and ε j is a measurement error random q-vector. For the sake of simplicity, we consider the usual assumption of a Gaussian distribution on ε j with identity variance matrix I q . Standard choices for g are g(x, θ) = σ resulting in the homoscedastic model and g(x, θ) = (a+σh(x, θ)) resulting in the heteroscedastic model. Function h is generally the identity function when X t in one-dimensional and a linear application modeling that only a restricted number or a linear combination of components of (X t ) t≥0 is observed, otherwise.

The likelihood function L(θ; y 1:n ) computed from data y 1:n is the marginal distribution p Y :

L(θ; y 1:n ) = p Y (y 1:n |θ) = X p Y |X (y 1:n |X 1:n , θ)p X (X 1:n |θ)dX 1:n , (11) 
where p Y |X is the conditional density of y 1:n given X 1:n . If the transition density is Gaussian and h(X, θ) is linear, L(θ; y 1:n ) has an explicit form (see Section 4.2.1). Otherwise, either the transition density, or the integration over X are not explicit. Then the intractable likelihood L(θ; y 1:n ) has to be approximated. These methods are presented in Section 4.2.2.

Estimation for PK/PD SDE

We first present estimation methods adapted to directly observed PK/PD SDE (section 4.1). Then estimation for SDE observed with noise is detailed in section 4.2.

Discretely but directly observed diffusions

Likelihood ( 9) is explicit for few SDEs and analytic estimators have then been derived, as presented in Section 4.1.1. Approximate estimators suited for general SDEs are reviewed in Section 4.1.2. 

Explicit or exact estimators

(C t ) t∈[0,T ] .
As data belong to an infinite dimensional space, the continuous-time observation likelihood has to be computed with the Girsanov formula [START_REF] Lipster | Statistics of random processes I : general theory[END_REF]:

L(θ; (C t ) t∈[0,T ] ) = exp - 1 γ 2 T 0 (k a /V -k e C t )dC t - 1 2 T 0 (k a /V -k e C t ) 2 dt where θ = (k e , k a , V, γ). The MLE based on continuous data (C t ) t∈[0,T ] is defined as θ[0,T ] = arg max θ∈Θ {L(θ; (C t ) t∈[0,T ] )}.
It can be proved that θ[0,T ] is asymptotically unbiased, normally distributed and efficient [START_REF] Rao | Statistical Inference for Diffusion Type Processes[END_REF]. However, PK/PD data are measured at discrete times rather than continuously. Discretisation of θ[0,T ] can be considered but it is generally difficult to study the properties of such estimators analytically, especially when the number of data is small and fixed. As an alternative, [START_REF] Ferrante | A stochastic compartmental model with long lasting infusion[END_REF] consider the likelihood (9) based on discrete-time observations C 1:n . They can compute it exactly because PK model ( 2) has an explicit transition density. More precisely, the process (C t ) is Gaussian and the transition density is

p C (y, t -s|z, θ) = P (C t = y|C s = z, θ) = 1 2πv θ (t -s) exp - (y -m θ (z, t -s)) 2 2v θ (t -s) ,
where

m θ (z, t -s) = ka V ke + (z -ka V ke ) exp(-k e (t -s)) and v θ (t -s) = γ 2 2ke 1 -exp(-2k e (t -s)). Then the exact likelihood function is L(θ; C 1:n ) = n j=1 p C (C j , ∆ j |C j-1 , θ). The MLE based on discrete-time observations is defined as θn = arg max θ∈Θ L(θ; C 1:n ).
He is not explicit but can be obtained from a numerical optimization of the likelihood. The MLE θn is asymptotic normal and efficient [START_REF] Lipster | Statistics of random processes I : general theory[END_REF].

In [START_REF] Ferrante | Parameter estimation in a gompertzian stochastic model for tumor growth[END_REF][START_REF] Ferrante | A stochastic formulation of the gompertzian growth model for in vitro bactericidal kinetics: parameter estimation and extinction probability[END_REF], the same estimation method is used for the PK/PD SDE (6) to model bacterial growth and bacteria-drug interactions. The log transformation X t = log N t of SDE ( 6) has a Gaussian explicit solution. The transition density p X (y, t -s|z) is thus explicit and the exact MLE is derived from the likelihood function ( 9) of the discrete data (X 1:n , C 1:n ).

Estimators based on approximation

Transition density of more complex PK/PD SDEs is unknown and approximation has to be used to estimate parameters. Several approaches have been proposed. The simplest one is the Gaussian Euler-Maruyama approximation [START_REF] Oksendal | Stochastic differential equations: an introduction with applications[END_REF] but this scheme is efficient only if ∆ j = t j -t j-1 is small, which is not usual for PK/PD data. We present here two other strategies suited for PK/PD data, one based on an Hermite expansion of the transition density and the second based on the spectral density. This second approach has been introduced for an hypoelliptic SDE. To our knowledge, this is the only estimation method adapted to hypoelliptic SDE.

Hermite expansion of the transition density. This estimation method has been first used in a PK/PD SDE context by [START_REF] Picchini | Maximum likelihood estimation of a timeinhomogeneous stochastic differential model of glucose dynamics[END_REF]. This approach has been originally proposed by [START_REF] Aït-Sahalia | Maximum likelihood estimation of discretely sampled diffusions: a closedform approximation approach[END_REF] for unidimensional and time-homogeneous equations and then extended to inhomoegeneous equations by [START_REF] Egorov | Maximum likelihood estimation of time-inhomogeneous diffusions[END_REF] and to multi-dimensional equations by [START_REF] Aït-Sahalia | Closed-form likelihood expansions for multivariate diffusions[END_REF]. [START_REF] Picchini | Maximum likelihood estimation of a timeinhomogeneous stochastic differential model of glucose dynamics[END_REF] consider a one-dimensional (q = 1) inhomogeneous SDE of glucose dynamics after the steady state of insulin concentration has been reached. The transition density is not explicit, neither the likelihood. Their estimation method works as follows.

They assume the volatility function Γ(x, θ) to be bounded below by a strictly positive function and introduce the Lamberti transform of X t : (X t ) = Xt du Γ(u,θ) . The Hermite expansion p S X of order S of the unknown transition density p X is defined by

p S X (X j , ∆ j |X j-1 , θ) = 1 ∆ j Γ(X j , θ) f 0 (Z j ) S s=0 m s ( (X j-1 , ∆ j ), θ) H s (Z j ), (12) 
where H s is the Hermite polynom of order s for s = 1 . . . S, f 0 is the standard normal density function,

Z j = (Xj )-(Xj-1) √ ∆j and m s ( (X j-1 ), ∆ j , θ) = 1 s! E [H s (Z j ) | (X j-1 )]
is the conditional moment of the Hermite polynom H s . Then the approximated likelihood of order S is

L S (θ, X 1:n ) = n j=1 p S X (X j , ∆ j |X j-1 , θ) (13)
and the estimator of θ is defined as

θS n = arg max θ∈Θ L S (θ, X 1:n ).
Aït-Sahalia ( 2002) and [START_REF] Egorov | Maximum likelihood estimation of time-inhomogeneous diffusions[END_REF] prove that under regularity conditions on the drift and volatility functions, θS n is consistent. This method is computationally efficient.

Monte Carlo approximation of the spectral density. Ditlevsen et al. (2005[START_REF] Ditlevsen | Parameter estimation of feedback gain in a stochastic model of renal hemodynamics: differences between spontaneously hypertensive and sprague-dawley rats[END_REF] propose this method for a hypoelliptic PD SDE modeling tubuloglomerular feedback mechanism in a rat nephron. The SDE system consists in 6 equations with Brownian motion on only one coordinate.

There is no analytic expression for the transition density and so for the likelihood function.

Instead of estimating the parameters by maximizing an approximation of the likelihood function, 

pK (u, θ) = 1 K K k=1 pk (u, θ).
The strong law of large numbers ensures convergence of pK (u, θ) to p(u, θ). Then the parameters are estimated by nonlinear least squares as

θK n = arg min θ∈Θ u∈[0,n/(2T )] log p(u) -log pK (u, θ) 2 .
Approximate confidence intervals on θK n can also be obtained by Monte Carlo simulations. No theoretical properties have been proved for this estimator.

Discretely observed diffusions with observation noise

Noisy observations of PK/PD SDEs as defined by model ( 10) have been considered in the literature the restriction of a constant diffusion coefficient Γ(X t , θ) = Γ θ . We first present an exact estimation method proposed for linear SDEs (Section 4.2.1), then two approximate estimation methods for more general SDEs (Section 4.2.2).

Explicit or exact estimators

Linear PK/PD SDEs with homoscedastic measurement noise have been studied by D'Argenio and Park (1997); Tornøe et al. (2004a); [START_REF] Favetto | Parameter estimation for a bidimensional partially observed Ornstein-Uhlenbeck process with biological application[END_REF]; [START_REF] Cuenod | Parameter estimation and change-point detection from dynamic contrast enhanced mri data using stochastic differential equations[END_REF]. Model (10) reduces to:

y j = H θ X j + σε j , ε j ∼ iid N (0, I q ), j = 1, . . . , n dX t = (A θ X t + C θ (t))dt + Γ θ dB t (14) setting h(X t , θ) = H θ X t , with H θ a q × p matrix, g(X t , θ) = σ, µ(X t , t, θ) = A θ X t + C θ (t). The p -vector C θ (t) may depend on time t.
By recursive conditioning, likelihood (11) can be decomposed into

L(θ; y 1:n ) = p(y 1 ; θ) n j=2 p(y j |y 1:j-1 ; θ), (15) 
where p(y j |y 1:j-1 ; θ) is the conditional law of y j given y 1:j-1 . In the particular case of model ( 14), y j |y 1:j-1 is Gaussian. Indeed, the solution of the linear SDE ( 14) is Gaussian, as well as y j by linearity of h(x, θ). Let us denote m j|1:j-1 and R j|1:j-1 the conditional expectation and variance of y j given y 1:j-1 respectively. We have:

p(y j |y 1:j-1 ; θ) = exp{-1 2 (y j -t m j|1:j-1 )(R j|1:j-1 ) -1 (y j -m j|1:j-1 )} |2πR j|1:j-1 | .
Then m j|1:j-1 and R j|1:j-1 can be computed using the Kalman filtering procedure. Indeed, by linearity of h(x, θ), we have:

m j|1:j-1 = E(y j |y 1:j-1 ) = H θ E(X j |y 1:j-1 ) R j|1:j-1 = V ar(y j |y 1:j-1 ) = H θ V ar(X j |y 1:j-1 ) t H θ + σ 2 I q (16)
where t H θ is the transposed matrix of H θ . Consequently, m j|1:j-1 and R j|1:j-1 rely on the predictive expectations and variances:

Xj|1:j-1 = E(X j |y 1:j-1 ) and P j|1:j-1 = E((X j -Xj|1:j-1 ) t (X j -Xj|1:j-1 ))

whose computations are details below.

Predictive moments. Noting that (X t ) t≥tj verifies X t = t tj-1 µ(X s , s, θ)ds + Γ θ t tj dBs, for any t ≥ t j-1 yields to the following integral equation for the predictive conditional expectation:

E(X t |y 1:j-1 ) = t tj-1 E(µ(X s , s, θ)|y 1:j-1 )ds. ( 17 
)
Consequently, drift µ being linear for model ( 14), x t := E(X t |y 1:j-1 ) verifies x t = t tj-1 µ(x s , s, θ)ds, which can be written in a differential form as

dx t /dt = µ(x t , t, θ) x tj-1 = E(X tj-1 |y 1:j-1 ) = Xj-1|1:j-1 . ( 18 
)
Using similar arguments, we also obtain an ODE verified by P t := V ar(X t |y 1:j-1 ) for t ≥ t j-1 .

Let J µ denote the Jacobian of µ w.r.t. x, we get

dP t /dt = J µ (x t , t, θ)P t + P t t J µ (x t , t, θ) + Γ θ t Γ θ P tj-1 = V ar(X tj-1 |y 1:j-1 ) = P j-1|1:j-1 . (19) 
Because of the linearity of µ, equations (18-19) have explicit solutions. Moreover, noting that Xj|1:j-1 = x tj and P j|1:j-1 = P tj , we obtain Xj|1:j-1 = e A θ ∆j Xj-1|1:j-1 + Cθ (t j-1 , ∆ j )

P j|1:j-1 = e A θ ∆j P j-1|1:j-1 e t A θ ∆j + Γθ (t j-1 , ∆ j ) (20) 
where Xj-1|1:j-1 = E(X j-1 |y 1:j-1 ) and P j-1|1:j-1 = V ar(X j-1 |y 1:j-1 ) are the filtering moments and Cθ (t j-1 , ∆ j ), Γθ (t j-1 , ∆ j ) are given in Tornøe et al. (2004a) and [START_REF] Favetto | Parameter estimation for a bidimensional partially observed Ornstein-Uhlenbeck process with biological application[END_REF].

Filtering moments. A similar reasoning yields the update (filtering) step:

Xj|1:j = Xj|1:j-1 + K j (y j -H θ Xj|1:j-1 ),

P j|1:j = (I -K j H θ )P j|1:j-1 ,
where

K j = P j|1:j-1 t H θ (H θ P j|1:j-1 t H θ + σ 2 ) -1 is the Kalman gain.
Finally, iterating the computations of predictive and filtering moments (the so-called Kalman filtering) leads to the exact likelihood ( 15) and the MLE is then defined as

θn = arg max θ∈Θ L(θ; y 1:n ).
Favetto and Samson (2010) prove that θn , which is the exact MLE, is consistent and asymptotically Gaussian. This estimation method is implemented in the Danish Technical University project CTSM [START_REF] Kristensen | CTSM 2.0, UserÕs Guide[END_REF].

This Remark 1 Model (10) with explicit transition density for X t is a state space model or a hidden Markov model [START_REF] Cappé | Inference in Hidden Markov Models[END_REF]. Corresponding estimation methods have not yet been all applied to PK/PD data.

Approximate estimators

When either the transition density or likelihood L(θ; y 1:n ) is not explicit, an approximation has to be proposed. A first solution relies on an extension of the Kalman filter and has been introduced

by [START_REF] Tornøe | Grey-box modelling of pharmacokinetic/pharmacodynamic systems[END_REF]. Another approach was proposed by Ditlevsen and De Gaetano (2005b) with an Monte Carlo approximation of the likelihood to estimate the volatility parameters, the drift parameters being estimated using the deterministic version of the model.

Extended Kalman Filter. This approach, based on a generalization of the Kalman filter, has been proposed by [START_REF] Tornøe | Grey-box modelling of pharmacokinetic/pharmacodynamic systems[END_REF] for the general model (10) with the restriction of timehomogeneous drift µ(X t , t, θ) = µ(X t , θ):

y j = h(X tj , θ) + σ ε j , ε j ∼ i.i.d. N (0, I q ) dX t = µ(X t , θ)dt + Γ θ dB t X 0 = x 0 (θ) (21) 
Once again, the likelihood can be decomposed into L(θ; y 1:n ) = p(y 1 ; θ) n j=2 p(y j |y 1:j-1 ; θ). However, whereas each conditional distribution p(y j |y 1:j-1 ; θ) is Gaussian for linear model ( 14), it is not true for model ( 21). The idea of the extended Kalman Filter (EKF) is thus to approximate this conditional distribution by a Gaussian distribution:

p(y j |y 1:j-1 , θ) exp{-1 2 (y j -t m j|1:j-1 )(R j|1:j-1 ) -1 (y j -m j|1:j-1 )} |2πR j|1:j-1 |
where, as for linear model, m j|1:j-1 = E(y j |y 1:j-1 ) = E(h(X j , θ)|y 1:j-1 ) and R j|1:j-1 = V ar(y j |y 1:j-1 ) =

V ar(h(X j , θ)|y 1:j-1 ) + σ 2 . But in that case, h being not linear, m j|1:j-1 and R j|1:j-1 are not explicit. Thus, EKF considers a local linearisation of h around E(X j |y 1:j-1 ). More precisely, let J h be the Jacobian function of h with respect to x, we can write h(X j , θ) h(E(X j |y 1:j-1 ), θ) + J h (E(X j |y 1:j-1 ), θ)(X j -E(X j |y 1:j-1 )) and approximate the conditional moments by:

m j|1:j-1 h( Xj|1:j-1 , θ) (22) 
R j|1:j-1 J h ( Xj|1:j-1 , θ)P j|1:j-1 t J h ( Xj|1:j-1 , θ) + σ 2
where, as before, Xj|1:j-1 and P j|1:j-1 are the conditional predictive expectation and variance.

The difficulty for the nonlinear model ( 21) arises in the computation of these predictive quantities. Using integral equation ( 17), one would like to deduce a solution for Xj|1:j-1 , as in the linear case. However, µ being not linear, another approximation is used, writting:

E(µ(X s , θ)|y 1:j-1 ) µ(E(X s |y 1:j-1 ), θ).
Then, one can say that an approximation of x t := E(X t |y 1:j-1 ) is a solution of differential equation (18). Similarly, using an approximation of the variance, P t := V ar[X t |y 1:j-1 ] can be approximate by a solution of differential equation ( 19). However, except for linear drift µ, equations (18)(19) have no close solution. A new approximation is performed in EKF, consisting in a linearization of the ODEs using Taylor expansion of µ. In [START_REF] Tornøe | Grey-box modelling of pharmacokinetic/pharmacodynamic systems[END_REF], a first order Taylor expansion is considered, leading to the following approximate predictive quantities Xj|1:j-1 = Xj-1|1:j-1 + µ( Xj-1|1:j-1 , θ)∆ j P j|1:j-1 = P j-1|1:j-1 + ∆ j J µ ( Xj-1|1:j-1 , θ)P j-1|1:j-1 + P j-1|1:j-1 J µ ( Xj-1|1:j-1 , θ) + Γ θ t Γ θ

Remark 2 Delattre and Lavielle (submitted) propose a higher order Taylor approximation of equations equations (18-19) (see Section 5.3.3).

The update step is performed using similar Gaussian approximation and linearization:

Xj|1:j = Xj|1:j-1 + K j (y j -h( Xj|1:j-1 , θ))

P j|1:j = (I -K j J h ( Xj|1:j-1 , θ))P j|1:j-1
where K j is the approximated Kalman gain

K j = P j|1:j-1 t J h ( Xj|1:j-1 , θ)(J h ( Xj|1:j-1 , θ)P j|1:j-1 t J h ( Xj|1:j-1 , θ) + σ 2 ) -1 .
Finally, the EKF supplies an iterative procedure to approximate the likelihood, and maximize it yields an estimator of θ. This method is implemented in the CTSM project. However, to our knowledge, no theoretical results have been proved rigorously for this estimator, which can behave badly when both SDE and observation model are highly nonlinear.

This estimation method has been used for PK/PD models. For example, Tornøe et al. (2004b) use PK/PD SDE (7) on simulated data to illustrate the properties of the estimator. Then, for the modeling of intravenous glucose tolerance test with a glucose minimal model (GMM), they use a nonlinear two-dimensional SDE with two compartments (glucose and insulin). The observation is partial and consists in discrete noisy measure of the glucose rate. Data are analyzed both with the SDE and the deterministic GMM. The diffusion term is estimated significantly different from zero. This indicates that the deterministic GMM does not fully capture the glucose/insulin dynamics.

Another example is given in [START_REF] Kristensen | Using stochastic differential equations for PK/PD model development[END_REF] for PK/PD model development.

Monte Carlo approximation of the likelihood. Ditlevsen and De Gaetano (2005b) consider this method with the hypoelliptic two-dimensional PK SDE (5) for the modeling of the uptake of dodecanedoic acid. A diffusion coefficient appears only on one of the two equations. Only the concentration C 1 in the first compartment is observed, with a measurement noise. Ditlevsen and De Gaetano (2005b) consider the heteroscedastic error model

y j = C 1,tj ε j
where ε j are iid log-normal variables with variance var(log ε j ) = σ 2 . The hypoellipticity of PK SDE (5) makes estimation more complex. Indeed, contrary to the twodimensional PK SDE considered by [START_REF] Favetto | Parameter estimation for a bidimensional partially observed Ornstein-Uhlenbeck process with biological application[END_REF], this hypoelliptic linear SDE has no explicit solution or transition densities. Therefore, the likelihood is not available. Ditlevsen and De Gaetano (2005b) thus propose a two-step estimation method. As the deterministic corresponding PK model has an explicit solution, they estimate PK parameters k 1 , k 2 from the deterministic PK model by usual nonlinear least squares estimators. Then, with these parameters fixed, they proceed as a second step to the estimation of γ and σ. However, even when k 1 , k 2 are fixed, the likelihood L(γ, σ; y 1:n ) = n j=1 p(y j |C 1,tj , σ)p(C 1,t1 , . . . , C 1,tn ; γ)dC 1,t1 . . . dC 1,tn has no close form due to the hypoellipticity of (5). Therefore, they approximate the likelihood by Monte-Carlo simulations, as first proposed by [START_REF] Pedersen | A new approach to maximum likelihood estimation for stochastic differential equations based on discrete observations[END_REF]. A large number K of trajectories

(C (k)
1,1:n ) k=1,...,K are simulated given γ with the Milstein scheme from SDE (5). Then the likelihood is approximated by

L K (γ, σ; y 1:n ) = 1 K K k=1 n j=1 p(y j |C (k) 1,tj , σ)
and numerically maximized. Estimators of γ, σ are asymptotically equivalent to the MLE. The same approach is used in [START_REF] Picchini | Modeling the euglycemic hyperinsulinemic clamp by stochastic differential equations[END_REF] for modeling the euglycemic hyperinsulinemic clamp. This approach is computationally intensive: K = 500.000 was required to obtain a good approximation of the likelihood. It is also more appropriate to estimate all parameters in a single optimization step.

SDE for population PK/PD models

PK-PD studies often include not a single individual but a group of subjects. In the first papers considering SDE models on a population of subjects, individuals were treated independently without proposing any global model (see for instance [START_REF] Picchini | Modeling the euglycemic hyperinsulinemic clamp by stochastic differential equations[END_REF]Ditlevsen and De Gaetano, 2005b). However, the success of mixed effects models -which allow to discriminate between the inter and intra subjects variability-has encouraged their use for PK/PD SDEs.

We first introduce the population PK/PD SDE in Section 5.1. The estimation methods for population PK/PD SDEs observed without measurement noise are presented in Section 5.2 and for population PK/PD SDEs observed with measurement noise in Section 5.3.

Population PK/PD SDE

Assume that PK/PD data are available from I subjects. Let (X (i) ) t≥0 ∈ R p be the process of interest for subject i, for i = 1, . . . I. We assume that the processes {(X (i) t ) t≥0 , i = 1 . . . I} verify the same SDE but with individual parameters φ i :

dX (i) t = µ(X (i) t , t, φ i , η)dt + Γ(X (i) t , η)dB (i) t X (i) 0 = X 0 (φ i ) φ i ∼ i.i.d. p Φ (•; θ pop ),
where η ∈ R d0 is a parameter common to all the individuals, φ i ∈ R d are the individual random parameters, also called random effects, distributed with a density p Φ depending on a population parameter θ pop ∈ Θ and (B (i) t ) are I independent Brownian motions. A standard choice for p Φ is a Gaussian distribution

φ i ∼ i.i.d. N (µ, Ω)
with mean µ ∈ R d and variance Ω a definite positive matrix of size d. In that case, θ pop = (µ, Ω). However, other distributions can be considered, such as Gamma distributions to ensure the positivity of the parameter, or discrete distributions. The parameters to be estimated are θ = (θ pop , η) from direct discrete observations of X (i) t or noisy discrete observations. Statistical inference for such models is a challenging issue. Some of the proposed methodologies derive from the non-linear mixed effects models literature whereas [START_REF] Picchini | Stochastic differential mixed-effects models[END_REF] extend their method developed for the observation of one diffusion (Section 4.1.2) to the observation of several individual diffusions. Obviously, the difficulty is not the same if the transition density is explicit or not and if the process is observed directly or with observation noise.

Population PK/PD SDE without observation noise

We first assume that the processes (X (i) t ) t≥0 , for i = 1, . . . , I are directly observed on the I individuals at discrete times t ij , for j = 1, . . .

n i . Set ∆ ij = t ij -t ij-1 . Let X (i) 1:ni = (X (i) ti1 , . . . X (i) tin i
) denote the observations of individual i and X = (X (i) 1:ni ) i=1...I , the vector of whole data. By independence of the I individuals, the likelihood is:

L(θ; X) = I i=1 L i (θ; X (i) 1:ni ) = I i=1 Φ p X (X (i) 1:ni |φ i , η)p Φ (φ i |θ pop )dφ i . ( 23 
)
where p X (X

(i) 1:ni |φ i , η) = ni j=1 p X (X (i) j , ∆ ij |X (i) j-1 , φ i , η
) similarly as equation ( 9). In a few cases, the likelihood ( 23) can be expressed in a close form, leading to the exact MLE of θ (section 5.2.1). Otherwise, (i) if the transition density p X (x, t -s|x s , φ, γ) has an explicit solution but integrating out the φ i 's in ( 23) is unfeasible; or (ii) if the transition density can not be expressed explicitly, likelihood (23) has no close form and approximate solutions have to be proposed. In case (i), the integral has to be approximated (see Section 5.2.2) whereas in case (ii), the transition density must be approximated and maybe also the integral (see Section 5.2.3).

Exact estimator

Ditlevsen and De Gaetano (2005a) consider the one-compartment linear elimination PK SDE (1) with one random effect:

dC (i) t = -k e,i C (i) t dt + γC (i) t dB (i) t (24) k e,i ∼ N (k e , ω 2 ).
In that case, φ i = k e,i , θ pop = (k e , ω 2 ), η = γ 2 and θ = (k e , ω 2 , γ 2 ). Data are discrete observations

C (i)
tij for i = 1, . . . , I and j = 1, . . . , n i . Using a log-transformation of the data, the likelihood ( 23) can be computed exactly. An estimation method adapted from linear mixed model [START_REF] Pinheiro | Mixed-effect models in S and Splus[END_REF] is applied. Namely, the likelihood is splitted into two parts, that are independent of and dependent of the random effect φ i , respectively. The integral of the dependent part is the integral of a Gaussian density because SDE ( 24) is linear and has a log-normal solution. The explicit expression of the likelihood and of the exact MLE of the parameter θ follows. The MLE is Gaussian, and Ditlevsen and De Gaetano (2005a) give explicit variance of the MLE, leading to explicit confidence intervals.

Estimation for explicit transition density SDE

Excepted for particular SDEs such as (24), even if the transition density p X (x, t -s|x s , φ, γ) has an explicit expression, the difficulty to estimate θ comes from the integration of the individual random effects density. 1 strategy is to approximate the likelihood, that is the integral with respect to the random effects density, and then use a standard maximization procedure. This has been proposed by [START_REF] Picchini | Stochastic differential mixed-effects models[END_REF] with a Gaussian quadrature of the likelihood and by [START_REF] Picchini | Practicle estimation of high dimensional stochastic differential mixed-effects models[END_REF] with a Laplace approximation of the likelihood. The first method has been applied to the one-compartment linear elimination PK SDE with one random effect ( 24) and the second one to the stochastic two-compartment PK model (4) with random effects on k 1 , k 2 , k e . We now detail the two techniques.

Gaussian quadrature. We restrict to the case of a one-dimensional Gaussian individual parameter φ (φ i ∼ i.i.d. N (µ, ω 2 )), we refer the reader to [START_REF] Picchini | Stochastic differential mixed-effects models[END_REF] for the case of any continuous distribution. Assume that φ → p X (X

(i) 1:ni |φ, η) is C 2R (R). Each individual likelihood L i (θ; X (i) 1:ni ) = Φ p X (X (i) 1:ni |φ i , η)p Φ (φ i |θ pop )dφ i is approximated by the Gauss-Hermite quadrature of order R: L R i (θ; X (i) 1:ni ) = R r=1 π r p X (X (i) 1:ni |ω √ 2z r + µ, η)
where z r , r = 1, . . . , R are the zeros of the Hermite polynomial

H R (•) of degree R and π r = 2 R-1 R! R 2 (H R-1 (zr)
) 2 are adequate weights. Neither the zeros z r nor the weights π r depend on the individual. The approximate likelihood is then defined as

L R (θ; X) = I i=1 L R i (θ; X (i) 1:ni ) = I i=1 R r=1 π r p X (X (i) 1:ni |ω √ 2z r + µ, η) (25) 
The convergence of L R (θ; X) towards L(θ; X) is ensured when R tends to infinity and the domain of integration is compact. The parameter θ can be estimated by maximizing this approximate

likelihood θ R n = ( η R n , ω R n ) = arg min θ∈Θ - I i=1 log R r=1 π r p X (X (i) 1:ni |ω √ 2z r + µ, η)
The estimator θ R n is obtained by a standard optimization algorithm. No theoretical convergence has been proved for this estimator.

Estimation for unknown transition density SDE

When the transition density has no explicit expression, [START_REF] Picchini | Stochastic differential mixed-effects models[END_REF] propose to approximate it with a Hermite expansion, as detailed in Section 4.1.2. Then this approximate transition density is injected in the approximate marginal distribution (25).

More precisely, the transition likelihood is approximated by p S X (X

(i) j , ∆ ij |X (i) j-1 , φ i , η
) defined by equation ( 12) where S is the order of the Hermite expansion. The conditional likelihood p X (X (i) 1:ni |φ i , η) of subject i can be approximated by:

p S X (X (i) 1:ni |φ i , η) = ni j=2 p S X (X (i) j , ∆ ij |X (i) j-1 , φ i , η) (26) 
exactly as equation ( 13). Then, the integration over the individual parameters φ i is obtained using the Gauss-Hermite quadrature (25). Finally, the approximate likelihood is:

L R,S (θ; X) = I i=1 R r=1 π r p S X (X (i) 1:ni |ω √ 2z r + µ, η).
As before, the MLE estimator of θ is obtained applying an optimization routine on the approximate likelihood:

θ R,S n = arg min θ∈Θ -log L R,S (θ; X)
No theoretical result has been proved but [START_REF] Picchini | Practicle estimation of high dimensional stochastic differential mixed-effects models[END_REF] illustrate the efficiency of θ R,S n on several uni-and multi-dimensional examples (note that the multidimensionality comes from both the dimension of φ and the dimension of the diffusion X t ), especially for the stochastic two-compartment PK model (4) with random effects on k 1 , k 2 , k e .

Population SDE models with measurement error

We now consider that the processes X (i)

t , for i = 1, . . . , I, are observed with a measurement error. Let y (i) j denote the j-th observation of subject i at time t ij . The model is the following:

y (i) j = h(X (i) tij ) + g(X (i) tij , σ)ε ij , ε ij ∼ N (0, I q ) dX (i) t = µ(X (i) t , t, φ i , η)dt + Γ(X (i) t , η)dB (i) t , X (i) 0 = X 0 (φ i ) φ i ∼ p Φ (•; θ pop ) (27) 
The parameters to be estimated are θ = (θ pop , η, σ). Let us denote y = (y

(i) 1:ni ) i=1.
..I , the whole vector of data. The likelihood is:

L(θ; y) = I i=1 Φ X p Y (y (i) 1:ni |X (i) 1:ni , σ)p X (X (i) 1:ni |φ i , η)dX (i) 1:ni p Φ (φ i |θ pop )dφ i (28) 
where p Y (y

(i) 1:ni |X (i) 1:ni , σ) = ni j=1 p(y (i) j |X (i) j , σ)
is the conditional density of the observations y given the diffusion X. We also denote φ = (φ 1 , . . . , φ I ).

Difficulties pointed out with direct observations of X (i) t still hold but are exacerbated by the necessity to integrate over the hidden trajectories X Donnet and Samson (2008, submitted); Delattre and Lavielle (submitted), are gathered in Section 5.3.3.

Bayesian inference

In a Bayesian inference, a prior distribution is set on the parameters of interest θ ∼ π(•). The aim is to estimate the posterior distribution of θ given the observation y, which is given by the Bayes formula p(θ|y) ∝ f (y; θ)π(θ). Estimators of θ are then obtained with the posterior mean E(θ|y)

or the median of the posterior distribution, for instance. Except in very few cases, the posterior distribution p(θ|y) has no explicit expression. A standard strategy is to generate a sample from that distribution of interest, using a Monte Carlo Markov Chain (MCMC) algorithm [START_REF] Robert | Monte Carlo statistical methods[END_REF]. This approach has been studied for modeling growth curves with a population Gompertzian SDE by [START_REF] Donnet | Bayesian analysis of growth curves using mixed models defined by stochastic differential equations[END_REF].

The principle of the MCMC algorithm is to generate a Markov Chain whose marginal stationary distribution is the distribution of interest p(θ|y). In model ( 27), the simplest MCMC algorithm is to alternatively generate, at iteration k:

[1]. φ (k) |X (k-1) , y, θ (k-1) [2]. X (k) |φ (k) , y, θ (k-1) [3]. θ (k-1) |X (k) , φ (k) , y,
with stationary distribution p(φ, X, θ|y). One can prove that the stationary distribution of the Markov Chain produced by this algorithm is p(φ, X, θ|y) [START_REF] Robert | Monte Carlo statistical methods[END_REF]. As a consequence, after a high number of iterations, the sampled parameters θ (k) are assumed to be distributed under the marginal posterior distribution p(θ|y). However, in population PK-PD SDE, the conditional distributions p(φ|X, θ, y), p(X|φ, y, θ) and p(θ|X, φ, y) are not explicit. Thus, the direct simulation is replaced by a Metropolis-Hastings algorithm, that is, a candidate is simulated with a proposal distribution q and accepted with a probability whose expression ensures the stationarity of the distribution of interest p(φ, X, θ|y). For instance, the Metropolis-Hastings algorithm for step [1] which generates φ (k) |X (k-1) , y, θ (k-1) at iteration k of the MCMC algorithm is

• Propose a candidate φ c with a proposal distribution φ c ∼ q(•|φ (k-1) )

• Compute the probability of acceptation:

ρ(φ c |φ (k-1) ) = min 1, p(φ c |θ (k) , X (k-1) , y) p(φ (k-1) |θ (k) , X (k-1) , y) q(φ (k-1) |φ c ) q(φ c |φ (k-1) ) • Set φ (k) = φ c with probability ρ(φ c |φ (k-1) ) φ (k-1) with probability 1 -ρ(φ c |φ (k-1) )
Similar algorithms are proposed to simulate steps This algorithm can be used as soon as the transition density p(X (k-1) |φ (k-1) , θ c ) of the SDE is explicit. If not, [START_REF] Donnet | Bayesian analysis of growth curves using mixed models defined by stochastic differential equations[END_REF] propose to perform the Bayesian inference on an approximate model issued from the Euler-Maruyama approximation of the solution of the SDE. They study the distance between the approximate posterior distribution p h (θ|y), where h is the step size of the Euler-Maruyama approximation, and the exact one p(θ|y). This distance is bounded by h. Following the idea of recursive conditioning used for standard SDEs, the likelihood L(θ; y) (28) can be re-written as:

Linearisation and extended Kalman filter

L(θ; y) = I i=1 L i (θ; y (i) 1:ni ) = I i=1 Φ   ni j=1 p(y (i) j |y (i) 1:j-1 , φ i , σ, η)   p Φ (φ i |θ pop )dφ i where y (i) 1:j = (y (i) 1 , . . . , y (i) j ) and y (i) 0 = x 0 (φ i ) by convention. As in Section 4.2.2, the EKF approx- imates p(y (i) j |y (i) 1:j-1 , φ i , η) by a Gaussian distribution, whose mean m (i) j|1:j-1 and variance R (i) j|1:j-1
are computed recursively (see equation ( 22)) and depend on φ i , σ and η. The approximate likelihood for subject i is: φi) dφ i where i (φ i ) is the approximate conditional log-density of the random effects given the observation (recall that m (i) j|1:j-1 and R (i) j|1:j-1 depend on φ i ). Then i is approximated by a second-order Taylor expansion, where the expansion is made around the value φi that maximizes i (FOCE algorithm).

L EKF i (θ; y (i) 1:ni ) = Φ ni j=1 exp{-1 2 (y (i) j -m (i) j|1:j-1 ) T (R (i) j|1:j-1 ) -1 (y (i) j -m (i) j|1:j-1 )} |2πR (i) j|1:j-1 | p Φ (φ i |θ pop )dφ i = Φ e i(
At the value φi , the first derivative of i is zero. So finally, the likelihood approximated by EKF and by the Taylor expansion reduces to

L EKF,F OCE (θ, y) = I i=1 1 √ 2π e i( φi) |-H( i )| -1/2
where H( i ) is the Hessian of i . The Hessian is not computed exactly, but with an approximation similar to FOCE (see [START_REF] Pinheiro | Mixed-effect models in S and Splus[END_REF], for more details). Once that approximation has been done, the maximization of L EKF,F OCE (θ, y) is performed by FOCE. This methodology suffers from the drawbacks inherent to EKF and FOCE, and no theoretical convergence has been proved.

This algorithm is implemented in NONMEM [START_REF] Tornøe | Stochastic differential equations in NONMEM: implementation, application, and comparison with ordinary differential equations[END_REF], in a Matlab package [START_REF] Mortensen | A matlab framework for estimation of NLME models using stochastic differential equations. applications for estimation of insulin secretion rates[END_REF] and in the R package PSM [START_REF] Klim | Population stochastic modelling (PSM) -An R package for mixed-effects models based on stochastic differential equations[END_REF].

EM algorithm for mixed effects models defined by SDE

Another approach to estimate parameters of mixed effects models is based on the Expectation-Maximization (EM) algorithm, originally proposed by [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF]. Stochastic versions of EM have been adapted to nonlinear mixed models [START_REF] Walker | An EM algorithm for non-linear random effects models[END_REF][START_REF] Kuhn | Maximum likelihood estimation in nonlinear mixed effects models[END_REF]. Donnet and Samson (2008, submitted) and Delattre and Lavielle (submitted) propose to extend it to population SDEs. This approach has been applied to a one-compartment PK model (2) with three random effects and measurement noise. We now detail their method.

The EM algorithm is a way to circumvent the problem of integrating the likelihood (28) over the non-observed data X and φ, in situations where the maximization of the conditional expectation of the likelihood of the complete data (y, X, φ) is possible:

Q(θ|θ ) = E [log p(y, X, φ; θ)|y; θ ] .
EM is an iterative procedure: at the -th iteration, given the current value θ -1 of the parameters, the E-step evaluates

Q (θ) = Q(θ | θ -1 ) while the M-step updates θ -1 by maximizing Q (θ).
This algorithm is not explicit for population SDEs: the E-step is not explicit and the conditional distribution p(X, φ|y; θ) is not explicit. A stochastic version of the EM algorithm has been proposed by [START_REF] Kuhn | Maximum likelihood estimation in nonlinear mixed effects models[END_REF], the Stochastic Approximation EM algorithm (SAEM), for nonlinear mixed model with deterministic regression function by [START_REF] Kuhn | Maximum likelihood estimation in nonlinear mixed effects models[END_REF] and for mixed model based on SDEs by Donnet and Samson (2008, submitted) and Delattre and Lavielle (submitted).

The SAEM algorithm for population SDE (27) proceeds as follows. The E-step is divided into a simulation step (S-step) of the non-observed data (X ( ) , φ ( ) ) with the conditional distribution p(X, φ |y; θ -1 ) and a stochastic approximation step (SA-step):

Q (θ) = Q -1 (θ) + α log p(y, X ( ) , φ ( ) ; θ) -Q -1 (θ) ,
where (α ) ∈N is a sequence of positive numbers decreasing to zero. The simulation step can not be performed exactly, for the reasons exposed in Section 5.3.1. When the transition density p X (x, t-s|x s , φ, η) is explicit, [START_REF] Donnet | Parametric inference for mixed models defined by stochastic differential equations[END_REF] propose to use a MCMC algorithm similar to the one used in the Bayesian framework. An improvement has also been proposed more recently When the transition density is not explicit, [START_REF] Donnet | Parametric inference for mixed models defined by stochastic differential equations[END_REF] propose to approximate the solution of the SDE with the Euler-Maruyama scheme. More precisely, if the time interval between two observation points is small, the transition density p X (x, t -s|x s , φ, η) can be approximated by a Gaussian distribution. If the time intervals between two observation instants are too large to obtain a good approximation of the transition density, a natural approach is to introduce a set of auxiliary latent data points between every pair of observations, as first proposed by [START_REF] Pedersen | A new approach to maximum likelihood estimation for stochastic differential equations based on discrete observations[END_REF]. Under general assumptions, [START_REF] Donnet | Parametric inference for mixed models defined by stochastic differential equations[END_REF] prove that the SAEM-MCMC algorithm theoretically converges to a maximum of the likelihood of the Euler-Maruyama approximate model. The error between the estimator issued from this approximate model and the "true" model ( 27) can be bound by a function of the step size of the Euler-Maruyama approximation. However, in practice the use of a Euler-Maruyama scheme implies the introduction of a large amount non-observed data, which can slow the convergence rate.

An alternative has been proposed by Delattre and Lavielle (submitted) with an approximation of the E-step of EM by the EKF algorithm. Their SAEM algorithm is based on the simulation of only the individual parameters φ i under the conditional distribution p(φ i |y (i) ; θ), the diffusion trajectories are not simulated and are directly integrated out in the conditional distribution p(φ i |y (i) ; θ).

Since direct simulation of this conditional distribution is generally impossible, a MCMC algorithm is used with a Metropolis-Hastings approach. However, the acceptance probability computed in Metropolis-Hastings requires the knowledge of the expression of p(y (i) |φ i , σ) which has no close form. Delattre and Lavielle (submitted) propose a Gaussian approximation of this conditional likelihood, based on the EKF. The implementation of the EKF is similar to (22) but with a higher order Taylor expansion for the prediction equations. This algorithm is much more less computationally intensive than those proposed by Donnet and Samson (2008, submitted) but the theoretical convergence of their estimator is not proved.

Conclusion and discussion

Due to the specific nature of PK/PD data, standard estimation methods for SDE models proposed in the financial literature can not be directly applied. In this paper, we restrict our review to PK/PD oriented estimation methods, eliminating those relying on continuous observation of the SDE. Moreover, dynamical systems used in biology are quickly of high complexity as soon as a precise description of the biological processes of interest is considered. As a consequence, ad hoc estimation methods have been proposed in the literature, sometimes suffering from a lack of theoretical justifications but always with practical objectives.

In most papers, estimators are obtained by maximizing the likelihood. If the transition density of the SDE is explicit, exact MLE can be computed, using Kalman filter if SDE is observed with measurement noise. Otherwise, if the transition density is not explicit, the likelihood has to be approximated. We can find in the literature easy to implement methods with theoretical validity (Hermite expansion) when the SDE is directly observed, easy to implement methods but without theoretical validity (extended Kalman filter) and methods with theoretical validity but computationally intensive (Monte Carlo approximation).

In a population context, there exist four estimation methods: Hermite expansion of the marginal likelihood, the combination of FOCE with the extended Kalman filtering and the use of a stochastic version of the EM algorithm and Bayesian approach.

Note that Hermite expansion can not be directly extended when the diffusion is observed with noise whereas Kalman filter, Extended Kalman filter and FOCE methods are strictly designed for models with observation noise. Methods relying on the EM algorithm can be applied to models with or without noise, provided the complete likelihood belongs to the exponential family. Bayesian approach is finally the most adaptable method since it can be applied to any model (one or several trajectories, with or without noise observation) as soon as the transition density is explicit. If not, a Euler approximation has to be performed and the introduction of set of auxiliary latent data points between every pair of observations can dramatically jeopardize the convergence rate of the algorithm of simulation. We propose in Table 6 a resume of existing methods for population SDE models.

[Table 1 about here.]

Ferrante

  et al. (2003) consider the stochastic one compartment PK model (2). They introduce the ideal maximum likelihood estimator (MLE) based on continuous-time observed trajectory

  Ditlevsen et al. (2005) propose an estimator based on the spectral density p(u, θ), where u is a frequency in the Fourier domain, the spectral density characterizing uniquely the stochastic process. An estimation of θ is obtained by minimizing the distance between the theoretical spectral density p(u, θ) of the SDE and the estimated spectral density p(u) obtained from the data by the periodogram at the Fourier frequency u. The exact spectral density p(u, θ) of the PD model having no explicit form, the authors propose to approximate it by simulation. If K independent trajectories are simulated with a Euler-Maruyama approximation of the SDE for a fixed parameter value θ, a periodogram pk (u, θ) can be estimated for each trajectory k and the spectral density p(u, θ) is then approximated by Monte Carlo:

  estimator has been used in a PK context byTornøe et al. (2004a) with a stochastic PK/PD model describing the dynamic of insulin and glucose from an euglycaemic clamp study. The PK model of insulin kinetic is a single compartment with linear rates. The insulin effect is modeled by adding an effect compartment. The PK part contains three equations describing the amount of insulin remaining to be absorbed from the tissue, the amount of insulin in the central compartment and the amount of insulin in the effect compartment. The PD of the amount of infused glucose is linked to the insulin concentration with a sigmoidal E max model. The estimation results show that the diffusion coefficients are all estimated to zero, which indicates that the measured data can eventually be modeled by a deterministic PK/PD model.Another example is given by[START_REF] Cuenod | Parameter estimation and change-point detection from dynamic contrast enhanced mri data using stochastic differential equations[END_REF]. They consider the stochastic two-compartment PK model (4) to describe tissue micro-vascularization and angiogenesis via Dynamic Contrast Enhanced Imaging (DCE-imaging) techniques. Results illustrate that the stochastic PK model is more stable than its deterministic version.

  . Suggested solutions are derived from the ones presented in Section 4.2 and combined with estimation methods developed for nonlinear mixed effects models. We first present, in Section 5.3.1, a Bayesian approach, proposed by Donnet et al. (2010). Then we detail how the extended Kalman Filter (EKF) can be coupled with the First Order Conditional Estimate (FOCE) algorithm to estimate θ, as first proposed by Overgaard et al. (2005); Tornøe et al. (2005) (Section 5.3.2). Finally, estimation methods based on the Expectation-Mazimization (EM) algorithm, proposed by

  [2] and[3]. Metropolis-Hastings does not require the exact expression of the targeted distribution. Thanks to the Bayes formula, only the expression of p Y (y(i) 1:ni |X (i) 1:ni , σ), p X (X (i)1:ni |φ i , η) and p Φ (φ i |θ pop ) are used. We refer the reader to[START_REF] Donnet | Bayesian analysis of growth curves using mixed models defined by stochastic differential equations[END_REF] for more details.

Overgaard

  et al. (2005); Tornøe et al. (2005) propose to adapt the well-known First Order Conditional Estimate (FOCE) algorithm to population SDEs. FOCE has been introduced by Lindstrom and Bates (1990) for nonlinear mixed models with deterministic regression function. The algorithm is based on a local linearization of the regression function, leading to a linear mixed model, for which estimation of parameters is more easy. Overgaard et al. (2005); Tornøe et al. (2005) use this idea, coupled with the extended Kalman filter (EKF) already mentioned in Section 4.2.2. Their methodology has been used in a collection of papers, see for instance Mortensen et al. (2007); Overgaard et al. (2007); Klim et al. (2009);[START_REF] Berglund | Investigations of a compartmental model for leucine kinetics using non-linear mixed effects models with ordinary and stochastic differential equations[END_REF]. We detail their approach below.

by

  Donnet and Samson (submitted) based on the Particle MCMC (PMCMC) algorithm proposed by[START_REF] Andrieu | Particle Markov chain Monte Carlo methods[END_REF], which combined the MCMC algorithm with particle filter techniques.The theoretical convergence of both algorithms SAEM-MCMC and SAEM-PMCMC have been established if the complete log-likelihood belongs to the exponential family (with respect to the parameter θ).

Laplace approximation. When the individual parameters are of dimension d greater than 1, [START_REF] Picchini | Practicle estimation of high dimensional stochastic differential mixed-effects models[END_REF] use a Laplace approximation of the likelihood. More precisely, the log-likelihood log L i (θ;

where φi = arg max φi log p X (X

denotes the determinant of a matrix and H(φ i |θ) is the Hessian matrix:

Then the approximate likelihood is numerically optimized. This methods requires the computation of the I Hessian matrices H(φ i |θ) at each step of the optimization, which can be burdensome. The authors give in their paper various numerical and practical solutions to tackle that point. 

Obs