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IWAHORI-MATSUMOTO INVOLUTION AND LINEAR KOSZUL DUALITY

IVAN MIRKOVIC AND SIMON RICHE

ABSTRACT. In this paper we use linear Koszul duality, a geometric version of the standard
duality between modules over symmetric and exterior algebras studied in [MR1, MR2] to give
a geometric realization of the Iwahori-Matsumoto involution of affine Hecke algebras. More
generally we prove that linear Koszul duality is compatible with convolution in a general context
related to convolution algebras.

INTRODUCTION

0.1. In [MR1, MR2] we have defined and studied linear Koszul duality, a geometric version of the
standard Koszul duality between (graded) modules over the symmetric algebra of a vector space
V and (graded) modules over the exterior algebra of the dual vector space V*. As an application
of this construction (in a particular case), given a vector bundle A over a scheme Y (satisfying a
few technical conditions) and subbundles A;, A2 C A we obtained an equivalence of triangulated

categories between certain categories of coherent dg-sheaves on the derived intersections A; A AAs

and AIL(%A*A%. (Here A* is the dual vector bundle, and A, Ay C A* are the orthogonals to
A1 and AQ)

0.2. In this paper we continue this study further in a special case related to convolution algebras
(in the sense of [CG, §8]): we let X be a smooth complex algebraic variety, V be a complex
vector space, and F' C F := V x X be a subbundle. Then applying our construction in the
case Y = X x X, A = Ex E, Ay = AV xY (where AV C V? is the diagonal), Ay =
F x F we obtain an equivalence between triangulated categories whose Grothendieck groups
are respectively KEm (F xy F) and KE=(FL xy FL) (where Gy, acts by dilatation along the
fibers of F and E*). In fact we consider this situation more generally in the case X is endowed
with an action of a reductive group G, and V is a G-module, and obtain in this way a canonical
isomorphism

(*) KGXGm(F XvF) ~ KGXGm(FJ_ Xy FJ_)

(These constructions require an extension of the results of [MR2] to the equivariant setting,
treated in Section 2.)

The main technical result is that this construction is compatible with convolution (even at the
categorical level): the derived categories of dg-sheaves on our dg-schemes are endowed with a
natural convolution product (which induces the usual convolution product of [CG] at the level
of K-theory). We prove that our equivalence intertwines these products and sends the unit to
the unit.
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2 IVAN MIRKOVIC AND SIMON RICHE

0.3. We apply this result to give a geometric realization of the Iwahori-Matsumoto involution
on the (extended) affine Hecke algebra H,g of a reductive algebraic group G.

The Iwahori-Matsumoto involution of H,g is a certain involution which naturally appears in
the study of representations of the reductive p-adic group dual to G in the sense of Langlands
(see e.g. [BC, BM]). This involution has a version for Lusztig’s graded affine Hecke algebra H.g
associated with H.g (i.e. the associated graded of H,g for a certain filtration, see [L1]), which
has been realized geometrically by S. Evens and the first author in [EM]. More precisely, Hag is
isomorphic to the equivariant Borel-Moore homology of the Steinberg variety Z of G ([L2, L3]),
and it is proved in [EM] that the Iwahori-Matsumoto involution is essentially given by a Fourier
transform on this homology.

In this paper we upgrade this geometric realization to the actual affine Hecke algebra H,g. This
replaces Borel-Moore homology with K-homology, and Fourier transform with Linear Koszul
duality. (Here we use Kazhdan—Lusztig geometric realization of H,g via K-homology [KL], see
also [CG].) In the notation of §0.2 this geometric situation corresponds to the case X = B (the
flag variety of G), V = g* (the co-adjoint representation), and F' = A (the Springer resolution):
then F xy F = Z, and F* xy+ Ft is the “extended Steinberg variety”, whose (equivariant)
K-homology is naturally isomorphic to that of Z, so that (x) indeed induces an automorphism
of Hag.

In a sequel we will extend this result to a geometric realization of the Iwahori-Matsumoto
involution of double affine Hecke algebras.

0.4. The proofs in this paper use compatibility properties of linear Koszul duality with various
natural constructions proved in [MR2]. (More precisely, here we need equivariant analogues
of these results.) These properties are similar to well-known compatibility properties of the
Fourier—Sato transform. We will make this observation precise in [MR3], showing that linear
Koszul duality is related to Fourier isomorphism in homology by the Chern character from K-
homology to Borel-Moore homology. This will explain the relation between Theorem 4.3.1 and
the main result of [EM]. The wish to upgrade Fourier transform to Koszul duality was the
starting point of our work.

0.5. In this paper, for simplicity and since these conditions are satisfied in our main example, we
restrict ourselves to complex algebraic varieties endowed with an action of a reductive algebraic
group. Using stacks it should be possible to work in a much more general setting; we do not
consider this here.

0.6. Organization of the paper. In Section 1 we collect some useful results on derived
functors for equivariant dg-sheaves. In Section 2 we extend the main results of [MR2] to the
equivariant setting. Most of the results in the rest of the paper will be formal consequences of
these properties. In Section 3 we study the behavior of our linear Koszul duality equivalence in
the context of convolution algebras. Finally, in Section 4 we prove that a special case of linear
Koszul duality provides a geometric realization of the Iwahori-Matsumoto involution.
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0.7. Notation. If X is a complex algebraic variety! endowed with an action of an algebraic
group GG, we denote by QCth(X ), respectively Cth(X ) the category of G-equivariant quasi-
coherent, respectively coherent, sheaves on X. If Y C X is a closed subscheme, we denote by
Coh$}(X) the full subcategory of Coh®(X) whose objects are supported set-theoretically on Y.

If X is a scheme and F, G are sheaves of Ox-modules, we denote by F H G the O y2-module
(p1)*F @ (p2)*G on X2, where p1,ps: X x X — X are the first and second projections.

We will frequently work with Z2-graded sheaves M. The (i, j) component of M will be denoted
./\/l; Here “” will be called the cohomological grading, and “j” will be called the internal

grading. Ordinary sheaves will be considered as Z2-graded sheaves concentrated in bidegree
(0,0).

As usual, if M is a Z?-graded sheaf of O x-modules, we denote by M" the Z2-graded Ox-module
such that

(MV); = Homoy (M:;, Ox).

We will work with G x Gy-equivariant sheaves of quasi-coherent O x-dg-algebras over a complex
algebraic variety X endowed with an action of an algebraic group G. Recall that such an object
is a Z2?-graded sheaf of Ox-dg-algebras, endowed with a differential of bidegree (1,0) of square
0 which satisfies the Leibniz rule with respect to the cohomological grading, and also endowed
with the structure of a G-equivariant quasi-coherent sheaf, compatible with all other structures.
If A is such a dg-algebra, we denote by C(A—Mod®) the category of G x Gm-equivariant quasi-
coherent sheaves of O x-dg-modules over A. We denote by D(A—Mod®) the associated derived
category.

If X is a complex algebraic variety and F an Ox-modules (considered as a bimodule where the
left and right actions coincide), we denote by So (F), respectively Ay (F), the symmetric,
respectively exterior, algebra of F, i.e. the quotient of the tensor algebra of F by the relations
f®g—g® f, respectively f @ g+ g® f, for f, g local sections of F. If F is a (Gp-equivariant)
complex of Ox-modules, then these algebras are sheaves of (G, -equivariant) dg-algebras in a
natural way. If F is a complex of (Gy-equivariant) Ox-modules, we denote by Symg,  (F) the
graded-symmetric algebra of F, i.e. the quotient of the tensor algebra of F by the relations
f®g-— (—1)|f"‘g‘g ® f for f, g homogeneous local sections of F. Again, this algebra is a sheaf
of (Gm-equivariant) dg-algebras in a natural way.

As in [MR2] we use the general convention that we denote by the same symbol a functor and
the induced functor between opposite categories.

0.8. Acknowledgements. This article is a sequel to [MR1, MR2]. It was started while both
authors were members of the Institute for Advanced Study in Princeton. Part of this work
was done while the second author was a student at Paris 6 University, and while he visited the
Massachusetts Institute of Technology.

I.M. was supported by NSF grants. S.R. was supported by ANR grants No. ANR-09-JCJC-
0102-01 and No. ANR-10-BLAN-0110.

1By complex algebraic variety we mean a reduced, separated scheme of finite type over C.
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1. FUNCTORS FOR GG-EQUIVARIANT QUASI-COHERENT SHEAVES

1.1. Equivariant Grothendieck—Serre duality. Let X be a complex algebraic variety, en-
dowed with an action of a reductive algebraic group G. By [AB, Example 2.16], there exists
an object Q in D*Coh®(X) whose image under the forgetful functor to D’Coh(X) is a dualizing
complex. We will fix such an object.

We will make the following additional assumption:

For any F in Coh®(X), there exists a P in Coh®(X)

(1.1.1) which is flat over Ox and a surjection P — F.

This assumption is standard in this setting; it is satisfied e.g. if X is normal and quasi-projective
(see [CG, Proposition 5.1.26]), or if X admits an ample family of line bundles in the sense of [VV,
Definition 1.5.3]. Note also that (1.1.1) implies a similar property for quasi-coherent sheaves.

Recall that by [AB, Corollary 2.11] the natural functors
DPCoh®(X) — D*QCoh®(X) and D°Coh(X) — D’QCoh(X)
are both fully faithful. This will allow us not to distinguish between morphisms in these cate-

gories.

We denote by a : G x X — X the action, and by p: G x X — X the projection. Both of these
morphisms are flat and affine. Recall the “averaging functor”

Ay J QCoh(X) — QCoh%(X)
v F > ap*F

This functor is exact, and is right adjoint to the forgetful functor For : QCoh®(X) — QCoh(X)
which is exact. Hence Av sends injective objects of QCoh(X) to injective objects of QCoh%(X).
From this one easily deduces that there are enough injective objects in QCth(X ), and that

every such injective object is a direct summand of an injective object of the form Av(Z) for some
injective Z in QCoh(X).

Recall also that for any F in Coh®(X) and G in QCoh®(X), the k-vector space Home, (F, G)
is naturally an algebraic G-module, and that we have a canonical isomorphism
~ G

induced by the functor For. (Here and below, for simplicity we do not write the functor For.)
Now we prove a version of this statement for derived categories, which will simplify our con-
structions a lot.

Lemma 1.1.3. For any F,G in D’Coh®(X), the k-vector space Hompbcon(x) (F, G) is naturally
an algebraic G-module. Moreover, the functor For induces an isomorphism

~ G
Hompy oo (x) (F:G) = (Hompocon(x) (F.9)) -

Proof. The construction of the G-action is standard, and left to the reader. To prove the
isomorphism, by a standard “dévissage” argument it is enough to prove that if 7 and G are in
Coh%(X) and if j > 0 the natural morphism

i i G
Exte e (F,9) = (Exteon(x)(F:9))
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is an isomorphism. Now let Z* be an injective resolution of G in the abelian category QCoh®(X).
By Lemma 1.1.4 below, this complex is acyclic for the functor Homp, (F, —), hence can be used
to compute Exticoh( x)(F,G). Then our claim easily follows from isomorphism (1.1.2) and the
fact that the functor of G-invariants is exact. O

Lemma 1.1.4. Let F be in Coh®(X), and J be an injective object of QCoh®(X). Then for any
7 > 0 we have

Extgcon x) (F+ J) = 0.

Proof. We can assume that J = Av(Z) for some injective object Z of QCoh(X). Then we have

(F,J) = Ext! (a*F,p*T)

J
Ext QCoh(X)

QCoh(X) (F,a.p*T) = Ext

QCoh(Gx X)

by adjunction. As F is G-equivariant we have an isomorphism a*F = p*F, and using adjunction
again we deduce an isomorphism

Exthconx) (Fr T ) = Extheq ) (Fspap™ J).

Now we have p.p*J = k[G] ® J, and it follows from [Ha, Corollary I1.7.9] that p.p*J is
injective. This finishes the proof. g

As Q) is a dualizing complex, we have an equivalence
Dq = RHomo, (—,Q): D’Coh(X) = DPCoh(X)°P,

and a canonical isomorphism of functors eq : Idpocon(x) — Da © Do (see e.g. [MR2, §1.5] for
details).

Let now Zg be a bounded below complex of injective objects of QCth(X ) whose image in the
derived category DTQCoh%(X) is Q. Then the “internal Hom” bifunctor defines a functor

D = Homo, (—, Iq) : C?Coh%(X) — CT*QCoh% (X)°P.
Lemma 1.1.5. The functor ODéG) is exact. The induced functor on derived categories factors
through a functor between bounded derived categories

D) DPCoh®(X) — DPCoh® (X)°P.
Moreover, the following diagram commutes up to isomorphism:

(@)

D
DPCoh®(X) ° DPCoh® (X )°P

For l l For

DPCoh(X) —— 2% . DPPCoh(X)oP

where vertical arrows are the usual forgetful functors.

Proof. To prove exactness, it suffices to prove that if 7 is an injective object of QCth(X ), the
functor

Homo, (—, J) : Coh®(X) — QCoh%(X)°P
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is exact. One can assume that J = Av(Z) for some injective Z in QCoh(X). Then for any F in
Coh%(X) we have

Homo (F,T) = Homo (F,ap*T) = a,Homo,, (" F,p*T)
by adjunction. Now we have a canonical isomorphism o*F = p*F, and we deduce isomorphisms
Homoy (F,T) = axHomog, (0 F, p*T) = awp* Homo (F,I) = Av(Homo (F,T)).

As both the functors Homo, (—,Z) and Av are exact, we deduce the claim, hence exactness of
OD(G)
q -

Let us denote by ' Dg;) the functor induced between derived categories, and by 'Dq the non-

equivariant analogue. Now, let us prove that the following diagram commutes:

/D(G)

DPCoh%(X) “ DTQCoh%(X)oP
(116) Forl lFor

D

DbCoh(X) DTQCoh(X)°P

Let Jo be a complex of injective objects in QCoh(X) whose image in DTQCoh(X) is €, so
that the functor ‘Dg is the functor induced by the exact functor Homo, (—, Jq) : C°Coh(X) —
CtTQCoh(X)°P. By standard arguments there exists a quasi-isomorphism Zgq L Jo in the
category CTQCoh(X). We denote by K¢ the cone of this morphism. To prove the commutativity
it is sufficient to prove that for any F in CbCth(X ) the natural morphism

Homoy (F,Za) — Homo, (F, Ja)

is a quasi-isomorphism, or in other words that the complex Homo, (F,Kq) is acyclic. By our
assumption (1.1.1), there exists a complex £ in C~Coh®(X) whose objects are Ox-flat and a

quasi-isomorphism £ =5 F. Using what was checked in the first paragraph of this proof, one
can show that the induced morphism Homo . (F, Kq) = Homo, (£, Kq) is a quasi-isomorphism.
Now, as Kq is an acyclic complex and £ a bounded above complex of flat Ox-modules the
complex Homo, (L£,Kq) is acyclic. This finishes the proof of the commutativity of (1.1.6).

Finally, as the functor 'Dg, takes values in D?Coh(X), one deduces the second claim of the lemma
and the commutativity of the diagram from the commutativity of (1.1.6). O

Corollary 1.1.7. There exists a canonical isomorphism Id = Dg;) o DgG) of endofunctors of
DbCth(X). In particular, D&G) 1 an equivalence of categories.

Proof. For F in D’Coh®(X), the isomorphism eq(F) : F = Dq o Dq(F) is canonical, and in
particular invariant under the action of G on Hompucon(x)(F; Do © Do(F)). Using the com-
mutativity of the diagram in Lemma 1.1.5 and Lemma 1.1.3, we deduce the existence of the

canonical isomorphism Id = DéG) o Dng). The final claim is obvious. U
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1.2. Grothendieck—Serre duality in the dg setting. As above let X be a complex al-
gebraic variety, endowed with an action of a reductive algebraic group G. Let also A be a
Gm-equivariant, non-positively (cohomologically) graded, graded-commutative, G-equivariant
sheaf of quasi-coherent Ox-dg-algebras. We assume furthermore that A is locally finitely gener-
ated over A°, that A” is locally finitely generated as an Ox-algebra, and finally that A is K-flat
as a Gy-equivariant A°-dg-module (in the sense of [Sp]). If A denotes the (G-equivariant) affine
scheme over X such that the pushforward of O4 to X is AY, then there exists a Gy-equivariant
quasi-coherent G-equivariant O 4-dg-algebra A’ whose direct image to X is A. Moreover there
exists an equivalence of categories C(A'—Mod®) =2 C(A—Mod¥). Using this trick we can reduce
our situation to the case A is Ox-coherent and K-flat as an Ox-dg-module.

Using conventions similar to those in [MR2], we denote by D*¢(A—Mod®) the subcategory of
D(A—Mod®) whose objects are the dg-modules M such that, for any j € Z, the complex M
has bounded and coherent cohomology.

Lemma 1.2.1. For any F,G in D**(A—Mod%) the C-vector space Hompoe(4—mod) (FG) has a
natural structure of an algebraic G-module. Moreover, the natural morphism

G
(1.2.2) Hompbe( g wmog@)(F:G) = (Hompre(a—mod)(F,9))

induced by the forgetful functor is an isomorphism.

Proof. The construction of the G-action is similar the the one in §1.1. Now, let us prove that
(1.2.2) is an isomorphism. As explained above, we can assume that 4 is O x-coherent and K-flat
as an Ox-dg-module. Consider the induction functor

[ C(Ox—Mod®) — C(A—Mod®)
Indy4 : { M s A®o, M

This functor is left adjoint to the forgetful functor For 4 : C(A—Mod®) — C(Ox—Mod®) (of the
A-action). Moreover, by our K-flatness assumption the functor Ind 4 is exact, hence induces a
functor between derived categories, which we denote similarly. Then the functors

Indy : D(Ox—Mod¥) = D(A-Mod“) and Fory : D(A—Mod®) — D(Ox—Mod®)

are again adjoint. As A is O x-coherent, the functor Ind 4 sends the subcategory D(Ox —ModG)
into DP¢(A—-Mod®).

Using these remarks and Lemma 1.1.3, one can show that (1.2.2) is an isomorphism in the case
F = Ind4(F") for some object F’ in DP¢(Ox —Mod“). Now we explain how to reduce the general
case to this case. In fact, using a simplified form of the construction in [R2, proof of Theorem
1.3.3] (without taking K-flat resolutions), one can check that any object of D*¢(A—Mod%) is a
direct limit of a family (P,),>0 of objects of D**(A—~Mod®) such that each P, admits a finite
filtration with subquotients of the form Ind 4(#) for some H in DP¢(Ox —Mod®). As the functor
of G-fixed points commutes with inverse limits, this reduces the general case to the case treated
above, and finishes the proof. O

Finally we can prove our “duality” statement for G-equivariant A-dg-modules. First, recall that
there is a canonical equivalence of triangulated categories

Dg : DP°(A—Mod) = DP¢(A—Mod)°P,
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where the exponent “bc” has the same meaning as above, see [MR2, §1.5] for the details. The
equivariant analogue of this statement can be deduced from the properties of the functor Dé
using Lemma 1.2.1, just as the properties of the functor DéG) where deduced from those of Dg

in §1.1.
Proposition 1.2.3. There exists an equivalence of categories
Dy Y DP*(A-Mod®) = DP*(A-Mod®)*P

such that the following diagram commutes (where the vertical arrows are the natural forgetful
functors):

DA©)
DP¢(A—-Mod®) 2 DPe(A—Mod)oP
Forl/ lFor
Dy
DP(A—Mod) = DP(A—Mod)°P

and a canonical isomorphism of functors Id = Dé’(G) o Dé’(G).

1.3. Inverse image of equivariant dg-sheaves. We let X and Y be complex algebraic
varieties, each endowed with an action of an algebraic group G. (In practice G will be reductive,
as above, but this property will not be used in this subsection.) We also assume that condition
(1.1.1) is satisfied on Y.

Let A, respectively B, be a sheaf of non-positively graded, graded-commutative, quasi-coherent,
G x Gpy-equivariant Ox-dg-algebras, respectively Oy -dg-algebras. Let f: (X, A) — (Y, B) be a
G X Gp-equivariant morphism of dg-ringed spaces. By [BR, Proposition 3.2.2] (see also [MR2,
§1.1]) the inverse image functor

f*:C(B—Mod) — C(A—Mod)
admits a left derived functor
Lf* : D(B—Mod) — D(A—Mod).

This property follows from the existence of K-flat resolutions in C(B—Mod). The same arguments
extend to the G-equivariant setting under our assumption that condition (1.1.1) holds on Y.

Lemma 1.3.1. Assume that condition (1.1.1) holds on'Y .
For any object M in C(B—Mod%), there exists an object P in C(B—Mod®), which is K-flat as

a B-dg-module, and a quasi-isomorphism of G X Gy -equivariant B-dg-modules P s, F.

In particular, it follows from this lemma that the functor
f*:C(B—Mod%) — C(A—Mod%)
admits a left derived functor

Lf*: D(B—Mod®) — D(A—-Mod®).
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Moreover, the following diagram commutes by definition:

Lf*

D(B—Mod®) D(A—Mod®)
(132) Forl lFor
D(B—Mod) — L D(A-Mod).

(This property justifies our convention that the notation Lf* denotes the derived functor both
in the equivariant and non-equivariant settings.)

1.4. Direct image of equivariant dg-sheaves. We let again X and Y be complex algebraic
varieties, each endowed with an action of an algebraic group G. Let A, respectively B, be a
sheaf of non-positively graded, graded-commutative, G x Gy-equivariant, quasi-coherent Ox-
dg-algebras, respectively Oy-dg-algebras. Let f : (X, A) — (Y,B) be a G x Gy-equivariant
morphism of dg-ringed spaces.

We will assume that A is locally free of finite rank over A°, that A is locally finitely generated
as an Ox-algebra, and finally that A is K-flat as a Gy-equivariant A4°-dg-module.

It follows from [BR, Proposition 3.3.2] (existence of K-injective resolutions in C(A—Mod)), see
also [MR2, §1.1], that the direct image functor

fx : C(A—Mod) — C(B—Mod)
admits a right derived functor
(1.4.1) Rf. : D(A—Mod) — D(B—Mod).

Our goal in this subsection is to extend this property to the equivariant setting. In this case for
simplicity we restrict to a subcategory.

We denote by C*(A—Mod®) the subcategory of C(A—Mod®) whose objects are bounded below
in the cohomological grading (uniformly in the internal grading), and by D+(A—ModG) the full
subcategory of D(A—ModG) whose objects are the dg-modules whose cohomology is bounded
below. Note that the natural functor from the derived category associated with C*(A—Mod%)
to D(A—Mod®) is fully faithful, with essential image Dt (A—Mod®).
Proposition 1.4.2. (1) For any object M in CT(A—Mod®), there exists an object T in

Ct(A—=Mod®) which is K -injective in C(A—Mod®) and a quasi-isomorphism M - T.

(2) The functor f, : CT(A—Mod®%) — C(B—Mod®) admits a right derived functor
Rf. : DT (A—Mod®) — D(B—Mod®).
Moreover, the following diagram is commutative up to isomorphism:

Rf*

Dt (A—-Mod®) D(B—Mod®)
Forl l/For
D(A-Mod) —— 7 D(B—Mod).

(1.4.1)
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Proof. (1) As in §1.2 we can assume that A = Ox, so that A is locally free of finite rank over
Ox. Under this assumption, the proof of [R2, Lemma 1.3.5] (using the coinduction functor
Coind 4) generalizes directly to our setting and proves property (1).

(2) The existence of the derived functor follows from (1). Now, let us prove the commutativity
of our diagram. Again we can assume that A° = Ox. As explained in [VV, Proof of Lemma
1.5.9], any injective object of QCoh®(X) is f,-acyclic. It follows easy from this that the diagram
commutes if A = Ox and B = Oy. Using this and [BR, Proposition 3.3.6] (compatibility of
derived direct images for A- and Ox-dg-modules), it suffices to prove that the following diagram
commutes:

Rf.

D+ (A—Mod®) D(B—Mod®)

For 4 l lFOl"B

DHOx-Mod?) — 2" p(0y —Mod)

(where fp : X — Y is the morphism of schemes underlying f.) However, this is clear from
the construction in (1) and the fact that, under our assumptions, the functor Coind 4 sends
a bounded below complex of injective objects of QCth(X ) to a complex which has the same
property. [l

2. LINEAR KOSZUL DUALITY

2.1. Linear Koszul duality in the equivariant setting. We let X be a complex alge-
braic variety, endowed with an action of a reductive algebraic group G, and €2 be an object in
DPCoh®(X) whose image in D’Coh(X) is a dualizing complex (see §1.1). We will assume that
condition (1.1.1) is satisfied.

Let E be a G-equivariant vector bundle on X and let Fj, Fo C E be G-equivariant subbundles.
As in [MR2], we denote by &, Fj, Fa the sheaves of sections of E| Fy, Fy, and we define the
G X Gp-equivariant complexes

X=(0—=F =F/ =0, V:i=0-=F—EF —0).

In X, Fi- is in bidegree (—1,2), Fy is in bidegree (0,2), and the differential is the composition of
the natural maps Fi- < &Y — Fy. In Y, F» is in bidegree (1, —2), £/F is in bidegree (2, —2),
and the differential is the opposite of the composition of the natural maps Fo — & — &/F;.
We will work with the G x Gy,-equivariant sheaves of dg-algebras

T :=Sym(X), S§:=Sym(Y), R:=Sym(V[2]).
We set
D, (FL g Fy) = DB(T-Mod®), Dy, (Fi Mg F5) = D¥(R—Mod®),

where the exponent “fg” means the subcategory of dg-modules over 7 (or R) whose cohomology
is locally finitely generated over H*(7) (or H*(R)). We also set

D (R 1 Fy) = DE(T-Mod), D& (Ffip F) = D¥(R-Mod{l}),
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where here we consider the action of the trivial group on X (i.e. we forget the action of G).
Recall that by [MR2, Theorem 1.9.3] there exists a canonical equivalence of categories

ko Dg (FNpF) & De_(Fi (g )P,
The following result is an equivariant analogue of this equivalence.

Theorem 2.1.1. There exists a canonical equivalence of triangulated categories

~

R R
RG - Do (F1 08 o) = Dy, (Fi Npe F3)P,
which satisfies kG (Mn](m)) = k§(M)[—n + m](—m) and such that the following diagram
commutes, where the vertical arrows are the forgetful functors:

G
rQ

R R
D¢, F1NE Fy) Dy, (Fi-Nigs F3H)oP

For l l For

D (F e F) fo DE_(Fi A F3-)°P,

~

Proof. We use the same notation as in [MR2]; in particular we will consider the equivalences o
—b . . . . —b
g, Dz; and ¢ constructed in [MR2, §1]. With this notation we have kg = £ o &7 ‘o Dg;.

It is straightforward to construct an equivalence of categories .7 which makes the following
diagram commutative:

D(T-Mod®) — 2 D(S—ModC)

For ‘/ \L For
o

D(T—Mod_) D(S—Mod?).

(Here, as in [MR2], the index “—” means the subcategories of dg-modules which are bounded
above for the internal grading. A similar convention applies to the index “+” below.) This
equivalence restricts to an equivalence

75 DP(T—Mod€) =5 DP(S—Mod€)

(where, as in [MR2] or in §1.2, the exponent “bc” means the subcategories of dg-modules whose
internal degree components have bounded and coherent cohomology). Now in §1.2 we have

(@)

. T Lo .
constructed an equivalence D¢, which induces an equivalence

D@ DP(T—Mod$) — D (T —Mod%)P.
Moreover, by Proposition 1.2.3 the following diagram commutes:
TAG)

D
DP(T—Mod$) “ DP(T—Mod?)oP

~

For l l For
D7

D (T —Mod,.) ° D (T —Mod_ )°P.

~
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Finally the regrading functor has an obvious G-equivariant analogue £¢ and, setting lig =

—b . . . . . .
G oo GC o Dg’(G) we obtain an equivalence which makes the following diagram commutative:

RG
D> (T —Mod?) 2 DP(R—Mod{ )°P

~

(212) Forl lFor
DP¢(T—Mod) . DP(R—Mod_)°P.

~

It is easy to check that the natural functors
D®(T—Mod¥) — DE(T-Mod®) and D(R—Mod®) — DE(R—Mod®)

are equivalences of categories and, using the commutativity of (2.1.2), that under these equiva-
lences /@8 restricts to an equivalence

kG D¥(T—Mod®) = DE(R—Mod®)°P.
This finishes the proof. O

Remark 2.1.3. From now on we will omit the exponent “G”, and write kg instead of lig. This
convention is justified by the commutativity of the diagram in Theorem 2.1.1.

2.2. Linear Koszul duality and morphisms of vector bundles. We let G, X, F be as in
62.1. Let also E’ be another G-equivariant vector bundle on X, and let

be a morphism of G-equivariant vector bundles over X. We consider G-stable subbundles
F1,F; CE and Fy,F}, C E', and assume that

¢(F1) C Fy, P(F) C Fy.

Let &, Fi, Fa, £, F{, F} be the respective sheaves of sections of E, Fy, Fy, E', F|, F}. By
Theorem 2.1.1 we have linear Koszul duality equivalences

R ~ R
ke : Dy, (FINE F2) = Dgyg. (Fi-Np+ F5-)°P,

~

R R
Ko Dt (FI D F3) = D, (F1) Oy (F3)1)°P.

We consider the (G-equivariant) complexes X (for the vector bundle E) and X’ (for the vector
bundle E’) defined as in §2.1. The morphism ¢ defines a morphism of complexes X' — X, to
which we can apply (equivariant analogues of) the constructions of [MR2, §2.1].

More geometrically, ¢ induces a morphism of dg-schemes @ : F} A gy — F| A g F}, and we have
a (derived) direct image functor

RO, : Dy, (Fi Mg Fy) = D(T'—Mod%).
(This functor is just the restriction of scalars functor associated with the morphism 7" — T.)

The following result immediately follows from [MR2, Lemma 2.3.1].
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Lemma 2.2.1. Assume that the induced morphism of schemes between non-derived intersections
Fy Ng Fy — F{ Ngr Fy is proper. Then the functor R®, sends D¢, (F1 A F,) into the
subcategory D¢, ¢ (F] A F}).

We also consider the (derived) inverse image functor
L®* : D&, (Fi N Fy) — D(T—Mod%).
(This functor is just the extension of scalars functor associated with the morphism 77 — 7.)
The morphism ¢ induces a morphism of vector bundles
b= ¢V (B E,

which satisfies 1 ((F/)1) C Fi* for i = 1,2. Hence the above constructions and results also apply
to 1. We use similar notation.

The following result is an equivariant analogue of [MR2, Proposition 2.3.2]. The same proof
applies; we leave the details to the reader.

Proposition 2.2.2. (1) Assume that the morphism of schemes F1NgFy — F{Ng F} induced
by ¢ is proper. Then LY* sends D, .. (Fi- A F3") into Dy ((F))* r%(E/)* (F3)1).
Moreover, there exists a natural isomorphism of functors

LV*org = kooR®, :Dgye, (FilgF) = Diyg, (F)* Oimye (F5)H)h

(2) Assume that the morphism of schemes (F{)* N(gn« (F3)* — Fi- N F3- induced by

is proper. Then L®* sends D¢, ¢ (F] A Fy) into D¢, g, (F1 Ag F>). Moreover, there
exists a natural isomorphism of functors

koo L®* = RV, ok :Doye. (FlOm Fy) = Doye. (Fi- (- F5-)t.

In particular, if both assumptions are satisfied, the following diagram is commutative:

R K R
DCG’XGm(Fl mEF?) 3 ?}xGm(Fll NE* le)Op

s | . no. | o
KRG

R R
D (F1 Nt F3) Do (F1) Oy (F3)5)P.

2.3. Particular case: inclusion of a subbundle. We will mainly use only a very special
case of Proposition 2.2.2, which we state here for future reference. It is the case when E = £,
¢ =1d, Fy = F{ (and F} is any G-stable subbundle containing F»). In this case we denote by

fiRApF— FDOpF,  g:FEfp (BT — Fifp Bt

the morphisms of dg-schemes induced by Fy — Fj, ()~ < F3-. The assumption that the
morphisms between non-derived intersections are proper is always satisfied here (because these
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morphisms are closed embeddings). Hence by Proposition 2.2.2 we have functors
R R
Rfs: Dgug(F1NE F2) = Dixg,,(F1 05 Fy),
" R R
Lf* : Douem(FANEF3) = Dg,, (F10E F2),
and similarly for g. Moreover, the following proposition holds true.

Proposition 2.3.1. Consider the following diagram:

RQ

R R
D¢y, (F1NE Fy) Dy, (Fi-Nige F3H)oP

o o
RGO

R R
D¢, (F10E Fy) D¢ (Fi- D= (F3)®)°P.

There exist natural isomorphisms of functors

ko Rfy & Lg*okg and kqoLf* = Rg,okg.
2.4. Linear Koszul duality and base change. Let X and Y be complex algebraic varieties,
each endowed with an action of a reductive algebraic group G. We assume that condition (1.1.1)
holds on X and Y, and we let Q be an object of D’Coh®(Y") whose image in D*Coh(Y) is a

dualizing complex. We let 7 : X — Y be a G-equivariant morphism. Then 7'§) is an object of
DPCoh®(X) whose image in D’Coh(X) is a dualizing complex.

Consider a G-equivariant vector bundle £ on Y, and let F, Fy, C E be G-equivariant subbundles.
Consider also EX := E xy X, which is a G-equivariant vector bundle on X, and the subbundles
FZ-X = Fyxy X C EX (i = 1,2). If €, F1, F» are the respective sheaves of sections of F, Fy, I,
then 7*&, 7" Fy, m*F» are the sheaves of sections of EX, F{¥, F5X, respectively. Out of these
data we define the complexes Xy and Xy as in §2.1, and then the dg-algebras Tx, Sx, Rx and
Ty, Sy, Ry. Note that we have natural isomorphisms of dg-algebras

Tx 27Ty, Sx=27*Sy, Rx X7"Ry.
We define the categories
R R
DCGXGm(Fl mEF?)a D%xGm(Fll NE= FQJ_)
R R
DG (F1 Npx F5' ), D (FY) ™ Ny (F50)F)
as in §2.1. Then by Theorem 2.1.1 there are equivalences of categories
R ~ R
R0 Do (i Npx F3) ™ D, (F1) T Ny (F5)1)%P,
R ~ R
Ky Do (FL 0B F2) = Dy, (Fi N F3)P.

If X and Y are smooth varieties, then € is a shift of a line bundle, so that 7*( is also a dualizing
complex on X. Hence under this condition we also have an equivalence

R ~ R
Fimeq) : Do (Fi Npx F5') = Dy, (FY)* NEx) (F55)h)°P.
The morphism of schemes 7 induces a morphism of dg-schemes

ﬁ':Fle}%EXFQX—)Flf}%EFQ.
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This morphism can be represented by the natural morphism of dg-ringed spaces (X, Tx) —
(Y, Ty). We have derived functors Rz, and L#* for this morphism by the constructions of

§81.3-1.4. Note in particular that Dg, g (F{¥ r%EX F5Y) is a subcategory of Dt (Tx —Mod?), so
that R, is defined on this category.

As in [MR2], we will say that 7 has finite Tor dimension if for any F in QCoh(Y), the object
Lf*F of DQCoh(X) has bounded cohomology.

Lemma 2.4.1. (1) Assume 7 has finite Tor-dimension. The functor
L#* : Dy, (Fi (g Fy) — D(Tx—Mod®)

takes values in DCGxGm(le (}%Ex F5%).
(2) Assume m is proper. Then the functor

Rit, : Do, (Fi¥ (px F5) = D(Ty—Mod®)
takes values in Dg, . (F1 FﬁE ).
Proof. Statement (1) follows directly from its non-equivariant analogue (see [MR2, Lemma

3.1.2]) and the commutativity of diagram (1.3.2). The proof of (2) is similar, using again
[MR2, Lemma 3.1.2] and the commutativity of the diagram in Proposition 1.4.2. O

Similarly, 7 induces a morphism of dg-schemes
~ X\l & XL 1R 1
7T:(F1 ) m(EX)* (F2 ) —>F1 mE* F2
hence, if 7 has finite Tor-dimension, a functor
~ 1R il XL R XL
L7* : DGy (FT NEx Fy) = Dy (FT) O(Ex) (F5)7),
and, if 7 is proper, a functor
~ XyL & X\l 1R 1
Rty : Dy (F7 )™ Npxy (F5)7) = D (FT NEx F3).
Proposition 2.4.2. (1) If w is proper, there exists a natural isomorphism of functors
ko R, = Ri,orYg Dy (FX Npx F5Y) = DSy (Fi (g F5H)oP.
(2) If X and Y are smooth varieties, then there exists a natural isomorphism of functors

~ %k ~Y A~k R R
Li* okl = wihgoLi*  :Déyg. (Fi0g Fy) = Déye. (Ff)* N(px)- (F55)1)ep.

Proof. (1) In Proposition [MR2, Proposition 3.4.2] we have proved a similar isomorphism in the
non-equivariant setting. As in the proof of Corollary 1.1.7, the equivariant case follows, using
Lemma 1.2.1. (Here we also use the compatibility of the functors lig, R#,, R7, and /ff,ﬂ with
their non-equivariant analogues, see Proposition 1.4.2 and Theorem 2.1.1.)

(2) The proof is similar. O
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3. LINEAR KOSZUL DUALITY AND CONVOLUTION

From now on we will specialize to a particular geometric situation suitable to convolution alge-
bras. We fix a smooth complex algebraic variety, endowed with an action of a reductive algebraic
group G. Note that condition (1.1.1) is satisfied on any such variety by [CG, Proposition 5.1.26].

3.1. First description of convolution. Let V be a finite dimensional G-module, and F' C
E =V x X a G-equivariant subbundle of the trivial vector bundle with fiber V' over X. Let
AV C V xV be the diagonal. We will apply the constructions of §2.1 to the G-equivariant vector
bundle FE x E over X x X (for the diagonal G-action) and the G-stable subbundles AV x X x X
and F' x F. We denote by F the sheaf of sections of F'.

We want to define a convolution product on the category

D, (AV x X x X) Apup (F x F)).

More concretely, by definition (see §2.1) we have
Do (AV x X x X) Apup (F x F)) = D%(So,, (FYBFY) @ (/\V*)—Mod®)

where on the right hand side V* is identified with the orthogonal of AV in V x V, i.e. with
the anti-diagonal copy of V* in V* x V* and the differential is induced by the morphism
V* @k Ox2 — FY B FY induced by the morphism FF x F <+ EX E =V xV — (V xV)/AV.

For (i,5) = (1,2), (2,3) or (1,3) we have the projection p;; : X> — X? on the i-th and j-th
factors. There are associated morphisms of dg-schemes

P13 (AV x X3) Apspxx (F x Fx X) = (AV x X2 Agyp (F x F),

P2.3, 1.3, and functors L(p12)*, L(p2.3)*, R(p1,3)« (see §2.4; in this setting E'x E'x X is considered
as a vector bundle over X?). For i = 1,2,3 we also denote by p; : X3 — X the projection on
the i-th factor.

Next we consider a bifunctor
(3.1.1)
C(So,4 (0 o(FY BFY)) @k (\ VF)=Mod) x C(So,, (05 3(F” BFY)) & (/\ VF)—Mod)
— C(So.s (0 3(FY BFY)) @ (/\V*)~Mod?).

Here, in the first category the morphism V*®x Oxs — pj 5 (FVHFY) involved in the differential
is the composition of the anti-diagonal embedding V* — V* x V* with the morphism induced
by FXFxX < VxVxX = VxV,sothat So_,(pf,(FY B FY)) @ (AV*) is the
structure sheaf of (AV x X3) A ExExx (F x F x X). Similarly, the second category corresponds
to the dg-scheme (AV x X?3) AxxExE (X X F x F), and the third one to the dg-scheme (AV x
X3)r%EXxxE (F x X x F). The bifunctor (3.1.1) takes the dg-modules M; and M3 to the
dg-module M; ®Soxg(p§}'\/) My, where the action of Sp_;(p7 3(F" B F")) is the natural one

(i.e. we forget the action of the middle copy of Sp, (FY)). To define the action of A\ V*, we
remark that Mi ®s,, _ (p37v) Mz has a natural action of the dg-algebra (A V*) @x (A V*), which
X
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restricts to an action of A V* via the morphism of dg-algebras A V* — (A V*) @k (A V*) which
sends an element x € VF*toz ® 1 +1® x.

The bifunctor (3.1.1) has a derived bifunctor (which can be computed by means of K-flat

resolutions), which induces a bifunctor (— & 73 =)t
D (S0, (57 o(F* B F)) @ (A V) ~Mod) x DE(So,, (5o(F 8 F") @x (| V) -Mod®)
— D%(So_, (p}3(FY BFY)) @ (/\ V*)—Mod?).
(This follows from the fact that the projection m1 3 : F' Xy F' xy F' — F xy F' is proper, using
arguments similar to those in the proof of [MR2, Lemma 2.3.1]; see also Lemma 2.2.1).

Finally, we obtain a convolution product

(=% =) : Dego (AV x X x X) Agug (F x F)) x Dayg, (AV x X x X) Agyp (F x F))

— D (AV x X x X) Apup (F x F))
defined by the formula

My x My = R(p13)«(L(p13) M2 & ps L(pag) Mi).

This convolution is associative in the natural sense. (We leave this verification to the reader; it
will not be used in the paper.)

There is a natural G X Gy -equivariant projection

P (AV x X x X)Opxp(Fx F) - F x F

corresponding to the morphism of Ox2-dg-algebras
S0 (FYBFY) = So,(FYBFY) e (A V),

and an associated direct image functor Rp.. The essential image of Rp, lies in the full subcat-
egory DgropCth(F x F) of D*Coh%(F x F) whose objects are the complexes whose support
is contained in a subvariety Z C F x F' such that both projections Z — F are proper. This
category DgropCth(F x F') has a natural convolution product (see e.g. [R1, §1.2]), and the
functor

Rp. : D, (AV x X x X) (g (F x F)) = Db, Coh®(F x F)

is compatible with the two convolution products.

3.2. Alternative description. Before studying the compatibility of convolution with linear
Koszul duality we give an alternative (and equivalent) definition of the convolution bifunctor.
Consider the morphism
- { X5 o x
(,9,2) = (2,9,9,2)
and the vector bundle E* over X*. In §2.4 we have defined a “base change” functor

)

Li* : D ((AV x AV x X4 (1 F*Y)
R
— Dgyg,, (AV x AV x X?) Npx(Exxmxp (F % (F xx F) x F)).
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Next, consider the inclusion of vector subbundles of E x (E xx E) x E (over X?)
FxFl8 x F s Fx(FxxF)xF,
where F4188 — [ x y F' is the diagonal copy of F. In §2.3 we have defined a functor
Lf*: Dy, (AV x AV % X?) Oy (xx myxi (F X (F xx F) x F))
= D&y, (AV X AV x X3) Ay (x x myx (F x FI28 x 1)),
Finally, consider the morphism of vector bundles over X3
p:Ex(ExxE)xE=2Vix X3 - ExXxE=2VixX?
induced by the linear map

%6 — V2
(a,bye,d) — (a—b+ecd)

We have ¢(AV x AV x X3) = AV x X3, and ¢(F x F4% x F) = F x X x F. In §2.2 we have
defined a functor

¢ K ia,
R®, : D, ((AV x AV x X?) Opy (5x y5)xp (F x FU% x F))
= Dggn (AV x X3) Apyxup (F x X x F)).

Now, consider two objects M1, Mj of Dg, ¢ ((AV x X?) ApxE (F x F)). The external tensor

product My X M is naturally an object of the category Dngm((AV x AV x X4) (}%EM F4).
Then, with the definitions as above, we clearly have a (bifunctorial) isomorphism

(3.2.1) Mi* My = R(pr3)« o R®, o Lf* o Li*(Ma R M;)
in DY, 6. (AV x X2) ipxp (F x F)).

3.3. Compatibility with Koszul duality. Consider the same situation as in §3.1 and §3.2.
We denote by dx the dimension of X, and by wx the canonical line bundle on X.

The orthogonal of F x F in E x E is F+ x F+. On the other hand, the orthogonal of AV x X2
in E x E is the anti-diagonal AV* x X? C E* x E*. There is an automorphism of E x E sending
AV* x X? to AV* x X2, and preserving F'+ x F-, namely multiplication by —1 on the second
copy of V*. Hence composing the linear Koszul duality equivalence of Theorem 2.1.1

K Do, (AV X X x X) Opxp (F X F)) 5 Déyg. (AVF % X x X) Ngexp- (F- x FH))
associated with the dualizing complex wx K Ox[dx]| with the natural equivalence
2 : Doy (AVF x X x X) Agewp (F+ x FL))
2 Dy ((AVF X X % X) Aoy (FF x FL))
provides an equivalence
R: Dy, (AV X X x X) Agup (F x F)) 5 Deyg (AVF X X x X) Ay (F£ x F1))°P.

The domain and the codomain of & are both endowed with a convolution product *.
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The main result of this section is the following proposition. Its proof relies on the results of
§62.2-2.4.

Proposition 3.3.1. The equivalence K is compatible with convolution, i.e. for any objects My,
My of Dy, ((AV x X x X)) ApxEe (F x F)) there exists a bifunctorial isomorphism

ﬁ(./\/ll *Mz) = R(Ml)*ﬁ(Mz)
in D . (AV* x X x X) (gepe (F- x FL)).

Proof. To compute the left hand side we use isomorphism (3.2.1). First, consider the natural
projection py 3 : X3 — X2, In §2.4 we have defined functors

Rpi3, : Do, (AV x X3) Apuxxp (F x X x F)) = Dgye. ((AV x X2) Agyp (F x F)),

Rp13, : D, (AV* x X7) B xXx B> (F- x X x F1))
S Do (BV* % X) e (P F1).
We denote by
k13 D ((AV x X2) Apuxxe (F x X x F))
% Do (BV* % X2) Apesxsps (FL x X x F))P

the linear Koszul duality equivalence of Theorem 2.1.1 associated with the dualizing complex
(p1.3) (wx M Ox[dx]) 2wy Rwyx X Ox[2dx]. By Proposition 2.4.2 we have an isomorphism of
functors

(3.3.2) koRp13, = Rpiz, ok13.
Next consider, as in §3.2, the inclusion i : X® < X*. In addition to the functor L:*, consider
Li* : D, (BV* x AV x X 1) Aygeys (F1)Y)
— D&y, (AVF X AV* X X3) e (gonxmoywie (FE x (FE xx FY) x ).
We denote by

~

k1 Do (AV X AV x XN (5 FY) 5 Dy, (AV* x AV x XY\ geys (FL)H)P

the linear Koszul duality equivalence associated with the dualizing complex wx K Ox Mwy K
Ox[2dx] on X*, and by

R
K3 Diyg,, (AV x AV x X*) Oy (pxxpyxp (F X (F xx F) x F))
~ % . TRT ¥ R
= Dy (AVF X AV 5 X3) Opes (e xmyxpe (FX % (FH xx FH) x F1))

the linear Koszul duality equivalence associated with the dialyzing complex wx Kwyx K Ox[2dx]
on X3 . By Proposition 2.4.2 we have an isomorphism of functors

(3.3.3) Li*oky = k3o Li*.
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As in §3.2 again, consider now the inclusion F' x F488 x [' <+ F'x (F x x F)) x F, and the induced
morphisms of dg-schemes

f:(AV X AV x X3) Apy (g myxi (F X F8 X F) —
(AV x AV x X®) Apy ey myxis (F % (F xx F) x F),
9: AV X AV* % X3) Ager (e wx oy (FX % (FY xx FY)y x FY) —
(AV* 5 AV* X X3) A (o g oy (FF x (FI28) L by,
In addition to the functor Lf*, consider the functor
Rg. : DGy, ((ZV* x AV* x X3) r%E*x(E*xXE*)xE* (Ft x (Ft xx F) x Fl))
= D (AVF X AV* X X3) e (e x oy (FF x (F8)1 5 FLy)
defined as in §2.3. We denote by
Ky : D (AV < AV 5 X3) Ay 5y pyxp (F x FU25 x F))
% D (AV* 5 AV X X2) gy (1o y oy (F 3 (FH8)L 5 pby)oP

the linear Koszul duality equivalence associated with the dualizing complex wy Xwyx XOx [2dx].
Then by Proposition 2.3.1 we have an isomorphism of functors

(3.3.4) ks o Lf* = Rg, o k3.
Finally, consider the morphism of vector bundles

p:Ex(ExxEYxE—>ExXXxEFE

defined in §3.2. By Proposition 2.2.2, the dual morphism 1) := ¢" induces a functor

LU D, (AV* 5 AVF X X3) e (1o g oy i (FF x (FI28)L 5 by

= Dy (BAV x X3) Apeyxups (FX x X x F)),
and we have an isomorphism of functors
(3.3.5) k130 R®, = LU* o k.
Combining isomorphisms (3.2.1), (3.3.2), (3.3.3), (3.3.4) and (3.3.5) we obtain, for M; and Mo
in DG, . ((AV x X?) Aexe (F x F)), a bifunctorial isomorphism
KMy *x Ms) = ko R(p13)« 0 R®y o Lf* o Li*(My B M)

R(p13)«(LY* o Rg, o Li* o ka(Mo B My)).

It is clear by definition that ry(Mg B M;) = k(M) B k(M1) in DE o ((AVF x AV* x
X4)5(E*)4 (F+)1). Hence, to finish the proof we only have to check that for N, N in

Dfsy, (AVF x X?) A (F+ x F1)) there is a bifunctorial isomorphism

I

(3.3.6) = o LU* 0 Rg, o Li* (N1 BNG) 2 (EN) G piy (EN2),
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where Z’ is defined similarly as Z in the beginning of this subsection, and (— é( piys —) is defined
as in §3.1.

To prove isomorphism (3.3.6) it is convenient to reverse the roles of the two subbundles, i.e. to
consider the domain, respectively codomain, of LW* is the derived category of dg-modules over
Sym(FHBFUEHF — (VA/AV x AV) @y Oxs), respectively Sym(p’ig(]:EE]:) — (V2/AV) @
Oys) (cf. [MR2, Remark 1.9.2]). In this setting, the functor L¥* is induced by the morphism
of dg-algebras

Sym(FBFHEBF - (VH/AV x AV) ® Oxs) — Sym(p}s(F BF) = (V?/AV) @k Oxs)

induced by ¢. There is a natural exact sequence of 2-term complexes of O ys-modules

psF F B Fdee B F pis(FEBF)
i - 1 — + ;
V @k Oxs (V4/AV x AV) @k Oxs (VQ/AV) ®k Oxs

where the surjection is induced by ¢, and the bottom arrow of the inclusion is induced by the
morphism

V = V4
v = (0,v,v,0)

On the other hand, the functor Rg, is induced by the natural morphism of dg-algebras

Sym(FBFWE@MF — (VI/AV x AV) @ Oxs)
— Sym(FB(FoF)BF — (VH/AV x AV) @k Oxs),

which makes the second dg-algebra a K-flat dg-module over the first one. Isomorphism (3.3.6)
follows from these observations. 0

Remark 3.3.7. Assume that the line bundle wx has a G-equivariant square root, i.e. there exists

a G-equivariant line bundle w}(/Q on X such that (w}(/2)®2 = wy. Then one can define K using

the dualizing complex w;(l/ ’ X w;(l/ 2[d x|, without affecting Proposition 3.3.1 (nor Proposition
3.4.1 below). This provides a more symmetric definition of £ in this case.

3.4. Image of the unit. As in §3.3 we consider the equivalence R. Let us denote by ¢ : E? —
X2 the projection. Consider the structure sheaf of the diagonal copy of F in E?, denoted Oar.
Then ¢.OAaFr is an object of the category

D, (AV x X x X) Ay (F x F)),

where the structure of Sp,(F" B F') @ (A V*)-dg-module is given by the composition of
SO s (FYBEFY)@k(AV*) = ¢.OFrx, F (projection to the 0-cohomology) and ¢.Opx, r — ¢+:OaF
(restriction). For simplicity, in the rest of this subsection we write Oar for ¢.Oap. Similarly
we have an object Oppy in DG ¢ ((AV* x X x X)) A = (F+ x F1)).

The idea of the proof of the following proposition is, using isomorphisms of functors proved in
Propositions 2.3.1 and 2.4.2, to reduce the claim to an explicit and easy computation.

Proposition 3.4.1. We have R(Oap) = Oppe.
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Proof. Consider the morphism A : X < X x X (inclusion of the diagonal). We denote by

ka D (AV % X) Npxyr (F xx F)) 5 Deyg, (AV* % X) Ogexme (F- xx F2)

o~

the linear Koszul duality equivalence associated with the dialyzing complex A'(wx X Ox[dx])
Ox on X. By Proposition 2.4.2, there is an isomorphism of functors

(3.4.2) ko RA, = RA, o ka,
where the functors RA* and RA* are defined as in §2.4.
Consider the object Sp, (FY) of the category
D (AV X X) Apxym (F xx F)) = DE¥(Sym(V* @ Ox — F & F¥)~Mod®),

where the dg-module structure corresponds to the diagonal inclusion 7 — F & F. Then by
definition Oar = RA,(So, (FY)). Hence, using isomorphism (3.4.2), we obtain

(3.4.3) R(Oar) = Eok(Oar @0, (wy' BOx)[-dx]) = ZoRA, ora(Sox(FY)),
where = is defined as in §3.1.

Now consider the diagonal embedding F4i2¢ < F' x y F as in §3.3. This inclusion makes Fdiag
a subbundle of E x x E. Taking the derived intersection with AV x X inside E xx F, we are
in the situation of §2.3. We consider the morphisms of dg-schemes

f i (AV x X) f%ExXEF — (AV x X)r%EXXE (F xx F),
q - (ZV* x X) r}%E*XXE* (FJ- X x FJ_) N (ZV* x X) r%E*xXE* (Fdiag)J_7
and the diagram:

KR

D, (AV % X) Apy i F) D (BAVF X X) (g e (Flag)Lyop

o s

D (AV % X) Ay (F xx F)) =2 Do (AV* X X) Ao (FX xx FL))oP

where kp is the linear Koszul duality equivalence associated with the dialyzing complex Ox.

The structure (dg-)sheaf of (AV x X) F%EXXE Fis (ANV*) ®k Soy (FY), with trivial differential
(because F' C AV x X). In particular, Sp, (F") is also an object of the top left category in
the diagram, which we denote by Op. Then, by definition, R(f").OF is the object So, (F")
appearing in (3.4.3). By Proposition 2.3.1, there is an isomorphism of functors

kao R(f)s = L(g")* o kp.
In particular we have rka(Soy (FY)) = L(¢')* o kp(OF).

Now rp(OF) is the (A F) @k S(V)-dg-module S(V) @k Ox, hence L(g')* orp(OF) is the structure
(dg-)sheaf of the derived intersection of AV* x X and F* xx F* inside (F%2)L. But the
corresponding non-derived intersection is the anti-diagonal copy (F4)*diae ¢ L L and
we have

dim(AV* x X) + dim(F* x x FY) — dim((F%28) 1) = dim((FL)2ntidiag)
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Hence the derived intersection is concentrated in degree 0. One easily deduces, using isomor-
phism (3.4.3), that R(Oar) = Oppi. O

From Proposition 3.4.1 one deduces the following result.

Corollary 3.4.4. Let L be a G-equivariant line bundle on X. Then Oar ®o, L is naturally
an object of Dy . ((AV x X x X) ApxE (F X F)). We have R(Oar @0y L) = Opp1 @0y LY.

4. LINEAR KOSzZUL DUALITY AND IWAHORI-MATSUMOTO INVOLUTION

4.1. Contractibility. Let X be a Noetherian scheme, and let A be a sheaf of dg-algebras on
X, bounded and concentrated in non-positive degrees. Assume that H°(A) is locally finitely
generated as an Ox-algebra, and that H(A) is locally finitely generated as an H°(A)-module.
Let D°(A) be the subcategory of the derived category of quasi-coherent A-dg-modules (the
latter being defined naturally, as in [MR1, §1.1]) whose objects have locally finitely generated
cohomology (over H(.A) or, equivalently, over H°(A)). Let K(D¢(A)) be its Grothendieck group.
Let also K(H(A)) be the Grothendieck group of the abelian category of quasi-coherent, locally
finitely generated H"(A)-modules.

Lemma 4.1.1. The natural morphism

{ K(D(A) — K(H(A))
Ml = Y (R M)

is an isomorphism of abelian groups.

Proof. Let us denote by ¢ the morphism of the lemma. Every object of D¢(.A) is isomorphic to
the image in the derived category of a bounded .A-dg-module. (This follows from the fact that
A is bounded and concentrated in non-positive degrees, using truncation functors, as defined
e.g. in [MR1, §2.1].) So let M be a bounded A-dg-module, such that M7 = 0 for j ¢ [a,b] for
some integers a < b. Let n = b — a. Consider the following filtration of M as an A-dg-module:

{O}ZM()CMlCMQC"'CMn:M,

where for j € [0,n] we put

. a+j7—1 .
M= (- 0= M o= MO LT Ker(doti) S0 -0,
Then, in K(D(A)) we have

n

(M) =D My M) =) (~1) - [HI(M)],

Jj=1 i€Z

where H?(M) is considered as an A-dg-module concentrated in degree 0. It follows that the
natural morphism K(H°(A)) — K(D¢(A)), which sends an H"(A)-module to itself, viewed as
an A-dg-module concentrated in degree 0, is an inverse to ¢. O
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4.2. Reminder on affine Hecke algebras. Now we assume that G is a connected, simply-
connected, complex semi-simple algebraic group. Let T C B C G be a torus and a Borel
subgroup of GG. Let also t C b C g be their Lie algebras. Let U be the unipotent radical of
B, and let n be its Lie algebra. Let B := G/B be the flag variety of G. Consider the Springer

variety N and the Grothendieck resolution g defined as follows:
N={(X,gB) € g*xB| Xy =0},  §:={(X,9B) € g" x B| Xz =0}.

(The variety N is naturally isomorphic to the cotangent bundle of B.) The varieties N and 3
are subbundles of the trivial vector bundle g* x B over B. In particular, there are natural maps
N — g* and g — g*. Let us consider the varieties

Z::./\N/'Xg*J\N/', Z =g Xg g
There is a natural action of G x Gy, on g* x B, where (g,t) acts via:
The subbundles A and g are G X Gy,-stable.

Let R be the root system of G, R the positive roots (chosen as the weights of g/b), S C R
the associated set of simple roots, X the weights of R (which naturally identify with the group
of characters of T'). Let also W be the Weyl group of R (or of (G,T')). For a € ® we denote by
sq € W the corresponding simple reflection. For a, 8 € ®, we let n, g be the order of 5,55 in W.
Then the (extended) affine Hecke algebra H.g associated with these data is the Z[v, v—!]-algebra
generated by elements {T,,, o € ®} U {6,, x € X}, with defining relations

(i
(ii

) ToTg---=TgT,--- (nap elements on each side)
) Gp=1

(ili) 6,0y = Opqy

(iv) Tob, =0T, if so(z) =2z

(V) O0p =T, 0Ty ifso(z)=2—«
(vi) (Ta4+v H(Th—v)=0

for a, p € S and x,y € X (see e.g. [CG, L4]).

We will be interested in the Iwahori—Matsumoto involution IM of H,g. This is the involution of
Z[v,v~1]-algebra of H.g defined on the generators by

{IM(TQ) = _Ta_l’
NM(G,) = 0

For a € S we also consider ¢, := v - T,,. Then we have IM(t,) = —q(t,) !, with ¢ = v%.

Let a € S. Let P, D B be the minimal standard parabolic subgroup associated to «, let p,
be its Lie algebra, and let P, := G/P, be the associated partial flag variety. We define the
following G X Gp-subvariety of Z:

YOé = {(X7ng792B) € g* X (B XPq B) ‘ X|g'pa = 0}

For any variety X — B over B and for x € X, we denote by Ox (z) the inverse image to X of
the line bundle on B associated with x. We use a similar notation for varieties over B x B.
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By a result of Kazhdan—Lusztig ([KL]; see also [CG, L4]) there is a natural isomorphism of
Z[v,v~1]-algebras

(4.2.1) Haz = KGCEm(Z),

where the equivariant K-theory K&*®m(Z7) is endowed with the convolution product associated
with the embedding Z C N x A. Isomorphism (4.2.1) can be defined by

{ To = —v Oy, (=p,p— )] — v [AOF]
b 2,04 ()

for o € S and z € X. Here, A : N < Zis the diagonal embedding, and for F in CthXGm(Z) we
denote by [F] its class in K-theory. The action of v is induced by the functor (1) : Con®*®m(Z) —
Coh®*®m(Z) of tensoring with the one-dimensional tautological Gm-module.

For ao € S, let
aa = {(X,gPa) € g* X Pa | X\g-pg = 0}’

where p2 is the nilpotent radical of p,. There is a natural morphism g — g,.

Consider the embedding of smooth varieties i : N x § < g x §. Associated with this morphism,
there a morphism of “restriction with supports” in K-theory

n: KGxGm(Z) N KG’XGm(Z)

(see [CG, p. 246]). As above for K&*Cm(Z), convolution endows K&*Cm(Z) with the structure
of a Z[v,v~!]-algebra. (Here we use the embedding Z C g x g to define the product.) The
following result is well known. As we could not find a reference, we include a proof.

Lemma 4.2.2. The morphism 1 is an isomorphism of Z[v,v~]-algebras.

Sketch of proof. Let us denote by j : N xN < N x gand k : N < g the embeddings. Let also
I't be the graph of k. Then 7 is the composition of the morphism in K-theory induced by the
functor

Lj* : D*Cohz(g x ) — D°Cohz (N x g)
and by the inverse of the morphism induced by

is : D*Cohz (N x N') = DPCoh (N x ).

(It is well known that 4, induces an isomorphism in K-theory.) By [R1, Lemma 1.2.3], i, is
the product on the left (for convolution) by the kernel Or,. By similar arguments, Lj* is the
product on the right by the kernel Or, . It follows from these observations that 7 is a morphism
of Z[v,v~1]-algebras.

Then we observe that Z and Z have compatible cellular fibrations (in the sense of [CG, §5.5]),
defined using the partition of B x B in G-orbits. The stratas in Z are the transverse intersections
of those of Z with N x § C § x g. It follows, using the arguments of [CG, §6.2], that 7 is an
isomorphism of Z[v, v~!]-modules, completing the proof. O

It follows in particular from this lemma that there is also an isomorphism

~

(4.2.3) Hag — KO Cm(2),
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which satisfies
{ T, — _v_l[oﬁxﬁaﬁ] + U[A*OE]
0, — [ALOz()]
(see e.g. [R1] for details). This is not exactly the isomorphism we are going to use. Instead, ob-
serve that the tensor product with the line bundle Og,5(—p, p) induces an algebra automorphism
of K&*Cm(Z), Hence there exists an isomorphism

(4.2.4) Mg — KTEm(2),

which satisfies )
To = —v [Ogx; 5(—p: p)] + v[AO]
0, +— (A, (95(3:)]

We will rather use the latter isomorphism.
Finally, we define N := #(R") = dim(B).

Remark 4.2.5. We have wg = Og(—2p); in particular, this sheaf has a G-equivariant square root.
Using Remark 3.3.7, we could have used a more symmetric equivalence. With this definition of
R, Theorem 4.3.1 below remains true if we replace isomorphism (4.2.4) by isomorphism (4.2.3).

4.3. Geometric realization of the Iwahori-Matsumoto involution. From now on we
consider a very special case of linear Koszul duality, namely the situation of Section 3 with
X =B,V =g"and F = N. We identify V* = g with g* using the Killing form. Then F=*
identifies with g. We obtain an equivalence

* R ~ = ~ * R - ~
R Dy, (Ag* X B x B) Ngexpz (N X N)) = Diyg,. (Ag* x B x B) Mgz (@ X 9)".
Here the actions of Gy, on g* are not the same on the two sides. (They are “inverse”, i.e. each
one is the composition of the other one with ¢ — ¢~1.) We denote by £, the composition of

& with the auto-equivalence of Dg,,  ((Ag* x B x B) f}%(g*xlg)z (g x §)) which inverts the G-
action. (In the realization as Gpy-equivariant dg-modules on B x B, this amounts to inverting
the internal grading.)

By Lemma 4.1.1, the Grothendieck group of the triangulated category D¢, ¢, ((Ag* X B x

B) FBW(Q*X B)2 (N x N )) is naturally isomorphic to K%*€m(Z), hence to the affine Hecke algebra
Hagr (see (4.2.1)). Similarly,® the Grothendieck group of the category Dg, . ((Ag* x B x

B) FBW(Q*Xg)Q (g x 9)) is isomorphic to K&*Cm (2), hence also to Hag (using isomorphism (4.2.4)).
One can easily check that the convolution product on derived categories of dg-sheaves defined
in Section 3 induces the convolution product in K-theory considered in §4.2, so that these
isomorphisms are algebra isomorphisms. Let us consider the automorphism [Ry] : Hag — Hast
induced by fp-

In the presentation of H,g using the generators ¢, and 6,, the scalars appearing in the relations
are polynomials in ¢ = v2. Hence we can define the involution ¢ of Hag (as an algebra) that
fixes the t,’s and 6,’s, and sends v to —v. Note that we have toIM =IM o ¢.

2In this case, a simple dimension counting as in the proof of Proposition 3.4.1 shows that the derived intersection
(Ag*xBxB) rBw(g* «5)y2 (8% @) is quasi-isomorphic, as a dg-scheme, to g x ¢« g. Hence we do not really need Lemma
4.1.1 here.
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The main result of this section is the following.

Theorem 4.3.1. The automorphism [R\] of Hag is the composition of the Iwahori-Matsumoto
involution IM and the involution ¢:

[EIM] = (olIM.

We will prove this theorem in §4.4. Before that, we need one more preliminary result.

Let a be a simple root. The coherent sheaf Oy, (p — a,—p) on Z has a natural structure of
G X Gy-equivariant dg-module over Sym(Ag Rk Ok — T H ’7}3), hence defines an object in
the category Dg ., ((Ag* x B x B) (}%(g*xlg)z (./\7 X ./\7)) Similarly, Oﬁxa g is naturally an object
of Dg . ((Ag* x B x B) r%(g* «5)2 (8 % §)). The proof of the next proposition is very similar to
that of Proposition 3.4.1.

Proposition 4.3.2. We have 8Oy, (p — a, —p)) = Oﬁxaaﬁ(_p’ p)[1].

Proof. First we observe that Oy, (p — a, —p) = Oy, (—p, p — @) (see [R1, Lemma 1.5.1]). Hence
to prove the proposition it is sufficient to prove that 8(Oy,) = Oy 5(—2p,2p — a)[1].

Consider the inclusion ¢ : X, := B xp, B — B x B. Applying the constructions of §2.4, we
obtain the diagram

Ka — R

D, (Ag* x Xa) Ogryzwx, N xp, N) i D, (Bg* x Xa) Ogry2xny § X, 8)

R
)
Li* NRE* Li* T
K

Deg,. (Ag* x B?) f%(g*xg)g/\? x N) D, (Bg* x B? r%(g*x 5)2 8 X §)°P.

Here k, is associated with the dualizing complex i'(ws X Og[N]) = Ox, (—2p,2p — )[1]. By
Proposition 2.4.2 there is an isomorphism of functors

ko Riy, = RiyoFkgq.
In particular we obtain an isomorphism

R(Oy,) = Zo Riyoka(Oy,).

Here on the right hand side Oy, is considered as an object of D¢, ¢ ((Ag* x Xy) (}%(g*p * X, ./\~/><pa

J\N/), with its natural structure of dg-module, and = is defined as in §3.1.

Now Y, is a (diagonal) subbundle of N XPp, N, Taking the derived intersection with Ag* x X,
we can apply the results of §2.3. Denoting by
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the morphisms of dg-schemes induced by inclusions, we obtain a diagram

R — R
Deg,. (A" X Xa) Nigyz s, Ya) i D (Bg* X Xa) Ngeyz s, Yoo )P

~

L") HR(f”)* R(g")« NL(EIH)*

Ko

R ~ ~ — R ~ ~
ID&'XGm((Ag* X Xa) m(g*)QXXa N Xp, N) — D&'XGm((Ag* X Xa) m(g*)QXXa g Xp, g)op

where Ky is again associated with the dualizing complex Oy, (—2p,2p — a)[1]. (Here, in the top
right corner, Y- is the orthogonal of Y, as a subbundle of (g*)? x X,,.) Let Y, denote the sheaf

of sections of Y,. The structure sheaf of (Ag* x X,) (}%(g*)zx% Yo is (A 9) @k Sox, (Vy), with
trivial differential (because Y, C Ag* x X,). In particular, Sp, (Yy) is naturally an object of
the top left category, and R(f").(Son, (Vy)) is the object Oy, considered above. By Proposition
2.3.1 we have an isomorphism of functors

Ko o R(f")« = L(g")* o ky.
In particular we obtain that ke (Oy,) = L(g")* o ky (So, (Va))-

Now the structure sheaf of (Ag* x X,) r%(g*)zx;(a Y- is (A Va) ®k Sk(g), with trivial differ-
ential. And direct computation shows that ry(Se,, (Vy)) is isomorphic to the dg-module
Ox,(—2p,2p — ) @k S(g)[1]. Then L(¢")*(Ox,(—2p,2p — ) ®k S(g)[1]) is, up to shift and
twist the structure sheaf of the derived intersection of Ag* x X, and g xp, @ inside Y;;-. But
(Bg* X Xa) 1 (3 xP. ) = § X5, 5 and

dim(Ag* x X,) + dim(g xp, §) — dim(Y;") = dim(g x5, 9) (= dim(g)).

Hence the derived intersection is quasi-isomorphic to (Ag* x X,)N (g xp, §). One easily deduces
the isomorphism of the proposition. O

12

4.4. Proof of Theorem 4.3.1. By construction we have k(M (m))
An(M(m)) = By (M)[m](m).
In particular, for a € Ha.g and f(v) € Zv,v!] we have [&p](f(v) - a) = f(—v) - [Ep](a).

K(M)[m]{—m), hence

By Proposition 3.3.1, the equivalence £y is compatible with convolution, hence also the induced
isomorphism [Ry]. Also, by Proposition 3.4.1 it sends the unit to the unit. It follows that to
prove Theorem 4.3.1 we only have to check that [£5] and ¢ o IM coincide on the generators t,
and 6.

First, Corollary 3.4.4 implies that [85](0z) = 0_,. Similarly, Proposition 4.3.2 implies that
(Sl (Or, (9 — @ —p)]) = — O, 5(—p.p)]. Hence

[Brl(Ta) = —v 7 [Og, (=pp)] + 07
=Ty, —v+ vl

Hence [8\f](ta) = —ta +v% — 1 = —q(t,)~!. This finishes the proof of the theorem.
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