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IWAHORI–MATSUMOTO INVOLUTION AND LINEAR KOSZUL DUALITY

IVAN MIRKOVIĆ AND SIMON RICHE

Abstract. In this paper we use linear Koszul duality, a geometric version of the standard
duality between modules over symmetric and exterior algebras studied in [MR1, MR2] to give
a geometric realization of the Iwahori–Matsumoto involution of affine Hecke algebras. More
generally we prove that linear Koszul duality is compatible with convolution in a general context
related to convolution algebras.

Introduction

0.1. In [MR1, MR2] we have defined and studied linear Koszul duality, a geometric version of the
standard Koszul duality between (graded) modules over the symmetric algebra of a vector space
V and (graded) modules over the exterior algebra of the dual vector space V ∗. As an application
of this construction (in a particular case), given a vector bundle A over a scheme Y (satisfying a
few technical conditions) and subbundles A1, A2 ⊂ A we obtained an equivalence of triangulated

categories between certain categories of coherent dg-sheaves on the derived intersections A1
R

∩AA2

and A⊥
1

R

∩A∗A⊥
2 . (Here A∗ is the dual vector bundle, and A⊥

1 , A
⊥
2 ⊂ A∗ are the orthogonals to

A1 and A2.)

0.2. In this paper we continue this study further in a special case related to convolution algebras
(in the sense of [CG, §8]): we let X be a smooth complex algebraic variety, V be a complex
vector space, and F ⊂ E := V × X be a subbundle. Then applying our construction in the
case Y = X × X, A = E × E, A1 = ∆V × Y (where ∆V ⊂ V 2 is the diagonal), A2 =
F × F we obtain an equivalence between triangulated categories whose Grothendieck groups
are respectively KGm(F ×V F ) and KGm(F⊥ ×V ∗ F⊥) (where Gm acts by dilatation along the
fibers of E and E∗). In fact we consider this situation more generally in the case X is endowed
with an action of a reductive group G, and V is a G-module, and obtain in this way a canonical
isomorphism

(⋆) KG×Gm(F ×V F ) ∼= KG×Gm(F⊥ ×V ∗ F⊥).

(These constructions require an extension of the results of [MR2] to the equivariant setting,
treated in Section 2.)

The main technical result is that this construction is compatible with convolution (even at the
categorical level): the derived categories of dg-sheaves on our dg-schemes are endowed with a
natural convolution product (which induces the usual convolution product of [CG] at the level
of K-theory). We prove that our equivalence intertwines these products and sends the unit to
the unit.
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2 IVAN MIRKOVIĆ AND SIMON RICHE

0.3. We apply this result to give a geometric realization of the Iwahori–Matsumoto involution
on the (extended) affine Hecke algebra Haff of a reductive algebraic group G.

The Iwahori–Matsumoto involution of Haff is a certain involution which naturally appears in
the study of representations of the reductive p-adic group dual to G in the sense of Langlands
(see e.g. [BC, BM]). This involution has a version for Lusztig’s graded affine Hecke algebra Haff

associated with Haff (i.e. the associated graded of Haff for a certain filtration, see [L1]), which
has been realized geometrically by S. Evens and the first author in [EM]. More precisely, Haff is
isomorphic to the equivariant Borel–Moore homology of the Steinberg variety Z of G ([L2, L3]),
and it is proved in [EM] that the Iwahori–Matsumoto involution is essentially given by a Fourier
transform on this homology.

In this paper we upgrade this geometric realization to the actual affine Hecke algebra Haff . This
replaces Borel–Moore homology with K-homology, and Fourier transform with Linear Koszul
duality. (Here we use Kazhdan–Lusztig geometric realization of Haff via K-homology [KL], see
also [CG].) In the notation of §0.2 this geometric situation corresponds to the case X = B (the

flag variety of G), V = g∗ (the co-adjoint representation), and F = Ñ (the Springer resolution):
then F ×V F = Z, and F⊥ ×V ∗ F⊥ is the “extended Steinberg variety”, whose (equivariant)
K-homology is naturally isomorphic to that of Z, so that (⋆) indeed induces an automorphism
of Haff .

In a sequel we will extend this result to a geometric realization of the Iwahori–Matsumoto
involution of double affine Hecke algebras.

0.4. The proofs in this paper use compatibility properties of linear Koszul duality with various
natural constructions proved in [MR2]. (More precisely, here we need equivariant analogues
of these results.) These properties are similar to well-known compatibility properties of the
Fourier–Sato transform. We will make this observation precise in [MR3], showing that linear
Koszul duality is related to Fourier isomorphism in homology by the Chern character from K-
homology to Borel–Moore homology. This will explain the relation between Theorem 4.3.1 and
the main result of [EM]. The wish to upgrade Fourier transform to Koszul duality was the
starting point of our work.

0.5. In this paper, for simplicity and since these conditions are satisfied in our main example, we
restrict ourselves to complex algebraic varieties endowed with an action of a reductive algebraic
group. Using stacks it should be possible to work in a much more general setting; we do not
consider this here.

0.6. Organization of the paper. In Section 1 we collect some useful results on derived
functors for equivariant dg-sheaves. In Section 2 we extend the main results of [MR2] to the
equivariant setting. Most of the results in the rest of the paper will be formal consequences of
these properties. In Section 3 we study the behavior of our linear Koszul duality equivalence in
the context of convolution algebras. Finally, in Section 4 we prove that a special case of linear
Koszul duality provides a geometric realization of the Iwahori–Matsumoto involution.
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0.7. Notation. If X is a complex algebraic variety1 endowed with an action of an algebraic
group G, we denote by QCohG(X), respectively CohG(X) the category of G-equivariant quasi-
coherent, respectively coherent, sheaves on X. If Y ⊆ X is a closed subscheme, we denote by
CohGY (X) the full subcategory of CohG(X) whose objects are supported set-theoretically on Y .

If X is a scheme and F , G are sheaves of OX-modules, we denote by F ⊞ G the OX2 -module
(p1)

∗F ⊕ (p2)
∗G on X2, where p1, p2 : X ×X → X are the first and second projections.

We will frequently work with Z
2-graded sheaves M. The (i, j) component of M will be denoted

Mi
j . Here “i” will be called the cohomological grading, and “j” will be called the internal

grading. Ordinary sheaves will be considered as Z
2-graded sheaves concentrated in bidegree

(0, 0).

As usual, if M is a Z
2-graded sheaf of OX -modules, we denote by M∨ the Z2-graded OX -module

such that

(M∨)ij := HomOX
(M−i

−j ,OX).

We will work with G×Gm-equivariant sheaves of quasi-coherent OX-dg-algebras over a complex
algebraic variety X endowed with an action of an algebraic group G. Recall that such an object
is a Z

2-graded sheaf of OX -dg-algebras, endowed with a differential of bidegree (1, 0) of square
0 which satisfies the Leibniz rule with respect to the cohomological grading, and also endowed
with the structure of a G-equivariant quasi-coherent sheaf, compatible with all other structures.
If A is such a dg-algebra, we denote by C(A−ModG) the category of G×Gm-equivariant quasi-

coherent sheaves of OX -dg-modules over A. We denote by D(A−ModG) the associated derived
category.

If X is a complex algebraic variety and F an OX -modules (considered as a bimodule where the
left and right actions coincide), we denote by SOX

(F), respectively
∧

OX
(F), the symmetric,

respectively exterior, algebra of F , i.e. the quotient of the tensor algebra of F by the relations
f ⊗ g− g⊗ f , respectively f ⊗ g+ g⊗ f , for f, g local sections of F . If F is a (Gm-equivariant)
complex of OX-modules, then these algebras are sheaves of (Gm-equivariant) dg-algebras in a
natural way. If F is a complex of (Gm-equivariant) OX -modules, we denote by SymOX

(F) the
graded-symmetric algebra of F , i.e. the quotient of the tensor algebra of F by the relations
f ⊗ g − (−1)|f |·|g|g ⊗ f for f, g homogeneous local sections of F . Again, this algebra is a sheaf
of (Gm-equivariant) dg-algebras in a natural way.

As in [MR2] we use the general convention that we denote by the same symbol a functor and
the induced functor between opposite categories.

0.8. Acknowledgements. This article is a sequel to [MR1, MR2]. It was started while both
authors were members of the Institute for Advanced Study in Princeton. Part of this work
was done while the second author was a student at Paris 6 University, and while he visited the
Massachusetts Institute of Technology.

I.M. was supported by NSF grants. S.R. was supported by ANR grants No. ANR-09-JCJC-
0102-01 and No. ANR-10-BLAN-0110.

1By complex algebraic variety we mean a reduced, separated scheme of finite type over C.



4 IVAN MIRKOVIĆ AND SIMON RICHE

1. Functors for G-equivariant quasi-coherent sheaves

1.1. Equivariant Grothendieck–Serre duality. Let X be a complex algebraic variety, en-
dowed with an action of a reductive algebraic group G. By [AB, Example 2.16], there exists
an object Ω in DbCohG(X) whose image under the forgetful functor to DbCoh(X) is a dualizing
complex. We will fix such an object.

We will make the following additional assumption:

(1.1.1)
For any F in CohG(X), there exists a P in CohG(X)

which is flat over OX and a surjection P ։ F .

This assumption is standard in this setting; it is satisfied e.g. if X is normal and quasi-projective
(see [CG, Proposition 5.1.26]), or if X admits an ample family of line bundles in the sense of [VV,
Definition 1.5.3]. Note also that (1.1.1) implies a similar property for quasi -coherent sheaves.

Recall that by [AB, Corollary 2.11] the natural functors

DbCohG(X) → DbQCohG(X) and DbCoh(X) → DbQCoh(X)

are both fully faithful. This will allow us not to distinguish between morphisms in these cate-
gories.

We denote by a : G×X → X the action, and by p : G×X → X the projection. Both of these
morphisms are flat and affine. Recall the “averaging functor”

Av :

{
QCoh(X) → QCohG(X)

F 7→ a∗p
∗F

.

This functor is exact, and is right adjoint to the forgetful functor For : QCohG(X) → QCoh(X)
which is exact. Hence Av sends injective objects of QCoh(X) to injective objects of QCohG(X).

From this one easily deduces that there are enough injective objects in QCohG(X), and that
every such injective object is a direct summand of an injective object of the form Av(I) for some
injective I in QCoh(X).

Recall also that for any F in CohG(X) and G in QCohG(X), the k-vector space HomOX
(F ,G)

is naturally an algebraic G-module, and that we have a canonical isomorphism

(1.1.2) Hom
QCohG(X)(F ,G)

∼=
(
HomOX

(F ,G)
)G

induced by the functor For. (Here and below, for simplicity we do not write the functor For.)
Now we prove a version of this statement for derived categories, which will simplify our con-
structions a lot.

Lemma 1.1.3. For any F ,G in DbCohG(X), the k-vector space HomDbCoh(X)(F ,G) is naturally
an algebraic G-module. Moreover, the functor For induces an isomorphism

HomDbCohG(X)(F ,G)
∼=

(
HomDbCoh(X)(F ,G)

)G
.

Proof. The construction of the G-action is standard, and left to the reader. To prove the
isomorphism, by a standard “dévissage” argument it is enough to prove that if F and G are in
CohG(X) and if j ≥ 0 the natural morphism

Exti
CohG(X)

(F ,G) →
(
ExtiCoh(X)(F ,G)

)G
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is an isomorphism. Now let I• be an injective resolution of G in the abelian category QCohG(X).
By Lemma 1.1.4 below, this complex is acyclic for the functor HomOX

(F ,−), hence can be used
to compute Exti

Coh(X)(F ,G). Then our claim easily follows from isomorphism (1.1.2) and the

fact that the functor of G-invariants is exact. �

Lemma 1.1.4. Let F be in CohG(X), and J be an injective object of QCohG(X). Then for any
j > 0 we have

Extj
QCoh(X)(F ,J ) = 0.

Proof. We can assume that J = Av(I) for some injective object I of QCoh(X). Then we have

Extj
QCoh(X)(F ,J ) = Extj

QCoh(X)(F , a∗p
∗I) ∼= Extj

QCoh(G×X)(a
∗F , p∗I)

by adjunction. As F is G-equivariant we have an isomorphism a∗F ∼= p∗F , and using adjunction
again we deduce an isomorphism

Extj
QCoh(X)(F ,J ) ∼= Extj

QCoh(X)(F , p∗p
∗J ).

Now we have p∗p
∗J ∼= k[G] ⊗k J , and it follows from [Ha, Corollary II.7.9] that p∗p

∗J is
injective. This finishes the proof. �

As Ω is a dualizing complex, we have an equivalence

DΩ := RHomOX
(−,Ω) : DbCoh(X)

∼
−→ DbCoh(X)op,

and a canonical isomorphism of functors εΩ : IdDbCoh(X) → DΩ ◦ DΩ (see e.g. [MR2, §1.5] for
details).

Let now IΩ be a bounded below complex of injective objects of QCohG(X) whose image in the

derived category D+QCohG(X) is Ω. Then the “internal Hom” bifunctor defines a functor

0D
(G)
Ω := HomOX

(−,IΩ) : C
bCohG(X) → C+QCohG(X)op.

Lemma 1.1.5. The functor 0D
(G)
Ω is exact. The induced functor on derived categories factors

through a functor between bounded derived categories

D
(G)
Ω : DbCohG(X) → DbCohG(X)op.

Moreover, the following diagram commutes up to isomorphism:

DbCohG(X)
D

(G)
Ω //

For
��

DbCohG(X)op

For
��

DbCoh(X)
DΩ // DbCoh(X)op

where vertical arrows are the usual forgetful functors.

Proof. To prove exactness, it suffices to prove that if J is an injective object of QCohG(X), the
functor

HomOX
(−,J ) : CohG(X) → QCohG(X)op
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is exact. One can assume that J = Av(I) for some injective I in QCoh(X). Then for any F in
CohG(X) we have

HomOX
(F ,J ) = HomOX

(F , a∗p
∗I) ∼= a∗HomOG×X

(a∗F , p∗I)

by adjunction. Now we have a canonical isomorphism a∗F ∼= p∗F , and we deduce isomorphisms

HomOX
(F ,J ) ∼= a∗HomOG×X

(p∗F , p∗I) ∼= a∗p
∗HomOX

(F ,I) ∼= Av
(
HomOX

(F ,I)
)
.

As both the functors HomOX
(−,I) and Av are exact, we deduce the claim, hence exactness of

0D
(G)
Ω .

Let us denote by ′D
(G)
Ω the functor induced between derived categories, and by ′DΩ the non-

equivariant analogue. Now, let us prove that the following diagram commutes:

(1.1.6)

DbCohG(X)
′D

(G)
Ω //

For
��

D+QCohG(X)op

For
��

DbCoh(X)
′DΩ // D+QCoh(X)op

Let JΩ be a complex of injective objects in QCoh(X) whose image in D+QCoh(X) is Ω, so
that the functor ′DΩ is the functor induced by the exact functor HomOX

(−,JΩ) : C
bCoh(X) →

C+QCoh(X)op. By standard arguments there exists a quasi-isomorphism IΩ
qis
−→ JΩ in the

category C+QCoh(X). We denote by KΩ the cone of this morphism. To prove the commutativity
it is sufficient to prove that for any F in CbCohG(X) the natural morphism

HomOX
(F ,IΩ) → HomOX

(F ,JΩ)

is a quasi-isomorphism, or in other words that the complex HomOX
(F ,KΩ) is acyclic. By our

assumption (1.1.1), there exists a complex L in C−CohG(X) whose objects are OX -flat and a

quasi-isomorphism L
qis
−→ F . Using what was checked in the first paragraph of this proof, one

can show that the induced morphismHomOX
(F ,KΩ) → HomOX

(L,KΩ) is a quasi-isomorphism.
Now, as KΩ is an acyclic complex and L a bounded above complex of flat OX-modules the
complex HomOX

(L,KΩ) is acyclic. This finishes the proof of the commutativity of (1.1.6).

Finally, as the functor ′DΩ takes values in DbCoh(X), one deduces the second claim of the lemma
and the commutativity of the diagram from the commutativity of (1.1.6). �

Corollary 1.1.7. There exists a canonical isomorphism Id
∼
−→ D

(G)
Ω ◦ D

(G)
Ω of endofunctors of

DbCohG(X). In particular, D
(G)
Ω is an equivalence of categories.

Proof. For F in DbCohG(X), the isomorphism εΩ(F) : F
∼
−→ DΩ ◦ DΩ(F) is canonical, and in

particular invariant under the action of G on HomDbCoh(X)(F ,DΩ ◦ DΩ(F)). Using the com-
mutativity of the diagram in Lemma 1.1.5 and Lemma 1.1.3, we deduce the existence of the

canonical isomorphism Id
∼
−→ D

(G)
Ω ◦D

(G)
Ω . The final claim is obvious. �
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1.2. Grothendieck–Serre duality in the dg setting. As above let X be a complex al-
gebraic variety, endowed with an action of a reductive algebraic group G. Let also A be a
Gm-equivariant, non-positively (cohomologically) graded, graded-commutative, G-equivariant
sheaf of quasi-coherent OX -dg-algebras. We assume furthermore that A is locally finitely gener-
ated over A0, that A0 is locally finitely generated as an OX -algebra, and finally that A is K-flat
as a Gm-equivariant A0-dg-module (in the sense of [Sp]). If A denotes the (G-equivariant) affine
scheme over X such that the pushforward of OA to X is A0, then there exists a Gm-equivariant
quasi-coherent G-equivariant OA-dg-algebra A′ whose direct image to X is A. Moreover there
exists an equivalence of categories C(A′−ModG) ∼= C(A−ModG). Using this trick we can reduce
our situation to the case A is OX-coherent and K-flat as an OX -dg-module.

Using conventions similar to those in [MR2], we denote by Dbc(A−ModG) the subcategory of
D(A−ModG) whose objects are the dg-modules M such that, for any j ∈ Z, the complex Mj

has bounded and coherent cohomology.

Lemma 1.2.1. For any F ,G in Dbc(A−ModG) the C-vector space HomDbc(A−Mod)(F ,G) has a
natural structure of an algebraic G-module. Moreover, the natural morphism

(1.2.2) HomDbc(A−ModG)(F ,G) →
(
HomDbc(A−Mod)(F ,G)

)G

induced by the forgetful functor is an isomorphism.

Proof. The construction of the G-action is similar the the one in §1.1. Now, let us prove that
(1.2.2) is an isomorphism. As explained above, we can assume that A is OX -coherent and K-flat
as an OX -dg-module. Consider the induction functor

IndA :

{
C(OX−ModG) → C(A−ModG)

M 7→ A⊗OX
M

.

This functor is left adjoint to the forgetful functor ForA : C(A−ModG) → C(OX−ModG) (of the
A-action). Moreover, by our K-flatness assumption the functor IndA is exact, hence induces a
functor between derived categories, which we denote similarly. Then the functors

IndA : D(OX−ModG) → D(A−ModG) and ForA : D(A−ModG) → D(OX−ModG)

are again adjoint. AsA isOX -coherent, the functor IndA sends the subcategory Dbc(OX−ModG)
into Dbc(A−ModG).

Using these remarks and Lemma 1.1.3, one can show that (1.2.2) is an isomorphism in the case
F = IndA(F

′) for some object F ′ in Dbc(OX−ModG). Now we explain how to reduce the general
case to this case. In fact, using a simplified form of the construction in [R2, proof of Theorem
1.3.3] (without taking K-flat resolutions), one can check that any object of Dbc(A−ModG) is a
direct limit of a family (Pp)p≥0 of objects of Dbc(A−ModG) such that each Pp admits a finite

filtration with subquotients of the form IndA(H) for some H in Dbc(OX−ModG). As the functor
of G-fixed points commutes with inverse limits, this reduces the general case to the case treated
above, and finishes the proof. �

Finally we can prove our “duality” statement for G-equivariant A-dg-modules. First, recall that
there is a canonical equivalence of triangulated categories

DA
Ω : Dbc(A−Mod)

∼
−→ Dbc(A−Mod)op,



8 IVAN MIRKOVIĆ AND SIMON RICHE

where the exponent “bc” has the same meaning as above, see [MR2, §1.5] for the details. The
equivariant analogue of this statement can be deduced from the properties of the functor DA

Ω

using Lemma 1.2.1, just as the properties of the functor D
(G)
Ω where deduced from those of DΩ

in §1.1.

Proposition 1.2.3. There exists an equivalence of categories

D
A,(G)
Ω : Dbc(A−ModG)

∼
−→ Dbc(A−ModG)op

such that the following diagram commutes (where the vertical arrows are the natural forgetful
functors):

Dbc(A−ModG)
D

A,(G)
Ω

∼
//

For
��

Dbc(A−ModG)op

For
��

Dbc(A−Mod)
DA

Ω

∼
// Dbc(A−Mod)op

and a canonical isomorphism of functors Id
∼
−→ D

A,(G)
Ω ◦D

A,(G)
Ω .

1.3. Inverse image of equivariant dg-sheaves. We let X and Y be complex algebraic
varieties, each endowed with an action of an algebraic group G. (In practice G will be reductive,
as above, but this property will not be used in this subsection.) We also assume that condition
(1.1.1) is satisfied on Y .

Let A, respectively B, be a sheaf of non-positively graded, graded-commutative, quasi-coherent,
G×Gm-equivariant OX -dg-algebras, respectively OY -dg-algebras. Let f : (X,A) → (Y,B) be a
G×Gm-equivariant morphism of dg-ringed spaces. By [BR, Proposition 3.2.2] (see also [MR2,
§1.1]) the inverse image functor

f∗ : C(B−Mod) → C(A−Mod)

admits a left derived functor

Lf∗ : D(B−Mod) → D(A−Mod).

This property follows from the existence ofK-flat resolutions in C(B−Mod). The same arguments
extend to the G-equivariant setting under our assumption that condition (1.1.1) holds on Y .

Lemma 1.3.1. Assume that condition (1.1.1) holds on Y .

For any object M in C(B−ModG), there exists an object P in C(B−ModG), which is K-flat as

a B-dg-module, and a quasi-isomorphism of G×Gm-equivariant B-dg-modules P
qis
−→ F .

In particular, it follows from this lemma that the functor

f∗ : C(B−ModG) → C(A−ModG)

admits a left derived functor

Lf∗ : D(B−ModG) → D(A−ModG).
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Moreover, the following diagram commutes by definition:

(1.3.2)

D(B−ModG)

For
��

Lf∗

// D(A−ModG)

For
��

D(B−Mod)
Lf∗

// D(A−Mod).

(This property justifies our convention that the notation Lf∗ denotes the derived functor both
in the equivariant and non-equivariant settings.)

1.4. Direct image of equivariant dg-sheaves. We let again X and Y be complex algebraic
varieties, each endowed with an action of an algebraic group G. Let A, respectively B, be a
sheaf of non-positively graded, graded-commutative, G × Gm-equivariant, quasi-coherent OX -
dg-algebras, respectively OY -dg-algebras. Let f : (X,A) → (Y,B) be a G × Gm-equivariant
morphism of dg-ringed spaces.

We will assume that A is locally free of finite rank over A0, that A0 is locally finitely generated
as an OX -algebra, and finally that A is K-flat as a Gm-equivariant A0-dg-module.

It follows from [BR, Proposition 3.3.2] (existence of K-injective resolutions in C(A−Mod)), see
also [MR2, §1.1], that the direct image functor

f∗ : C(A−Mod) → C(B−Mod)

admits a right derived functor

(1.4.1) Rf∗ : D(A−Mod) → D(B−Mod).

Our goal in this subsection is to extend this property to the equivariant setting. In this case for
simplicity we restrict to a subcategory.

We denote by C+(A−ModG) the subcategory of C(A−ModG) whose objects are bounded below

in the cohomological grading (uniformly in the internal grading), and by D+(A−ModG) the full
subcategory of D(A−ModG) whose objects are the dg-modules whose cohomology is bounded
below. Note that the natural functor from the derived category associated with C+(A−ModG)
to D(A−ModG) is fully faithful, with essential image D+(A−ModG).

Proposition 1.4.2. (1) For any object M in C+(A−ModG), there exists an object I in

C+(A−ModG) which is K-injective in C(A−ModG) and a quasi-isomorphism M
qis
−→ I.

(2) The functor f∗ : C
+(A−ModG) → C(B−ModG) admits a right derived functor

Rf∗ : D
+(A−ModG) → D(B−ModG).

Moreover, the following diagram is commutative up to isomorphism:

D+(A−ModG)
Rf∗ //

For
��

D(B−ModG)

For
��

D(A−Mod)
Rf∗

(1.4.1)
// D(B−Mod).
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Proof. (1) As in §1.2 we can assume that A0 = OX , so that A is locally free of finite rank over
OX . Under this assumption, the proof of [R2, Lemma 1.3.5] (using the coinduction functor
CoindA) generalizes directly to our setting and proves property (1).

(2) The existence of the derived functor follows from (1). Now, let us prove the commutativity
of our diagram. Again we can assume that A0 = OX . As explained in [VV, Proof of Lemma
1.5.9], any injective object of QCohG(X) is f∗-acyclic. It follows easy from this that the diagram
commutes if A = OX and B = OY . Using this and [BR, Proposition 3.3.6] (compatibility of
derived direct images for A- and OX -dg-modules), it suffices to prove that the following diagram
commutes:

D+(A−ModG)
Rf∗ //

ForA
��

D(B−ModG)

ForB
��

D+(OX−ModG)
R(f0)∗ // D(OY −Mod)

(where f0 : X → Y is the morphism of schemes underlying f .) However, this is clear from
the construction in (1) and the fact that, under our assumptions, the functor CoindA sends

a bounded below complex of injective objects of QCohG(X) to a complex which has the same
property. �

2. Linear Koszul duality

2.1. Linear Koszul duality in the equivariant setting. We let X be a complex alge-
braic variety, endowed with an action of a reductive algebraic group G, and Ω be an object in
DbCohG(X) whose image in DbCoh(X) is a dualizing complex (see §1.1). We will assume that
condition (1.1.1) is satisfied.

Let E be a G-equivariant vector bundle on X and let F1, F2 ⊂ E be G-equivariant subbundles.
As in [MR2], we denote by E ,F1,F2 the sheaves of sections of E,F1, F2, and we define the
G×Gm-equivariant complexes

X := (0 → F⊥
1 → F∨

2 → 0), Y := (0 → F2 → E/F1 → 0).

In X , F⊥
1 is in bidegree (−1, 2), F∨

2 is in bidegree (0, 2), and the differential is the composition of
the natural maps F⊥

1 →֒ E∨
։ F∨

2 . In Y, F2 is in bidegree (1,−2), E/F1 is in bidegree (2,−2),
and the differential is the opposite of the composition of the natural maps F2 →֒ E ։ E/F1.
We will work with the G×Gm-equivariant sheaves of dg-algebras

T := Sym(X ), S := Sym(Y), R := Sym(Y[2]).

We set

Dc
G×Gm

(F1
R

∩E F2) := Dfg(T −ModG), Dc
G×Gm

(F⊥
1

R

∩E∗ F⊥
2 ) := Dfg(R−ModG),

where the exponent “fg” means the subcategory of dg-modules over T (or R) whose cohomology
is locally finitely generated over H•(T ) (or H•(R)). We also set

Dc
Gm

(F1
R

∩E F2) := Dfg(T −Mod{1}), Dc
Gm

(F⊥
1

R

∩E∗ F⊥
2 ) := Dfg(R−Mod{1}),



IWAHORI–MATSUMOTO INVOLUTION AND LINEAR KOSZUL DUALITY 11

where here we consider the action of the trivial group on X (i.e. we forget the action of G).
Recall that by [MR2, Theorem 1.9.3] there exists a canonical equivalence of categories

κΩ : Dc
Gm

(F1
R

∩E F2)
∼
−→ Dc

Gm

(F⊥
1

R

∩E∗ F⊥
2 )op.

The following result is an equivariant analogue of this equivalence.

Theorem 2.1.1. There exists a canonical equivalence of triangulated categories

κGΩ : Dc
G×Gm

(F1
R

∩E F2)
∼
−→ Dc

G×Gm

(F⊥
1

R

∩E∗ F⊥
2 )op,

which satisfies κGΩ(M[n]〈m〉) = κGΩ(M)[−n + m]〈−m〉 and such that the following diagram
commutes, where the vertical arrows are the forgetful functors:

Dc
G×Gm

(F1
R

∩E F2)
κG
Ω

∼
//

For
��

Dc
G×Gm

(F⊥
1

R

∩E∗ F⊥
2 )op

For
��

Dc
Gm

(F1
R

∩E F2)
κΩ

∼
// Dc

Gm

(F⊥
1

R

∩E∗ F⊥
2 )op.

Proof. We use the same notation as in [MR2]; in particular we will consider the equivalences A ,

A
bc
, DT

Ω and ξ constructed in [MR2, §1]. With this notation we have κΩ = ξ ◦ A
bc

◦DT
Ω .

It is straightforward to construct an equivalence of categories A G which makes the following
diagram commutative:

D(T −ModG−)
A G

∼
//

For

��

D(S−ModG−)

For
��

D(T −Mod−)
A

∼
// D(S−ModG−).

(Here, as in [MR2], the index “−” means the subcategories of dg-modules which are bounded
above for the internal grading. A similar convention applies to the index “+” below.) This
equivalence restricts to an equivalence

A
bc
G : Dbc(T −ModG−)

∼
−→ Dbc(S−ModG−)

(where, as in [MR2] or in §1.2, the exponent “bc” means the subcategories of dg-modules whose
internal degree components have bounded and coherent cohomology). Now in §1.2 we have

constructed an equivalence D
T ,(G)
Ω which induces an equivalence

D
T ,(G)
Ω : Dbc(T −ModG+) → Dbc(T −ModG−)

op.

Moreover, by Proposition 1.2.3 the following diagram commutes:

Dbc(T −ModG+)
D

T ,(G)
Ω

∼
//

For
��

Dbc(T −ModG−)
op

For
��

Dbc(T −Mod+)
D

T
Ω

∼
// Dbc(T −Mod−)

op.
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Finally the regrading functor has an obvious G-equivariant analogue ξG and, setting κGΩ :=

ξG ◦ A
bc
G ◦D

T ,(G)
Ω we obtain an equivalence which makes the following diagram commutative:

(2.1.2)

Dbc(T −ModG+)
κG
Ω

∼
//

For
��

Dbc(R−ModG+)
op

For
��

Dbc(T −Mod+)
κΩ

∼
// Dbc(R−Mod−)

op.

It is easy to check that the natural functors

Dfg(T −ModG+) → Dfg(T −ModG) and Dfg(R−ModG−) → Dfg(R−ModG)

are equivalences of categories and, using the commutativity of (2.1.2), that under these equiva-
lences κGΩ restricts to an equivalence

κGΩ : Dfg(T −ModG)
∼
−→ Dfg(R−ModG)op.

This finishes the proof. �

Remark 2.1.3. From now on we will omit the exponent “G”, and write κΩ instead of κGΩ . This
convention is justified by the commutativity of the diagram in Theorem 2.1.1.

2.2. Linear Koszul duality and morphisms of vector bundles. We let G, X, E be as in
§2.1. Let also E′ be another G-equivariant vector bundle on X, and let

E

&&MM
MM

MM

φ // E′

xxqqq
qq
q

X

be a morphism of G-equivariant vector bundles over X. We consider G-stable subbundles
F1, F2 ⊆ E and F ′

1, F
′
2 ⊆ E′, and assume that

φ(F1) ⊆ F ′
1, φ(F2) ⊆ F ′

2.

Let E , F1, F2, E
′, F ′

1, F
′
2 be the respective sheaves of sections of E, F1, F2, E

′, F ′
1, F

′
2. By

Theorem 2.1.1 we have linear Koszul duality equivalences

κΩ : Dc
G×Gm

(F1
R

∩E F2)
∼
−→ Dc

G×Gm

(F⊥
1

R

∩E∗ F⊥
2 )op,

κ′Ω : Dc
G×Gm

(F ′
1

R

∩E′ F ′
2)

∼
−→ Dc

G×Gm

((F ′
1)

⊥ R

∩(E′)∗ (F
′
2)

⊥)op.

We consider the (G-equivariant) complexes X (for the vector bundle E) and X ′ (for the vector
bundle E′) defined as in §2.1. The morphism φ defines a morphism of complexes X ′ → X , to
which we can apply (equivariant analogues of) the constructions of [MR2, §2.1].

More geometrically, φ induces a morphism of dg-schemes Φ : F1
R

∩E F2 → F ′
1

R

∩E′ F ′
2, and we have

a (derived) direct image functor

RΦ∗ : D
c
G×Gm

(F1
R

∩E F2) → D(T ′−ModG).

(This functor is just the restriction of scalars functor associated with the morphism T ′ → T .)

The following result immediately follows from [MR2, Lemma 2.3.1].
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Lemma 2.2.1. Assume that the induced morphism of schemes between non-derived intersections

F1 ∩E F2 → F ′
1 ∩E′ F ′

2 is proper. Then the functor RΦ∗ sends Dc
G×Gm

(F1
R

∩E F2) into the

subcategory Dc
G×Gm

(F ′
1

R

∩E′ F ′
2).

We also consider the (derived) inverse image functor

LΦ∗ : Dc
G×Gm

(F ′
1

R

∩E′ F ′
2) → D(T −ModG).

(This functor is just the extension of scalars functor associated with the morphism T ′ → T .)

The morphism φ induces a morphism of vector bundles

ψ := φ∨ : (E′)∗ → E∗,

which satisfies ψ((F ′
i )

⊥) ⊂ F⊥
i for i = 1, 2. Hence the above constructions and results also apply

to ψ. We use similar notation.

The following result is an equivariant analogue of [MR2, Proposition 2.3.2]. The same proof
applies; we leave the details to the reader.

Proposition 2.2.2. (1) Assume that the morphism of schemes F1∩EF2 → F ′
1∩E′F ′

2 induced

by φ is proper. Then LΨ∗ sends Dc
G×Gm

(F⊥
1

R

∩E∗ F⊥
2 ) into Dc

G×Gm

((F ′
1)

⊥ R

∩(E′)∗ (F
′
2)

⊥).
Moreover, there exists a natural isomorphism of functors

LΨ∗ ◦ κΩ ∼= κ′Ω ◦RΦ∗ : Dc
G×Gm

(F1
R

∩E F2) → Dc
G×Gm

((F ′
1)

⊥ R

∩(E′)∗ (F
′
2)

⊥)⊥.

(2) Assume that the morphism of schemes (F ′
1)

⊥ ∩(E′)∗ (F ′
2)

⊥ → F⊥
1 ∩E′ F⊥

2 induced by ψ

is proper. Then LΦ∗ sends Dc
G×Gm

(F ′
1

R

∩E′ F ′
2) into Dc

G×Gm

(F1
R

∩E F2). Moreover, there
exists a natural isomorphism of functors

κΩ ◦ LΦ∗ ∼= RΨ∗ ◦ κ
′
Ω : Dc

G×Gm

(F ′
1

R

∩E′ F ′
2) → Dc

G×Gm

(F⊥
1

R

∩E∗ F⊥
2 )⊥.

In particular, if both assumptions are satisfied, the following diagram is commutative:

Dc
G×Gm

(F1
R

∩E F2)
κΩ

∼
//

RΦ∗

��

Dc
G×Gm

(F⊥
1

R

∩E∗ F⊥
2 )op

LΨ∗

��

Dc
G×Gm

(F ′
1

R

∩E′ F ′
2)

LΦ∗

OO

κ′
Ω

∼
// Dc

G×Gm

((F ′
1)

⊥ R

∩(E′)∗ (F
′
2)

⊥)op.

RΨ∗

OO

2.3. Particular case: inclusion of a subbundle. We will mainly use only a very special
case of Proposition 2.2.2, which we state here for future reference. It is the case when E = E′,
φ = Id, F1 = F ′

1 (and F ′
2 is any G-stable subbundle containing F2). In this case we denote by

f : F1
R

∩E F2 → F1
R

∩E F
′
2, g : F⊥

1

R

∩E∗ (F ′
2)

⊥ → F⊥
1

R

∩E∗ F⊥
2

the morphisms of dg-schemes induced by F2 →֒ F ′
2, (F

′
2)

⊥ →֒ F⊥
2 . The assumption that the

morphisms between non-derived intersections are proper is always satisfied here (because these
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morphisms are closed embeddings). Hence by Proposition 2.2.2 we have functors

Rf∗ : D
c
G×Gm

(F1
R

∩E F2) → Dc
G×Gm

(F1
R

∩E F
′
2),

Lf∗ : Dc
G×Gm

(F1
R

∩E F
′
2) → Dc

G×Gm

(F1
R

∩E F2),

and similarly for g. Moreover, the following proposition holds true.

Proposition 2.3.1. Consider the following diagram:

Dc
G×Gm

(F1
R

∩E F2)
κΩ

∼
//

Rf∗
��

Dc
G×Gm

(F⊥
1

R

∩E∗ F⊥
2 )op

Lg∗

��

Dc
G×Gm

(F1
R

∩E F
′
2)

κ′
Ω

∼
//

Lf∗

OO

Dc
G×Gm

(F⊥
1

R

∩E∗ (F ′
2)

⊥)op.

Rg∗

OO

There exist natural isomorphisms of functors

κ′Ω ◦Rf∗ ∼= Lg∗ ◦ κΩ and κΩ ◦ Lf∗ ∼= Rg∗ ◦ κ
′
Ω.

2.4. Linear Koszul duality and base change. Let X and Y be complex algebraic varieties,
each endowed with an action of a reductive algebraic group G. We assume that condition (1.1.1)
holds on X and Y , and we let Ω be an object of DbCohG(Y ) whose image in DbCoh(Y ) is a
dualizing complex. We let π : X → Y be a G-equivariant morphism. Then π!Ω is an object of
DbCohG(X) whose image in DbCoh(X) is a dualizing complex.

Consider a G-equivariant vector bundleE on Y , and let F1, F2 ⊂ E beG-equivariant subbundles.
Consider also EX := E×Y X, which is a G-equivariant vector bundle on X, and the subbundles
FX
i := Fi×Y X ⊂ EX (i = 1, 2). If E , F1, F2 are the respective sheaves of sections of E, F1, F2,

then π∗E , π∗F1, π
∗F2 are the sheaves of sections of EX , FX

1 , F
X
2 , respectively. Out of these

data we define the complexes XX and XY as in §2.1, and then the dg-algebras TX , SX , RX and
TY , SY , RY . Note that we have natural isomorphisms of dg-algebras

TX ∼= π∗TY , SX
∼= π∗SY , RX

∼= π∗RY .

We define the categories

Dc
G×Gm

(F1
R

∩E F2), Dc
G×Gm

(F⊥
1

R

∩E∗ F⊥
2 )

Dc
G×Gm

(FX
1

R

∩EX FX
2 ), Dc

G×Gm

((FX
1 )⊥

R

∩(EX)∗ (F
X
2 )⊥)

as in §2.1. Then by Theorem 2.1.1 there are equivalences of categories

κXπ!Ω : Dc
G×Gm

(FX
1

R

∩EX FX
2 )

∼
−→ Dc

G×Gm

((FX
1 )⊥

R

∩(EX)∗ (F
X
2 )⊥)op,

κYΩ : Dc
G×Gm

(F1
R

∩E F2)
∼
−→ Dc

G×Gm

(F⊥
1

R

∩E∗ F⊥
2 )op.

If X and Y are smooth varieties, then Ω is a shift of a line bundle, so that π∗Ω is also a dualizing
complex on X. Hence under this condition we also have an equivalence

κXπ∗Ω : Dc
G×Gm

(FX
1

R

∩EX FX
2 )

∼
−→ Dc

G×Gm

((FX
1 )⊥

R

∩(EX)∗ (F
X
2 )⊥)op.

The morphism of schemes π induces a morphism of dg-schemes

π̂ : FX
1

R

∩EX FX
2 → F1

R

∩E F2.
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This morphism can be represented by the natural morphism of dg-ringed spaces (X, TX) →
(Y, TY ). We have derived functors Rπ̂∗ and Lπ̂∗ for this morphism by the constructions of

§§1.3–1.4. Note in particular that Dc
G×Gm

(FX
1

R

∩EX FX
2 ) is a subcategory of D+(TX−ModG), so

that Rπ̂∗ is defined on this category.

As in [MR2], we will say that π has finite Tor dimension if for any F in QCoh(Y ), the object
Lf∗F of DQCoh(X) has bounded cohomology.

Lemma 2.4.1. (1) Assume π has finite Tor-dimension. The functor

Lπ̂∗ : Dc
G×Gm

(F1
R

∩E F2) → D(TX−ModG)

takes values in Dc
G×Gm

(FX
1

R

∩EX FX
2 ).

(2) Assume π is proper. Then the functor

Rπ̂∗ : D
c
G×Gm

(FX
1

R

∩EX FX
2 ) → D(TY−ModG)

takes values in Dc
G×Gm

(F1
R

∩E F2).

Proof. Statement (1) follows directly from its non-equivariant analogue (see [MR2, Lemma
3.1.2]) and the commutativity of diagram (1.3.2). The proof of (2) is similar, using again
[MR2, Lemma 3.1.2] and the commutativity of the diagram in Proposition 1.4.2. �

Similarly, π induces a morphism of dg-schemes

π̃ : (FX
1 )⊥

R

∩(EX)∗ (F
X
2 )⊥ → F⊥

1
R

∩E∗ F⊥
2

hence, if π has finite Tor-dimension, a functor

Lπ̃∗ : Dc
G×Gm

(F⊥
1

R

∩E∗ F⊥
2 ) → Dc

G×Gm

((FX
1 )⊥

R

∩(EX)∗ (F
X
2 )⊥),

and, if π is proper, a functor

Rπ̃∗ : D
c
G×Gm

((FX
1 )⊥

R

∩(EX)∗ (F
X
2 )⊥) → Dc

G×Gm

(F⊥
1

R

∩E∗ F⊥
2 ).

Proposition 2.4.2. (1) If π is proper, there exists a natural isomorphism of functors

κYΩ ◦Rπ̂∗ ∼= Rπ̃∗ ◦ κ
X
π!Ω : Dc

G×Gm

(FX
1

R

∩EX FX
2 ) → Dc

G×Gm

(F⊥
1

R

∩E∗ F⊥
2 )op.

(2) If X and Y are smooth varieties, then there exists a natural isomorphism of functors

Lπ̃∗ ◦ κYΩ
∼= κXπ∗Ω ◦ Lπ̂∗ : Dc

G×Gm

(F1
R

∩E F2) → Dc
G×Gm

((FX
1 )⊥

R

∩(EX)∗ (F
X
2 )⊥)op.

Proof. (1) In Proposition [MR2, Proposition 3.4.2] we have proved a similar isomorphism in the
non-equivariant setting. As in the proof of Corollary 1.1.7, the equivariant case follows, using
Lemma 1.2.1. (Here we also use the compatibility of the functors κYΩ , Rπ̂∗, Rπ̃∗ and κX

π!Ω
with

their non-equivariant analogues, see Proposition 1.4.2 and Theorem 2.1.1.)

(2) The proof is similar. �
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3. Linear Koszul duality and convolution

From now on we will specialize to a particular geometric situation suitable to convolution alge-
bras. We fix a smooth complex algebraic variety, endowed with an action of a reductive algebraic
group G. Note that condition (1.1.1) is satisfied on any such variety by [CG, Proposition 5.1.26].

3.1. First description of convolution. Let V be a finite dimensional G-module, and F ⊂
E := V × X a G-equivariant subbundle of the trivial vector bundle with fiber V over X. Let
∆V ⊂ V ×V be the diagonal. We will apply the constructions of §2.1 to the G-equivariant vector
bundle E×E over X×X (for the diagonal G-action) and the G-stable subbundles ∆V ×X×X
and F × F . We denote by F the sheaf of sections of F .

We want to define a convolution product on the category

Dc
G×Gm

(
(∆V ×X ×X)

R

∩E×E (F × F )
)
.

More concretely, by definition (see §2.1) we have

Dc
G×Gm

(
(∆V ×X ×X)

R

∩E×E (F × F )
)

∼= Dfg
(
SOX×X

(F∨
⊞ F∨)⊗k (

∧
V ∗)−ModG

)

where on the right hand side V ∗ is identified with the orthogonal of ∆V in V × V , i.e. with
the anti-diagonal copy of V ∗ in V ∗ × V ∗, and the differential is induced by the morphism
V ∗ ⊗k OX2 → F∨

⊞ F∨ induced by the morphism F × F →֒ E × E → V × V ։ (V × V )/∆V .

For (i, j) = (1, 2), (2, 3) or (1, 3) we have the projection pi,j : X3 → X2 on the i-th and j-th
factors. There are associated morphisms of dg-schemes

p̂1,2 : (∆V ×X3)
R

∩E×E×X (F × F ×X) → (∆V ×X2)
R

∩E×E (F × F ),

p̂2,3, p̂1,3, and functors L(p̂1,2)
∗, L(p̂2,3)

∗, R(p̂1,3)∗ (see §2.4; in this setting E×E×X is considered
as a vector bundle over X3). For i = 1, 2, 3 we also denote by pi : X

3 → X the projection on
the i-th factor.

Next we consider a bifunctor

(3.1.1)

C
(
SO

X3 (p
∗
1,2(F

∨
⊞ F∨))⊗k (

∧
V ∗)−ModG

)
× C

(
SO

X3 (p
∗
2,3(F

∨
⊞ F∨))⊗k (

∧
V ∗)−ModG

)

→ C
(
SO

X3 (p
∗
1,3(F

∨
⊞ F∨))⊗k (

∧
V ∗)−ModG

)
.

Here, in the first category the morphism V ∗⊗kOX3 → p∗1,2(F
∨
⊞F∨) involved in the differential

is the composition of the anti-diagonal embedding V ∗ → V ∗ × V ∗ with the morphism induced
by F × F × X →֒ V × V × X3 → V × V , so that SO

X3 (p
∗
1,2(F

∨
⊞ F∨)) ⊗k (

∧
V ∗) is the

structure sheaf of (∆V ×X3)
R

∩E×E×X (F ×F ×X). Similarly, the second category corresponds

to the dg-scheme (∆V ×X3)
R

∩X×E×E (X ×F ×F ), and the third one to the dg-scheme (∆V ×

X3)
R

∩E×X×E (F × X × F ). The bifunctor (3.1.1) takes the dg-modules M1 and M2 to the
dg-module M1 ⊗SO

X3
(p∗2F

∨) M2, where the action of SO
X3 (p

∗
1,3(F

∨
⊞ F∨)) is the natural one

(i.e. we forget the action of the middle copy of SOX
(F∨)). To define the action of

∧
V ∗, we

remark that M1⊗SO
X3

(p∗2F
∨)M2 has a natural action of the dg-algebra (

∧
V ∗)⊗k (

∧
V ∗), which
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restricts to an action of
∧
V ∗ via the morphism of dg-algebras

∧
V ∗ → (

∧
V ∗)⊗k (

∧
V ∗) which

sends an element x ∈ V ∗ to x⊗ 1 + 1⊗ x.

The bifunctor (3.1.1) has a derived bifunctor (which can be computed by means of K-flat

resolutions), which induces a bifunctor (−
L

⊗F 3 −):

Dfg
(
SO

X3 (p
∗
1,2(F

∨
⊞F∨))⊗k (

∧
V ∗)−ModG

)
×Dfg

(
SO

X3 (p
∗
2,3(F

∨
⊞F∨))⊗k (

∧
V ∗)−ModG

)

→ Dfg
(
SO

X3 (p
∗
1,3(F

∨
⊞ F∨))⊗k (

∧
V ∗)−ModG

)
.

(This follows from the fact that the projection π1,3 : F ×V F ×V F → F ×V F is proper, using
arguments similar to those in the proof of [MR2, Lemma 2.3.1]; see also Lemma 2.2.1).

Finally, we obtain a convolution product

(− ⋆−) : Dc
G×Gm

(
(∆V ×X ×X)

R

∩E×E (F × F )
)
×Dc

G×Gm

(
(∆V ×X ×X)

R

∩E×E (F × F )
)

→ Dc
G×Gm

(
(∆V ×X ×X)

R

∩E×E (F × F )
)

defined by the formula

M1 ⋆M2 := R(p̂1,3)∗
(
L(p̂1,2)

∗M2
L

⊗F 3 L(p̂2,3)
∗M1

)
.

This convolution is associative in the natural sense. (We leave this verification to the reader; it
will not be used in the paper.)

There is a natural G×Gm-equivariant projection

p : (∆V ×X ×X)
R

∩E×E (F × F ) → F × F

corresponding to the morphism of OX2-dg-algebras

SO
X2 (F

∨
⊞ F∨) → SO

X2 (F
∨
⊞ F∨)⊗k (

∧
V ∗),

and an associated direct image functor Rp∗. The essential image of Rp∗ lies in the full subcat-
egory Db

propCoh
G(F × F ) of DbCohG(F × F ) whose objects are the complexes whose support

is contained in a subvariety Z ⊂ F × F such that both projections Z → F are proper. This
category Db

propCoh
G(F × F ) has a natural convolution product (see e.g. [R1, §1.2]), and the

functor

Rp∗ : D
c
G×Gm

(
(∆V ×X ×X)

R

∩E×E (F × F )
)
→ Db

propCoh
G(F × F )

is compatible with the two convolution products.

3.2. Alternative description. Before studying the compatibility of convolution with linear
Koszul duality we give an alternative (and equivalent) definition of the convolution bifunctor.
Consider the morphism

i :

{
X3 →֒ X4

(x, y, z) 7→ (x, y, y, z)
,

and the vector bundle E4 over X4. In §2.4 we have defined a “base change” functor

Lî∗ : Dc
G×Gm

(
(∆V ×∆V ×X4)

R

∩E4 F 4
)

→ Dc
G×Gm

(
(∆V ×∆V ×X3)

R

∩E×(E×XE)×E (F × (F ×X F )× F )
)
.
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Next, consider the inclusion of vector subbundles of E × (E ×X E)× E (over X3)

F × F diag × F →֒ F × (F ×X F )× F,

where F diag ⊂ F ×X F is the diagonal copy of F . In §2.3 we have defined a functor

Lf∗ : Dc
G×Gm

(
(∆V ×∆V ×X3)

R

∩E×(E×XE)×E (F × (F ×X F )× F )
)

→ Dc
G×Gm

(
(∆V ×∆V ×X3)

R

∩E×(E×XE)×E (F × F diag × F )
)
.

Finally, consider the morphism of vector bundles over X3

φ : E × (E ×X E)× E ∼= V 4 ×X3 → E ×X ×E ∼= V 2 ×X3

induced by the linear map
{

V 4 → V 2

(a, b, c, d) 7→ (a− b+ c, d)
.

We have φ(∆V ×∆V ×X3) = ∆V ×X3, and φ(F × F diag × F ) = F ×X × F . In §2.2 we have
defined a functor

RΦ∗ : D
c
G×Gm

(
(∆V ×∆V ×X3)

R

∩E×(E×XE)×E (F × F diag × F )
)

→ Dc
G×Gm

(
(∆V ×X3)

R

∩E×X×E (F ×X × F )
)
.

Now, consider two objects M1, M2 of Dc
G×Gm

(
(∆V ×X2)

R

∩E×E (F ×F )
)
. The external tensor

product M2 ⊠ M1 is naturally an object of the category Dc
G×Gm

(
(∆V × ∆V × X4)

R

∩E4 F 4
)
.

Then, with the definitions as above, we clearly have a (bifunctorial) isomorphism

(3.2.1) M1 ⋆M2
∼= R(p̂1,3)∗ ◦RΦ∗ ◦ Lf

∗ ◦ Lî∗(M2 ⊠M1)

in Dc
G×Gm

(
(∆V ×X2)

R

∩E×E (F × F )
)
.

3.3. Compatibility with Koszul duality. Consider the same situation as in §3.1 and §3.2.
We denote by dX the dimension of X, and by ωX the canonical line bundle on X.

The orthogonal of F ×F in E ×E is F⊥ ×F⊥. On the other hand, the orthogonal of ∆V ×X2

in E×E is the anti-diagonal ∆V ∗×X2 ⊂ E∗×E∗. There is an automorphism of E×E sending
∆V ∗ ×X2 to ∆V ∗ ×X2, and preserving F⊥ × F⊥, namely multiplication by −1 on the second
copy of V ∗. Hence composing the linear Koszul duality equivalence of Theorem 2.1.1

κ : Dc
G×Gm

(
(∆V ×X ×X)

R

∩E×E (F × F )
) ∼

−→ Dc
G×Gm

(
(∆V ∗ ×X ×X)

R

∩E∗×E∗ (F⊥ × F⊥)
)op

associated with the dualizing complex ωX ⊠OX [dX ] with the natural equivalence

Ξ : Dc
G×Gm

(
(∆V ∗ ×X ×X)

R

∩E∗×E∗ (F⊥ × F⊥)
)

∼
−→ Dc

G×Gm

(
(∆V ∗ ×X ×X)

R

∩E∗×E∗ (F⊥ × F⊥)
)

provides an equivalence

K : Dc
G×Gm

(
(∆V ×X ×X)

R

∩E×E (F ×F )
) ∼

−→ Dc
G×Gm

(
(∆V ∗ ×X ×X)

R

∩E∗×E∗ (F⊥ ×F⊥)
)op

.

The domain and the codomain of K are both endowed with a convolution product ⋆.
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The main result of this section is the following proposition. Its proof relies on the results of
§§2.2–2.4.

Proposition 3.3.1. The equivalence K is compatible with convolution, i.e. for any objects M1,

M2 of Dc
G×Gm

(
(∆V ×X ×X)

R

∩E×E (F × F )
)
there exists a bifunctorial isomorphism

K(M1 ⋆M2) ∼= K(M1) ⋆ K(M2)

in Dc
G×Gm

(
(∆V ∗ ×X ×X)

R

∩E∗×E∗ (F⊥ × F⊥)
)
.

Proof. To compute the left hand side we use isomorphism (3.2.1). First, consider the natural
projection p1,3 : X

3 → X2. In §2.4 we have defined functors

Rp̂1,3∗ : D
c
G×Gm

(
(∆V ×X3)

R

∩E×X×E (F ×X × F )
)

→ Dc
G×Gm

(
(∆V ×X2)

R

∩E×E (F × F )
)
,

Rp̃1,3∗ : D
c
G×Gm

(
(∆V ∗ ×X3)

R

∩E∗×X×E∗ (F⊥ ×X × F⊥)
)

→ Dc
G×Gm

(
(∆V ∗ ×X2)

R

∩E∗×E∗ (F⊥ × F⊥)
)
.

We denote by

κ1,3 : D
c
G×Gm

(
(∆V ×X3)

R

∩E×X×E (F ×X × F )
)

∼
−→ Dc

G×Gm

(
(∆V ∗ ×X3)

R

∩E∗×X×E∗ (F⊥ ×X × F⊥)
)op

the linear Koszul duality equivalence of Theorem 2.1.1 associated with the dualizing complex
(p1,3)

!(ωX ⊠OX [dX ]) ∼= ωX ⊠ ωX ⊠OX [2dX ]. By Proposition 2.4.2 we have an isomorphism of
functors

(3.3.2) κ ◦Rp̂1,3∗
∼= Rp̃1,3∗ ◦ κ1,3.

Next consider, as in §3.2, the inclusion i : X3 →֒ X4. In addition to the functor Lî∗, consider

Lĩ∗ : Dc
G×Gm

(
(∆V ∗ ×∆V ∗ ×X4)

R

∩(E∗)4 (F
⊥)4

)

→ Dc
G×Gm

(
(∆V ∗ ×∆V ∗ ×X3)

R

∩E∗×(E∗×XE∗)×E∗ (F⊥ × (F⊥ ×X F⊥)× F⊥)
)
.

We denote by

κ4 : D
c
G×Gm

(
(∆V ×∆V ×X4)

R

∩E4 F 4
) ∼

−→ Dc
G×Gm

(
(∆V ∗ ×∆V ∗ ×X4)

R

∩(E∗)4 (F
⊥)4

)op

the linear Koszul duality equivalence associated with the dualizing complex ωX ⊠ OX ⊠ ωX ⊠

OX [2dX ] on X4, and by

κ3 : D
c
G×Gm

(
(∆V ×∆V ×X3)

R

∩E×(E×XE)×E (F × (F ×X F )× F )
)

∼
−→ Dc

G×Gm

(
(∆V ∗ ×∆V ∗ ×X3)

R

∩E∗×(E∗×XE∗)×E∗ (F⊥ × (F⊥ ×X F⊥)× F⊥)
)

the linear Koszul duality equivalence associated with the dialyzing complex ωX ⊠ωX ⊠OX [2dX ]
on X3 . By Proposition 2.4.2 we have an isomorphism of functors

(3.3.3) Lĩ∗ ◦ κ4 ∼= κ3 ◦ Lî
∗.
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As in §3.2 again, consider now the inclusion F ×F diag×F →֒ F ×(F ×X F )×F , and the induced
morphisms of dg-schemes

f : (∆V ×∆V ×X3)
R

∩E×(E×XE)×E (F × F diag × F ) →

(∆V ×∆V ×X3)
R

∩E×(E×XE)×E (F × (F ×X F )× F ),

g : (∆V ∗ ×∆V ∗ ×X3)
R

∩E∗×(E∗×XE∗)×E∗ (F⊥ × (F⊥ ×X F⊥)× F⊥) →

(∆V ∗ ×∆V ∗ ×X3)
R

∩E∗×(E∗×XE∗)×E∗ (F⊥ × (F diag)⊥ × F⊥).

In addition to the functor Lf∗, consider the functor

Rg∗ : D
c
G×Gm

(
(∆V ∗ ×∆V ∗ ×X3)

R

∩E∗×(E∗×XE∗)×E∗ (F⊥ × (F⊥ ×X F⊥)× F⊥)
)

→ Dc
G×Gm

(
(∆V ∗ ×∆V ∗ ×X3)

R

∩E∗×(E∗×XE∗)×E∗ (F⊥ × (F diag)⊥ × F⊥)
)

defined as in §2.3. We denote by

κ′3 : D
c
G×Gm

(
(∆V ×∆V ×X3)

R

∩E×(E×XE)×E (F × F diag × F )
)

∼
−→ Dc

G×Gm

(
(∆V ∗ ×∆V ∗ ×X3)

R

∩E∗×(E∗×XE∗)×E∗ (F⊥ × (F diag)⊥ × F⊥)
)op

the linear Koszul duality equivalence associated with the dualizing complex ωX⊠ωX⊠OX [2dX ].
Then by Proposition 2.3.1 we have an isomorphism of functors

(3.3.4) κ′3 ◦ Lf
∗ ∼= Rg∗ ◦ κ3.

Finally, consider the morphism of vector bundles

φ : E × (E ×X E)× E → E ×X × E

defined in §3.2. By Proposition 2.2.2, the dual morphism ψ := φ∨ induces a functor

LΨ∗ : Dc
G×Gm

(
(∆V ∗ ×∆V ∗ ×X3)

R

∩E∗×(E∗×XE∗)×E∗ (F⊥ × (F diag)⊥ × F⊥)
)

→ Dc
G×Gm

(
(∆V ∗ ×X3)

R

∩E∗×X×E∗ (F⊥ ×X × F⊥)
)
,

and we have an isomorphism of functors

(3.3.5) κ1,3 ◦RΦ∗
∼= LΨ∗ ◦ κ′3.

Combining isomorphisms (3.2.1), (3.3.2), (3.3.3), (3.3.4) and (3.3.5) we obtain, for M1 and M2

in Dc
G×Gm

(
(∆V ×X2)

R

∩E×E (F × F )
)
, a bifunctorial isomorphism

κ(M1 ⋆M2) ∼= κ ◦R(p̂1,3)∗ ◦RΦ∗ ◦ Lf
∗ ◦ Lî∗(M2 ⊠M1)

∼= R(p̃1,3)∗
(
LΨ∗ ◦Rg∗ ◦ Lĩ

∗ ◦ κ4(M2 ⊠M1)
)
.

It is clear by definition that κ4(M2 ⊠ M1) ∼= κ(M2) ⊠ κ(M1) in Dc
G×Gm

(
(∆V ∗ × ∆V ∗ ×

X4)
R

∩(E∗)4 (F
⊥)4

)
. Hence, to finish the proof we only have to check that for N1, N2 in

Dc
G×Gm

(
(∆V ∗ ×X2)

R

∩E∗×E∗ (F⊥ × F⊥)
)
there is a bifunctorial isomorphism

(3.3.6) Ξ′ ◦ LΨ∗ ◦Rg∗ ◦ Lĩ
∗(N1 ⊠N2) ∼= (ΞN1)

L

⊗(F⊥)3 (ΞN2),
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where Ξ′ is defined similarly as Ξ in the beginning of this subsection, and (−
L

⊗(F⊥)3 −) is defined
as in §3.1.

To prove isomorphism (3.3.6) it is convenient to reverse the roles of the two subbundles, i.e. to
consider the domain, respectively codomain, of LΨ∗ is the derived category of dg-modules over
Sym

(
F ⊞Fdiag

⊞F → (V 4/∆V ×∆V )⊗k OX3

)
, respectively Sym

(
p∗1,3(F ⊞F) → (V 2/∆V )⊗k

OX3

)
(cf. [MR2, Remark 1.9.2]). In this setting, the functor LΨ∗ is induced by the morphism

of dg-algebras

Sym
(
F ⊞ Fdiag

⊞ F → (V 4/∆V ×∆V )⊗k OX3

)
−→ Sym

(
p∗1,3(F ⊞ F) → (V 2/∆V )⊗k OX3

)

induced by φ. There is a natural exact sequence of 2-term complexes of OX3 -modules



p∗2F
↓

V ⊗k OX3


 →֒




F ⊞ Fdiag
⊞ F

↓
(V 4/∆V ×∆V )⊗k OX3


 ։




p∗1,3(F ⊞F)
↓

(V 2/∆V )⊗k OX3


 ,

where the surjection is induced by φ, and the bottom arrow of the inclusion is induced by the
morphism {

V → V 4

v 7→ (0, v, v, 0)
.

On the other hand, the functor Rg∗ is induced by the natural morphism of dg-algebras

Sym
(
F ⊞Fdiag

⊞ F → (V 4/∆V ×∆V )⊗k OX3

)

−→ Sym
(
F ⊞ (F ⊕ F)⊞ F → (V 4/∆V ×∆V )⊗k OX3

)
,

which makes the second dg-algebra a K-flat dg-module over the first one. Isomorphism (3.3.6)
follows from these observations. �

Remark 3.3.7. Assume that the line bundle ωX has a G-equivariant square root, i.e. there exists

a G-equivariant line bundle ω
1/2
X on X such that (ω

1/2
X )⊗2 ∼= ωX . Then one can define K using

the dualizing complex ω
−1/2
X ⊠ ω

−1/2
X [dX ], without affecting Proposition 3.3.1 (nor Proposition

3.4.1 below). This provides a more symmetric definition of K in this case.

3.4. Image of the unit. As in §3.3 we consider the equivalence K. Let us denote by q : E2 →
X2 the projection. Consider the structure sheaf of the diagonal copy of F in E2, denoted O∆F .
Then q∗O∆F is an object of the category

Dc
G×Gm

(
(∆V ×X ×X)

R

∩E×E (F × F )
)
,

where the structure of SO
X2 (F

∨
⊞ F∨) ⊗k (

∧
V ∗)-dg-module is given by the composition of

SO
X2 (F

∨
⊞F∨)⊗k(

∧
V ∗) → q∗OF×V F (projection to the 0-cohomology) and q∗OF×V F → q∗O∆F

(restriction). For simplicity, in the rest of this subsection we write O∆F for q∗O∆F . Similarly

we have an object O∆F⊥ in Dc
G×Gm

(
(∆V ∗ ×X ×X)

R

∩E∗×E∗ (F⊥ × F⊥)
)
.

The idea of the proof of the following proposition is, using isomorphisms of functors proved in
Propositions 2.3.1 and 2.4.2, to reduce the claim to an explicit and easy computation.

Proposition 3.4.1. We have K(O∆F ) ∼= O∆F⊥.
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Proof. Consider the morphism ∆ : X →֒ X ×X (inclusion of the diagonal). We denote by

κ∆ : Dc
G×Gm

(
(∆V ×X)

R

∩E×XE (F ×X F )
) ∼

−→ Dc
G×Gm

(
(∆V ∗ ×X)

R

∩E∗×XE∗ (F⊥ ×X F⊥)
)op

the linear Koszul duality equivalence associated with the dialyzing complex ∆!(ωX ⊠OX [dX ]) ∼=
OX on X. By Proposition 2.4.2, there is an isomorphism of functors

(3.4.2) κ ◦R∆̂∗
∼= R∆̃∗ ◦ κ∆,

where the functors R∆̂∗ and R∆̃∗ are defined as in §2.4.

Consider the object SOX
(F∨) of the category

Dc
G×Gm

(
(∆V ×X)

R

∩E×XE (F ×X F )
)

∼= Dfg
(
Sym(V ∗ ⊗k OX → F∨ ⊕F∨)−ModG

)
,

where the dg-module structure corresponds to the diagonal inclusion F →֒ F ⊕ F . Then by
definition O∆F

∼= R∆̂∗

(
SOX

(F∨)
)
. Hence, using isomorphism (3.4.2), we obtain

(3.4.3) K(O∆F ) = Ξ ◦ κ(O∆F ⊗O
X2 (ω

−1
X ⊠OX)[−dX ]) ∼= Ξ ◦R∆̃∗ ◦ κ∆(SOX

(F∨)),

where Ξ is defined as in §3.1.

Now consider the diagonal embedding F diag →֒ F ×X F as in §3.3. This inclusion makes F diag

a subbundle of E ×X E. Taking the derived intersection with ∆V ×X inside E ×X E, we are
in the situation of §2.3. We consider the morphisms of dg-schemes

f ′ : (∆V ×X)
R

∩E×XE F → (∆V ×X)
R

∩E×XE (F ×X F ),

g′ : (∆V ∗ ×X)
R

∩E∗×XE∗ (F⊥ ×X F⊥) → (∆V ∗ ×X)
R

∩E∗×XE∗ (F diag)⊥,

and the diagram:

Dc
G×Gm

((∆V ×X)
R

∩E×XE F )
κF

∼
//

Rf∗
��

Dc
G×Gm

((∆V ∗ ×X)
R

∩E∗×XE∗ (F diag)⊥)op

Lg∗

��

Dc
G×Gm

((∆V ×X)
R

∩E×XE (F ×X F ))
κ∆

∼
//

Lf∗

OO

Dc
G×Gm

((∆V ∗ ×X)
R

∩E∗×XE∗ (F⊥ ×X F⊥))op

Rg∗

OO

where κF is the linear Koszul duality equivalence associated with the dialyzing complex OX .

The structure (dg-)sheaf of (∆V ×X)
R

∩E×XE F is (
∧
V ∗)⊗k SOX

(F∨), with trivial differential
(because F ⊂ ∆V × X). In particular, SOX

(F∨) is also an object of the top left category in
the diagram, which we denote by OF . Then, by definition, R(f ′)∗OF is the object SOX

(F∨)
appearing in (3.4.3). By Proposition 2.3.1, there is an isomorphism of functors

κ∆ ◦R(f ′)∗ ∼= L(g′)∗ ◦ κF .

In particular we have κ∆(SOX
(F∨)) ∼= L(g′)∗ ◦ κF (OF ).

Now κF (OF ) is the (
∧

F)⊗kS(V )-dg-module S(V )⊗kOX , hence L(g′)∗◦κF (OF ) is the structure
(dg-)sheaf of the derived intersection of ∆V ∗ × X and F⊥ ×X F⊥ inside (F diag)⊥. But the
corresponding non-derived intersection is the anti-diagonal copy (F⊥)antidiag ⊂ F⊥ ×X F⊥, and
we have

dim(∆V ∗ ×X) + dim(F⊥ ×X F⊥)− dim((F diag)⊥) = dim((F⊥)antidiag).
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Hence the derived intersection is concentrated in degree 0. One easily deduces, using isomor-
phism (3.4.3), that K(O∆F ) ∼= O∆F⊥ . �

From Proposition 3.4.1 one deduces the following result.

Corollary 3.4.4. Let L be a G-equivariant line bundle on X. Then O∆F ⊗OX
L is naturally

an object of Dc
G×Gm

(
(∆V ×X×X)

R

∩E×E (F ×F )
)
. We have K(O∆F ⊗OX

L) ∼= O∆F⊥ ⊗OX
L∨.

4. Linear Koszul duality and Iwahori–Matsumoto involution

4.1. Contractibility. Let X be a Noetherian scheme, and let A be a sheaf of dg-algebras on
X, bounded and concentrated in non-positive degrees. Assume that H0(A) is locally finitely
generated as an OX -algebra, and that H(A) is locally finitely generated as an H0(A)-module.
Let Dc(A) be the subcategory of the derived category of quasi-coherent A-dg-modules (the
latter being defined naturally, as in [MR1, §1.1]) whose objects have locally finitely generated
cohomology (over H(A) or, equivalently, over H0(A)). Let K(Dc(A)) be its Grothendieck group.
Let also K(H0(A)) be the Grothendieck group of the abelian category of quasi-coherent, locally
finitely generated H0(A)-modules.

Lemma 4.1.1. The natural morphism
{

K(Dc(A)) → K(H0(A))
[M] 7→

∑
i∈Z(−1)i · [Hi(M)]

is an isomorphism of abelian groups.

Proof. Let us denote by φ the morphism of the lemma. Every object of Dc(A) is isomorphic to
the image in the derived category of a bounded A-dg-module. (This follows from the fact that
A is bounded and concentrated in non-positive degrees, using truncation functors, as defined
e.g. in [MR1, §2.1].) So let M be a bounded A-dg-module, such that Mj = 0 for j /∈ Ja, bK for
some integers a < b. Let n = b− a. Consider the following filtration of M as an A-dg-module:

{0} = M0 ⊂ M1 ⊂ M2 ⊂ · · · ⊂ Mn = M,

where for j ∈ J0, nK we put

Mj := (· · · 0 → Ma → · · · → Ma+j−1 da+j−1

−−−−→ Ker(da+j) → 0 · · · ).

Then, in K(Dc(A)) we have

[M] =
n∑

j=1

[Mj/Mj−1] =
∑

i∈Z

(−1)i · [Hi(M)],

where Hi(M) is considered as an A-dg-module concentrated in degree 0. It follows that the
natural morphism K(H0(A)) → K(Dc(A)), which sends an H0(A)-module to itself, viewed as
an A-dg-module concentrated in degree 0, is an inverse to φ. �



24 IVAN MIRKOVIĆ AND SIMON RICHE

4.2. Reminder on affine Hecke algebras. Now we assume that G is a connected, simply-
connected, complex semi-simple algebraic group. Let T ⊂ B ⊂ G be a torus and a Borel
subgroup of G. Let also t ⊂ b ⊂ g be their Lie algebras. Let U be the unipotent radical of
B, and let n be its Lie algebra. Let B := G/B be the flag variety of G. Consider the Springer

variety Ñ and the Grothendieck resolution g̃ defined as follows:

Ñ := {(X, gB) ∈ g∗ × B | X|g·b = 0}, g̃ := {(X, gB) ∈ g∗ × B | X|g·n = 0}.

(The variety Ñ is naturally isomorphic to the cotangent bundle of B.) The varieties Ñ and g̃

are subbundles of the trivial vector bundle g∗ ×B over B. In particular, there are natural maps

Ñ → g∗ and g̃ → g∗. Let us consider the varieties

Z := Ñ ×g∗ Ñ , Z := g̃×g∗ g̃.

There is a natural action of G×Gm on g∗ × B, where (g, t) acts via:

(g, t) · (X,hB) := (t−2(g ·X), ghB).

The subbundles Ñ and g̃ are G×Gm-stable.

Let R be the root system of G, R+ the positive roots (chosen as the weights of g/b), S ⊂ R+

the associated set of simple roots, X the weights of R (which naturally identify with the group
of characters of T ). Let also W be the Weyl group of R (or of (G,T )). For α ∈ Φ we denote by
sα ∈W the corresponding simple reflection. For α, β ∈ Φ, we let nα,β be the order of sαsβ inW .
Then the (extended) affine Hecke algebra Haff associated with these data is the Z[v, v−1]-algebra
generated by elements {Tα, α ∈ Φ} ∪ {θx, x ∈ X}, with defining relations

(i) TαTβ · · · = TβTα · · · (nα,β elements on each side)

(ii) θ0 = 1

(iii) θxθy = θx+y

(iv) Tαθx = θxTα if sα(x) = x

(v) θx = Tαθx−αTα if sα(x) = x− α

(vi) (Tα + v−1)(Tα − v) = 0

for α, β ∈ S and x, y ∈ X (see e.g. [CG, L4]).

We will be interested in the Iwahori–Matsumoto involution IM of Haff . This is the involution of
Z[v, v−1]-algebra of Haff defined on the generators by

{
IM(Tα) = −T−1

α ,
IM(θx) = θ−x.

For α ∈ S we also consider tα := v · Tα. Then we have IM(tα) = −q(tα)
−1, with q = v2.

Let α ∈ S. Let Pα ⊃ B be the minimal standard parabolic subgroup associated to α, let pα
be its Lie algebra, and let Pα := G/Pα be the associated partial flag variety. We define the
following G×Gm-subvariety of Z:

Yα := {(X, g1B, g2B) ∈ g∗ × (B ×Pα B) | X|g·pα = 0}.

For any variety X → B over B and for x ∈ X, we denote by OX(x) the inverse image to X of
the line bundle on B associated with x. We use a similar notation for varieties over B × B.
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By a result of Kazhdan–Lusztig ([KL]; see also [CG, L4]) there is a natural isomorphism of
Z[v, v−1]-algebras

(4.2.1) Haff
∼
−→ KG×Gm(Z),

where the equivariant K-theory KG×Gm(Z) is endowed with the convolution product associated

with the embedding Z ⊂ Ñ × Ñ . Isomorphism (4.2.1) can be defined by
{
Tα 7→ −v−1[OYα(−ρ, ρ− α)] − v−1[∆∗OÑ ]

θx 7→ [∆∗OÑ (x)]

for α ∈ S and x ∈ X. Here, ∆ : Ñ →֒ Z is the diagonal embedding, and for F in CohG×Gm(Z) we
denote by [F ] its class in K-theory. The action of v is induced by the functor 〈1〉 : CohG×Gm(Z) →
CohG×Gm(Z) of tensoring with the one-dimensional tautological Gm-module.

For α ∈ S, let

g̃α := {(X, gPα) ∈ g∗ × Pα | X|g·pnα
= 0},

where pnα is the nilpotent radical of pα. There is a natural morphism g̃ → g̃α.

Consider the embedding of smooth varieties i : Ñ × g̃ →֒ g̃× g̃. Associated with this morphism,
there a morphism of “restriction with supports” in K-theory

η : KG×Gm(Z) → KG×Gm(Z)

(see [CG, p. 246]). As above for KG×Gm(Z), convolution endows KG×Gm(Z) with the structure
of a Z[v, v−1]-algebra. (Here we use the embedding Z ⊂ g̃ × g̃ to define the product.) The
following result is well known. As we could not find a reference, we include a proof.

Lemma 4.2.2. The morphism η is an isomorphism of Z[v, v−1]-algebras.

Sketch of proof. Let us denote by j : Ñ × Ñ →֒ Ñ × g̃ and k : Ñ →֒ g̃ the embeddings. Let also
Γk be the graph of k. Then η is the composition of the morphism in K-theory induced by the
functor

Lj∗ : DbCohZ(g̃ × g̃) → DbCohZ(Ñ × g̃)

and by the inverse of the morphism induced by

i∗ : D
bCohZ(Ñ × Ñ ) → DbCohZ(Ñ × g̃).

(It is well known that i∗ induces an isomorphism in K-theory.) By [R1, Lemma 1.2.3], i∗ is
the product on the left (for convolution) by the kernel OΓk

. By similar arguments, Lj∗ is the
product on the right by the kernel OΓk

. It follows from these observations that η is a morphism
of Z[v, v−1]-algebras.

Then we observe that Z and Z have compatible cellular fibrations (in the sense of [CG, §5.5]),
defined using the partition of B×B in G-orbits. The stratas in Z are the transverse intersections

of those of Z with Ñ × g̃ ⊂ g̃ × g̃. It follows, using the arguments of [CG, §6.2], that η is an
isomorphism of Z[v, v−1]-modules, completing the proof. �

It follows in particular from this lemma that there is also an isomorphism

(4.2.3) Haff
∼
−→ KG×Gm(Z),
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which satisfies {
Tα 7→ −v−1[Og̃×g̃α

g̃] + v[∆∗Og̃]

θx 7→ [∆∗Og̃(x)]

(see e.g. [R1] for details). This is not exactly the isomorphism we are going to use. Instead, ob-
serve that the tensor product with the line bundleOg̃×g̃(−ρ, ρ) induces an algebra automorphism

of KG×Gm(Z). Hence there exists an isomorphism

(4.2.4) Haff
∼
−→ KG×Gm(Z),

which satisfies {
Tα 7→ −v−1[Og̃×g̃α

g̃(−ρ, ρ)] + v[∆∗Og̃]

θx 7→ [∆∗Og̃(x)]
.

We will rather use the latter isomorphism.

Finally, we define N := #(R+) = dim(B).

Remark 4.2.5. We have ωB = OB(−2ρ); in particular, this sheaf has a G-equivariant square root.
Using Remark 3.3.7, we could have used a more symmetric equivalence. With this definition of
K, Theorem 4.3.1 below remains true if we replace isomorphism (4.2.4) by isomorphism (4.2.3).

4.3. Geometric realization of the Iwahori–Matsumoto involution. From now on we
consider a very special case of linear Koszul duality, namely the situation of Section 3 with

X = B, V = g∗ and F = Ñ . We identify V ∗ = g with g∗ using the Killing form. Then F⊥

identifies with g̃. We obtain an equivalence

K : Dc
G×Gm

(
(∆g∗ × B × B)

R

∩(g∗×B)2 (Ñ × Ñ )
) ∼

−→ Dc
G×Gm

(
(∆g∗ × B × B)

R

∩(g∗×B)2 (g̃× g̃)
)op

.

Here the actions of Gm on g∗ are not the same on the two sides. (They are “inverse”, i.e. each
one is the composition of the other one with t 7→ t−1.) We denote by KIM the composition of

K with the auto-equivalence of Dc
G×Gm

(
(∆g∗ × B × B)

R

∩(g∗×B)2 (g̃ × g̃)
)
which inverts the Gm-

action. (In the realization as Gm-equivariant dg-modules on B × B, this amounts to inverting
the internal grading.)

By Lemma 4.1.1, the Grothendieck group of the triangulated category Dc
G×Gm

(
(∆g∗ × B ×

B)
R

∩(g∗×B)2 (Ñ × Ñ )
)
is naturally isomorphic to KG×Gm(Z), hence to the affine Hecke algebra

Haff (see (4.2.1)). Similarly,2 the Grothendieck group of the category Dc
G×Gm

(
(∆g∗ × B ×

B)
R

∩(g∗×B)2 (g̃× g̃)
)
is isomorphic to KG×Gm(Z), hence also to Haff (using isomorphism (4.2.4)).

One can easily check that the convolution product on derived categories of dg-sheaves defined
in Section 3 induces the convolution product in K-theory considered in §4.2, so that these
isomorphisms are algebra isomorphisms. Let us consider the automorphism [KIM] : Haff → Haff

induced by KIM.

In the presentation of Haff using the generators tα and θx, the scalars appearing in the relations
are polynomials in q = v2. Hence we can define the involution ι of Haff (as an algebra) that
fixes the tα’s and θx’s, and sends v to −v. Note that we have ι ◦ IM = IM ◦ ι.

2In this case, a simple dimension counting as in the proof of Proposition 3.4.1 shows that the derived intersection

(∆g∗×B×B)
R

∩(g∗×B)2 (g̃× g̃) is quasi-isomorphic, as a dg-scheme, to g̃×g∗ g̃. Hence we do not really need Lemma

4.1.1 here.
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The main result of this section is the following.

Theorem 4.3.1. The automorphism [KIM] of Haff is the composition of the Iwahori–Matsumoto
involution IM and the involution ι:

[KIM] = ι ◦ IM.

We will prove this theorem in §4.4. Before that, we need one more preliminary result.

Let α be a simple root. The coherent sheaf OYα(ρ − α,−ρ) on Z has a natural structure of
G× Gm-equivariant dg-module over Sym

(
∆g⊗k OB×B → TB ⊞ TB

)
, hence defines an object in

the category Dc
G×Gm

(
(∆g∗×B×B)

R

∩(g∗×B)2 (Ñ × Ñ )
)
. Similarly, Og̃×g̃α

g̃ is naturally an object

of Dc
G×Gm

(
(∆g∗ ×B ×B)

R

∩(g∗×B)2 (g̃× g̃)
)
. The proof of the next proposition is very similar to

that of Proposition 3.4.1.

Proposition 4.3.2. We have K(OYα(ρ− α,−ρ)) ∼= Og̃×g̃α
g̃(−ρ, ρ)[1].

Proof. First we observe that OYα(ρ− α,−ρ) ∼= OYα(−ρ, ρ− α) (see [R1, Lemma 1.5.1]). Hence
to prove the proposition it is sufficient to prove that K(OYα)

∼= Og̃×g̃α
g̃(−2ρ, 2ρ − α)[1].

Consider the inclusion i : Xα := B ×Pα B →֒ B × B. Applying the constructions of §2.4, we
obtain the diagram

Dc
G×Gm

((∆g∗ × Xα)
R

∩(g∗)2×Xα
Ñ ×Pα Ñ )

κα

∼
//

Rî∗
��

Dc
G×Gm

((∆g∗ × Xα)
R

∩(g∗)2×Xα
g̃×Pα g̃)op

Rĩ∗
��

Dc
G×Gm

((∆g∗ × B2)
R

∩(g∗×B)2 Ñ × Ñ )
κ
∼

//

Lî∗

OO

Dc
G×Gm

((∆g∗ × B2)
R

∩(g∗×B)2 g̃× g̃)op.

Lĩ∗

OO

Here κα is associated with the dualizing complex i!(ωB ⊠ OB[N ]) ∼= OXα(−2ρ, 2ρ − α)[1]. By
Proposition 2.4.2 there is an isomorphism of functors

κ ◦Rî∗ ∼= Rĩ∗ ◦ κα.

In particular we obtain an isomorphism

K(OYα)
∼= Ξ ◦Rĩ∗ ◦ κα(OYα).

Here on the right hand sideOYα is considered as an object of Dc
G×Gm

((∆g∗×Xα)
R

∩(g∗)2×Xα
Ñ ×Pα

Ñ ), with its natural structure of dg-module, and Ξ is defined as in §3.1.

Now Yα is a (diagonal) subbundle of Ñ ×Pα Ñ . Taking the derived intersection with ∆g∗ ×Xα,
we can apply the results of §2.3. Denoting by

f ′′ : (∆g∗ × Xα)
R

∩(g∗)2×Xα
Yα → (∆g∗ × Xα)

R

∩(g∗)2×Xα
Ñ ×Pα Ñ ,

g′′ : (∆g∗ × Xα)
R

∩(g∗)2×Xα
g̃×Pα g̃ → (∆g∗ × Xα)

R

∩(g∗)2×Xα
Y ⊥
α
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the morphisms of dg-schemes induced by inclusions, we obtain a diagram

Dc
G×Gm

((∆g∗ × Xα)
R

∩(g∗)2×Xα
Yα)

κY

∼
//

R(f ′′)∗
��

Dc
G×Gm

((∆g∗ × Xα)
R

∩(g∗)2×Xα
Y ⊥
α )op

L(g′′)∗

��

Dc
G×Gm

((∆g∗ × Xα)
R

∩(g∗)2×Xα
Ñ ×Pα Ñ )

κα

∼
//

L(f ′′)∗

OO

Dc
G×Gm

((∆g∗ × Xα)
R

∩(g∗)2×Xα
g̃×Pα g̃)op

R(g′′)∗

OO

where κY is again associated with the dualizing complex OXα(−2ρ, 2ρ−α)[1]. (Here, in the top
right corner, Y ⊥

α is the orthogonal of Yα as a subbundle of (g∗)2 ×Xα.) Let Yα denote the sheaf

of sections of Yα. The structure sheaf of (∆g∗ × Xα)
R

∩(g∗)2×Xα
Yα is (

∧
g) ⊗k SOXα

(Y∨
α ), with

trivial differential (because Yα ⊂ ∆g∗ × Xα). In particular, SOXα
(Y∨

α ) is naturally an object of
the top left category, and R(f ′′)∗(SOXα

(Y∨
α )) is the object OYα considered above. By Proposition

2.3.1 we have an isomorphism of functors

κα ◦R(f ′′)∗ ∼= L(g′′)∗ ◦ κY .

In particular we obtain that κα(OYα)
∼= L(g′′)∗ ◦ κY (SOXα

(Y∨
α )).

Now the structure sheaf of (∆g∗ × Xα)
R

∩(g∗)2×Xα
Y ⊥
α is (

∧
Yα) ⊗k Sk(g), with trivial differ-

ential. And direct computation shows that κY (SOXα
(Y∨

α )) is isomorphic to the dg-module
OXα(−2ρ, 2ρ − α) ⊗k S(g)[1]. Then L(g′′)∗(OXα(−2ρ, 2ρ − α) ⊗k S(g)[1]) is, up to shift and
twist the structure sheaf of the derived intersection of ∆g∗ × Xα and g̃ ×Pα g̃ inside Y ⊥

α . But
(∆g∗ ×Xα) ∩ (g̃×Pα g̃) ∼= g̃×g̃α g̃, and

dim(∆g∗ × Xα) + dim(g̃ ×Pα g̃)− dim(Y ⊥
α ) = dim(g̃ ×g̃α g̃) (= dim(g)).

Hence the derived intersection is quasi-isomorphic to (∆g∗×Xα)∩ (g̃×Pα g̃). One easily deduces
the isomorphism of the proposition. �

4.4. Proof of Theorem 4.3.1. By construction we have κ(M〈m〉) ∼= κ(M)[m]〈−m〉, hence

KIM(M〈m〉) ∼= KIM(M)[m]〈m〉.

In particular, for a ∈ Haff and f(v) ∈ Z[v, v−1] we have [KIM](f(v) · a) = f(−v) · [KIM](a).

By Proposition 3.3.1, the equivalence KIM is compatible with convolution, hence also the induced
isomorphism [KIM]. Also, by Proposition 3.4.1 it sends the unit to the unit. It follows that to
prove Theorem 4.3.1 we only have to check that [KIM] and ι ◦ IM coincide on the generators tα
and θx.

First, Corollary 3.4.4 implies that [KIM](θx) = θ−x. Similarly, Proposition 4.3.2 implies that
[KIM]([OYα(ρ− α,−ρ)]) = −[Og̃×g̃α

g̃(−ρ, ρ)]. Hence

[KIM](Tα) = −v−1[Og̃×g̃α
g̃(−ρ, ρ)] + v−1

= Tα − v + v−1.

Hence [KIM](tα) = −tα + v2 − 1 = −q(tα)
−1. This finishes the proof of the theorem.
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[MR3] I. Mirković, S. Riche, Linear Koszul duality and Fourier transform for convolution algebras, in preparation.
[R1] S. Riche, Geometric braid group action on derived categories of coherent sheaves, with a joint appendix

with R. Bezrukavnikov, Represent. Theory 12 (2008), 131–169.
[R2] S. Riche, Koszul duality and modular representations of semi-simple Lie algebras, Duke Math. J. 154

(2010), 31–134.
[Sp] N. Spaltenstein, Resolutions of unbounded complexes, Compos. Math. 65 (1988), 121–154.
[VV] M. Varagnolo, E. Vasserot, Double affine Hecke algebras and affine flag manifolds, I, in A. Schmidt (Ed.),

Affine flag manifolds and principal bundles, Birkhäuser, 2010.
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