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Abstract. This paper studies the vehicle routing problem with time
windows where travel times are uncertain and belong to a predetermined
polytope. The objective of the problem is to find a set of routes that
services all nodes of the graph and that are feasible for all values of
the travel times in the uncertainty polytope. The problem is motivated
by maritime transportation where delays are frequent and must be taken
into account. We present an extended formulation for the vehicle routing
problem with time windows that allows us to apply the classical (static)
robust programming approach to the problem. The formulation is based
on a layered representation of the graph, which enables to track the
position of each arc in its route. We test our formulation on a test bed
composed of maritime transportation instances.

Keywords: vehicle routing problem, robust programming, time win-
dows, maritime transportation, layered formulation

1 Introduction

In this paper, we study the vehicle routing problem with time windows in
the uncertain context. Given a graph with a special node called depot and a
set of vehicles, the vehicle routing problem aims at prescribing routes for the
vehicles starting at and returning to the depot in such a way that each remaining
node of the graph is visited by exactly one vehicle. The problem has numerous
applications in transportation, distribution and logistics, see [11]. In this work,
we are more particularly interested by an application that arises in maritime
transportation [8].
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Among the many versions of the vehicle routing problem that have been
studied in the literature, we consider the problem where time windows are given
for each node of the network, yielding the vehicle routing problem with time
windows (V RPTW ). Hence, each node must be serviced during specific time
intervals (or time windows) and traveling along the arcs consumes time. Most
authors consider in addition that each vehicle has also a capacity that can not be
exceeded along its route. In this work however, we consider the problem version
without the capacity constraint, often called m−TSPTW in the literature. This
assumption is motivated by our application in maritime transportation where
each ship carries only one cargo at the time, from the loading port to the unload-
ing port. Since it is straightforward to extend our model and solution method
to the problem with the capacity constraint, we keep the notation V RPTW in
what follows.

Exact solution methods for the V RPTW have been studied extensively and
many integer programming formulations have been proposed for the problem,
see the reviews [9,13]. Among them, Bard [2] studies the resource inequalities
formulation for the problem. The formulation from [2] contains two sets of vari-
ables: arc variables state which arcs belong to the solution and node variables
indicate at what time vehicles arrive at each node. Kallehauge et al. [14] ex-
tend to the V RPTW the path inequalities formulation proposed in [1] for the
asymmetric traveling salesman with time windows. In [14], routes or paths that
cannot satisfy the time windows are cut-off by path inequalities. Formulations
based on path variables are also very popular for all versions of vehicle routing
problems, including the V RPTW , see [9,15], among others. These formulations
contain a little number of constraints but a very large number of variables so
that efficient branch-and-price algorithms are required.

In this work, we study the V RPTW in the uncertain context where travel
times are not known with precision and belong to an uncertainty polytope T .
Hence, our approach falls into the framework of robust programming. Robust
programming stems from the original work of [19] and has witnessed a continuous
attention it the last ten years. We refer the interested reader to the book [3].

The robust vehicle routing problem with time windows and uncertain travel
times (T -V RPTW ) has been mentioned already in [21]. However, their modeling
assumption leads to all travel times taking their maximum values, which is an
over-conservative model. In fact, [21] mainly focus on the robust capacitated
vehicle routing problem, see also [17]. The literature on the stochastic version of
the V RPTW is also scant, among which [7,18] which considers stochastic travel
times. Hence, the present work is the first general approach to the robust vehicle
routing problem with time windows and uncertain travel times. Travel times
belong here to a demand uncertainty polytope, which makes the problem harder
to solve, yet tractable, than its deterministic counterpart. The retribution of the
addition in complexity is that our model is more flexible than the one from [21]
and leads to less conservative robust solutions.

Our objective in this paper is to make use of the classical framework of (static)
robust programming. In that framework, a vector is feasible for the problem if
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and only if it is feasible for all values of the travel time in the uncertainty polytope
T . Hence, the formulation based on resource inequalities cannot be used in that
context because it makes no sense to choose arrival times that are independent
of the travel times (see Example 1 in the next section). In fact, as explained
below, none of the existing formulations for the V RPTW can be used with the
classical approach for static robust programming.

The classical approach for static robust programming under polyhedral un-
certainty relies on dualizing the constraints that contain uncertain parameters
[?]. Hence, the approach requires that the uncertainty parameters appear explic-
itly in the constraints of the problem. This is not the case of the formulations
based, respectively, on path inequalities and path variables. In each of these
formulations, the uncertain parameter appear implicitly in the paths that de-
fine the inequalities and the variables, respectively. Moreover, other formulations
proposed in the literature present one (or both) of the two problems: some of
their variables are somehow related to the values taken by travel times (non-
static robust programming) or the travel times do not appear explicitly in the
constraints of the formulations.

For this reason, we propose an extended formulation for the V RPTW that
is suitable for robust programming. This formulation is based on two ideas:
i) considering a layered representation of the routes followed by the vehicles
(see [12], among others), and ii) rewriting the time windows in an extended
form [7]. We apply the dualization technique to this formulation to provide
a formulation for the T -V RPTW . We assess our formulation numerically on
instances modeling a problem that arises in maritime transportation.

This paper is structured as follows. Next section presents our extended formu-
lation for the V RPTW , denoted by (LF ). The dualization technique is recalled
in Section 3.1 and applied to formulation (LF ) in Section 3.2. Our numerical
experiments are described in Section 4 while some concluding remarks are given
in Section 5.

2 Extended Formulation for the V RPTW

We are given a directed graph G = (N,A), a set of vehicles K, a cost function
c : A ×K → R+, and a time function t : A ×K → R+ for traveling along the
arcs of G. The graph contains special depot nodes o and d connected to all
other nodes of G, and we denote by N∗ the set of nodes that are not depots,
N∗ := N\{o, d}. We are given time windows [ai, bi] with ai, bi ∈ R, for each
i ∈ N∗. The V RPTW consists of defining routes for the vehicles in K such
that the union of all routes passes exactly once by each i ∈ N∗. When |K| = 1,
the problem contains a unique vehicle and reduces to the Asymmetric Traveling
Salesman with Time Windows, see [1].

We first recall the classical resource inequality formulation for the problem
and show through an example why it cannot be extended to the (static) robust
context. The formulation uses a set of binary flow variables xkij which indicates
whether vehicle k travels from node i ∈ N to node j ∈ N , and a set of continuous
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variables yki indicating the arrival time of vehicle k at node i ∈ N . Then, the
satisfaction of the time windows is expressed by the following set of constraints

xkij(y
k
i + tkij − ykj ) ≤ 0, (i, j) ∈ A, k ∈ K, (1)

ai ≤ yi ≤ bi, i ∈ N∗, (2)

where (1) is linearized using classical “big-M” techniques. Extending the for-
mulation to the robust context would require that inequalities (1) and (2) be
satisfied for all values of t in the uncertainty polytope T . We show in Example 1
that this does not work.

Example 1. Consider N∗ = {1, 2, 3, 4} and time windows [1, 2], [3, 4] and [5, 6]
for, respectively, nodes 1,2 and 3. Suppose that the uncertainty polytope T is
defined as follows: T := {(t12, t23) = (1 − λ)(3, 2) + λ(2, 3), 0 ≤ λ ≤ 1}. Now,
consider a path p := o → 1 → 2 → 3 → d. It is easy to see that the time
windows are feasible along p for all t ∈ T . Consider now the binary vector x
such that xo1 = x12 = x23 = x3d = 1. Constraints (1) become y2 ≥ y1 + t12 and
y3 ≥ y2 + t23. Because each of these constraints must be satisfied for all t ∈ T ,
they become y2 ≥ y1 + 3 and y3 ≥ y2 + 3. Because the smallest feasible value for
y1 is 1, the smallest feasible value for y2 is 4 and it is impossible to find a value
for y3 that satisfies (2) for node 3.

The aim of this section is to provide a formulation for the V RPTW that is
easily adaptable to (static) robust programming. Hence, the formulation satis-
fies two properties: all variables are related to the routes taken by the vehicles
(to avoid situations as in Example 1), and travel times appear explicitly in the
constraints. The formulation is based on the rewriting of the time windows con-
straints (1) and (2) as performed in [7]. Consider path p = i0 → . . . → in for
vehicle k and a binary vector x ∈ {0, 1}|A| that describes p, that is, xij = 1 for
each (i, j) ∈ p and xij = 0 otherwise. The authors of [7] show that (1) and (2)
are satisfied along p if and only if the constraints

ail1 +
∑

l=l1,...,l2−1

tkilil+1
≤ bil2 , 0 ≤ l1 < l2 ≤ n (3)

are satisfied. To take advantage of constraints (3), we construct a layered graph
which keeps track explicitly of the position of each arc along its path. Layered
graphs have been used for many network design problems, starting from Gouveia
[12], and have already been applied to the V RP (see [10], among others). How-
ever, to the best of our knowledge, layered graphs in the sense proposed by [12]
have not yet been applied to the V RPTW . The main idea of the formulation be-
low is to model the flow problem associated to each vehicle with a directed graph
composed of L = |N | layers as illustrated in Figure 1. Namely, from the original
graph G = (N,A), we create a directed layered graph G = (N ,A) for each ve-
hicle, where N := N1 ∪ . . . ∪NL with N1 := {o}, NL := {d} and Nl := N\{o},
l = 2, . . . , L− 1. Let il be the copy of i ∈ N in the l-th layer of graph G. Then,
the arc sets are defined by A := {(i, j, l) | (i, j) ∈ A, il ∈ Nl, jl+1 ∈ Nl+1, l ∈
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Fig. 1. Basic Network for commodity k (a) and its Layered Representation (b).

{1, . . . , L−1}}∪{(d, d, l), l ∈ {2, . . . , L−1}}, see Figure 1. Hence, (i, j, l) denotes
an arc between il ∈ Nl and jl+1 ∈ Nl+1. Note that each path between o and d
in the layered graph G is composed of exactly L− 1 arcs, that corresponds to a
path of less than or equal to L− 1 arcs in G.

Then, we introduce the set of additional binary flow-position variables zklij
for each k ∈ K, (i, j, l) ∈ A defined as follows: zklij = 1 whenever vehicle k ∈ K
services i ∈ N exactly in position l of its path from the artificial origin node o
to the artificial destination node d and just before servicing node j ∈ N . The
extended arc-flow model for the deterministic case, denoted by (LF ), follows.

min
∑
k∈K

∑
(i,j)∈A

ckijx
k
ij (4)

s.t.
∑
k∈K

∑
j∈N :(i,j)∈A

xkij = 1, i ∈ N∗, (5)

∑
j:(j,i,l−1)∈A

zkl−1ji −
∑

j:(i,j,l)∈A

zklij =

−1 if (i = o)
1 if (i = d and l = L)
0 else

,

1 ≤ l ≤ L, i ∈ Nl, k ∈ K, (6)∑
l:(i,j,l)∈A

zklij = xkij , (i, j) ∈ A, k ∈ K, (7)

∑
(i,j)∈A:(i,j,l1)∈A

aiz
kl1
ij +

∑
l=l1,...,l2−1

∑
(i,j)∈A:(i,j,l)∈A

tkijz
kl
ij ≤

∑
(i,j)∈A:(i,j,l2)∈A

bjz
kl2
ij ,

1 ≤ l1 < l2 < L, k ∈ K, (8)

xkij ∈ {0, 1}, (i, j) ∈ A, k ∈ K, (9)

zklij ∈ {0, 1}, (i, j, l) ∈ A, k ∈ K. (10)

The objective function (4) minimizes the cost of operating the set of vehicles.
Constraints (5) ensure that all i ∈ N∗ are serviced exactly once. Equations (6)
are flow balance constraints in the directed layered graph. Variables x and z
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are linked by constraints (7). Finally, constraints (8) adapt constraints (3) when
path p is not yet decided and depends on variables z.

3 Robust Formulation

3.1 Dualization Approach

In this work, we consider that the travel times are uncertain and belong to a
polytope T . This makes the problem a robust program, a class of optimization
problems that has witnessed a tremendous attention in the recent years. Con-
ducting an exhaustive literature review of robust programming is beyond the
scope of this paper and we redirect the interested reader to [3] and [5]. We recall
below the well-known dualization technique for linear robust programs under
polyhedral uncertainty, introduced by [4]. Consider the following linear program
in {0, 1}−variables

min cTx

(P ) s.t. Bx ≤ b, (11)

Tx ≤ d, (12)

x ∈ {0, 1}n,

with c ∈ Rn, b ∈ Rr, d ∈ Rs, B ∈ Rrn, and T ∈ Rsn. Suppose that the problem is
subject to uncertainty in the sense that matrix T belongs to a polytope T ⊂ Rsn.
The robust counterpart of (P ) is

min cTx

(T -P ) s.t. Bx ≤ b,
Tx ≤ d, T ∈ T , (13)

x ∈ {0, 1}n,

where the s linear constraints in (12) must now be satisfied for each value of
T ∈ T . Hence, the finite set of constraints (12) has been replaced by the infinite
set of constraints (13).

The method explained next works in two steps. The first step amounts to
realize [3, Section 1.2.1] that x satisfies constrains (13) if and only if it satisfies
the following constraints

Tix ≤ di, Ti ∈ Ti, i = 1, . . . , s, (14)

where Ti ⊂ Rn is the projection of T into the space corresponding to the coeffi-
cients of the i-th row of (13), for each i = 1, . . . , s. Said differently, the whole set
of constraints Tx ≤ d is satisfied for each value of the uncertain matrix T ∈ T
if and only if each constraint Tix ≤ di is satisfied for each value of the uncertain
vector Ti ∈ Ti.

For the second step, we need to describe more precisely the uncertainty poly-
tope and its projections, which we suppose non-empty. Let the projections of T



The robust vehicle routing problem with time windows 7

be defined as Ti = {Ti ∈ Rn : AiTi ≤ ai, Ti ≥ 0} where matrices Ai, i = 1, . . . , s
and vectors ai, i = 1, . . . , s have appropriate dimensions and, of course, depend
on the definition of the uncertainty polytope T . Then, the (infinite) constraint
set associated to each row i of (14) can be rewritten as maxTi∈Ti Tix ≤ di. The
optimization problem of the left-hand side is equivalent to

max Tix
s.t. AiTi ≤ ai

Ti ≥ 0.
(15)

Because (15) is always bounded and feasible, linear programming duality ensures
us that its optimal solution is equal to the optimal solution of its dual:

min aiui
s.t. (Ai)

Tui ≥ x
ui ≥ 0.

Thus, each constraint i of inequality set (14) is equivalent to

aiui ≤ di
(Ai)

Tui ≥ x
ui ≥ 0,

(16)

that is, the infinite number of constraints (13) is replaced by a finite number of
constraints and variables. Moreover, the numbers of new constraints and vari-
ables are equal to the dimensions of Ai. The dualization technique described
above has been applied to numerous robust linear programs subject to polyhe-
dral uncertainty in the literature, see [6], among others.

3.2 Formulation for T -V RPTW

In this section, we apply the methodology recalled in Section 3.1 to the
V RPTW . We consider the budget uncertainty polytope studied by Bertsimas
and Sim [6]: we suppose that each component tkij of t lies between its mean

value t
k
ij and its peak value t

k
ij + t̂kij and that, for each k ∈ K, at most Γ of

them can reach their peak values simultaneously. Formally, this is written as

TΓ = ×k∈KT kΓ where all vectors in T kΓ are of the form tk := t
k

+ δk t̂k and δk

satisfies the following constraints:∑
(i,j)∈A

δkij ≤ Γ, (17)

0 ≤ δkij ≤ 1, (i, j) ∈ A. (18)

The robust version of the problem is obtained by replacing (8) with∑
(i,j)∈A:(i,j,l1)∈A

aiz
kl1
ij +

∑
l=l1,...,l2−1

∑
(i,j)∈A

tkijz
kl
ij ≤

∑
(i,j)∈A:(i,j,l2)∈A

bjz
kl2
ij ,

1 ≤ l1 < l2 < L, k ∈ K, tk ∈ T kΓ . (19)
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All variables in (LF ) are first-stage variables since they describe the paths taken
by the vehicles. Moreover, travel times only appear in (19). Since (19) must be
satisfied for all tk ∈ T kΓ , it is convenient to rewrite these constraints as∑
(i,j)∈A:(i,j,l1)∈A

aiz
kl1
ij + max

tk∈T kΓ

∑
(i,j)∈A

tkij
∑

l=l1,...,l2−1

zklij ≤
∑

(i,j)∈A:(i,j,l2)∈A

bjz
kl2
ij ,

1 ≤ l1 < l2 < L, k ∈ K.
(20)

Let us introduce a dual variable vkl1l2 and ukl1l2ij for each constraint in (17) and
(18), respectively, associated to each constraint of (20). Dualizing the maximiza-
tion problem in (20) as in (15)–(16) yield the following set of constraints:∑
(i,j)∈A:(i,j,l1)∈A

aiz
kl1
ij +

∑
(i,j)∈A

t
k
ij

∑
l=l1,...,l2−1

zklij + Γvkl1l2 +
∑

(i,j)∈A

ukl1l2ij ≤

∑
(i,j)∈A:(i,j,l2)∈A

bjz
kl2
ij , 1 ≤ l1 < l2 < L, k ∈ K, (21)

vkl1l2 + ukl1l2ij ≥ t̂kij
∑

l=l1,...,l2−1

zklij , (i, j) ∈ A, 1 ≤ l1 < l2 < L, k ∈ K, (22)

vkl1l2 ≥ 0, 1 ≤ l1 < l2 < L, k ∈ K (23)

ukl1l2ij ≥ 0, 1 ≤ l1 < l2 < L, k ∈ K, (i, j) ∈ A, (24)

so that a robust version of (LF ) can be formulated as follows:

min
∑
k∈K

∑
(i,j)∈A

cijx
k
ij

(T -LF ) s.t. (5)− (7), (9), (10), (21)− (24),

4 Computational Experiments

4.1 Application to the ship routing and scheduling problem

In this section, we apply our model to the Ship Routing and Scheduling prob-
lem with Time Windows and uncertain travel times. The deterministic version of
this problem is described in [8] where an integer linear programming formulation
is presented. Maritime transportation is the major component in international
trade and a key part of many economic sectors. Freight transport volumes in
maritime systems have been growing for many years and continues to show an
upward trend. A great variety of optimization problems is involved in the im-
provement of maritime transport systems, which makes maritime transportation
a challenging research area. Indeed, there has been an increasing research inter-
est in maritime transportation problems over the last years. We refer to [8] for a
discussion of practical and theoretical aspects of maritime transportation opera-
tions including the description of prescriptive mathematical models and solution
approaches.
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Time is a crucial factor in maritime transportation and deliveries must occur
during predetermined intervals. This makes the maritime transportation problem
a special case of the vehicle routing problem with time windows. However, while
it can be acceptable to use estimations for travel and service time for some
instances of V RPTW , this is not the case in maritime transportation. Delays
are important and schedules must account for them.

We consider a heterogeneous fleet of ships with specific ship characteristics
including different cost structures and load capacities. We assume that a ship is
loaded to its capacity in a loading port and the cargo is transported directly to its
unloading port. Only one cargo is transported at a time and the cargo size is less
than or equal to the capacity of the ship. The fleet has sufficient capacity to serve
all committed cargoes during the planning horizon. The corresponding loading
and unloading ports are known. Time windows are imposed for loading cargoes.
Herein, the service time of a cargo is the time from the arrival at its loading port
until the time of departure from its unloading port. Ships are charged port and
channel tolls when visiting ports and passing channels, and these costs depend
on the size of the ship. The remaining variable sailing costs consist mainly of
fuel and oil costs, and depend usually on the ship size.

4.2 Instance Description

The instances used in this paper have been created with a random instance
generator made as realistic as possible. The instance generator is based on a
real distance matrix that contains 56 ports from around the world, with actual
sailing distances between each pair of ports.

Two non-overlapping subsets of ports are selected as pickup ports and deliv-
ery ports respectively, to represent the structure of a company operating within
deep sea industrial shipping. Cargoes requests are generated between two ports
based on a simple inventory model for the delivery port. Time windows are as-
sociated with each cargo based on when the request would be generated and an
acceptable time before the delivery should be made.

The instance generator also specifies the possible delay in sailing time for each
arc in the network. This delay is calculated based on the time normally required
to perform the transportation represented by the arc. Since the planning horizon
is long, there is a significant risk of a ship being delayed at some point during its
route, but the probability of experiencing longer travel times for all legs would
be small. Hence it makes sense to make routes that can handle some delays, with
Γ equal to some small number.

In the computational testing we generate five instances for each combination
of values for the number of cargoes and number of ships.

4.3 Reducing the number of layers

Some vehicle routing problems [10] consider that there exists a constraint on
the number of nodes that any route can follow. These problems can be modeled
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through layered formulations such as the one used in this paper with the differ-
ence that the number of layers is a small integer L (part of the problem input),
instead of being the total number of nodes of the graph.

The V RPTW studied in this paper does not present this additional con-
straint: any vehicle can visit an arbitrary number of nodes, as long as time
windows are satisfied. Hence, we use a layered formulation in this paper in a
different purpose: our aim herein is to present a formulation that is suitable for
the robust programming dualization approach. The drawback of this approach
is that the number of layers used in the formulation is equal to the number of
nodes in the graph, which yields very large number of variables and constraints.

We cannot simply reduce the number of layers because this may cut-off the
optimal solution to the problem. However, due to the presence of time windows,
the vehicles are usually not able to visit all nodes of the graph. With this idea in
mind, we apply a pre-processing to the problem which, for each vehicle, computes
the longest path that satisfies the time windows. The pre-processing step was
solved by an integer programming formulation based on the MTZ-inequalities
[16].

4.4 Numerical Results

We present in this section computational results for formulations (LF ) and
(T -LF ) on instances with 10 and 20 cargoes and a number of ships varying be-
tween 1 and 5. The formulations have been coded using the modeling language
Xpress Mosel 3.2.3 and solved by Xpress Optimizer 22.01.09 [20]. The experi-
ments were run on computer equipped with a processor Intel Core i5 at 2.53
GHz and 4 GB of RAM memory.

For 10 cargoes, the average longest path for 2, 3, 4, and 5 ships is equal to
6.6, 6.8, 6.1, and 4.96, respectively. For 20 cargoes, these values are 14.8, 12.7,
10.7, and 9.96, respectively. Hence, the reduction increases with the number of
ships. This was expected because the instances are generated in such a way
that all ships are necessary. Hence, more ships lead to time windows harder to
satisfy and smaller feasible paths. For problems with one ship (|K| = 1), the
pre-processing has no effect since the ship must visit all nodes of the graph.

Tables 1 and 2 present the average solution times for instances with 10 and
20 cargoes, respectively. Column Reduction provides the average solution times
necessary to compute the longest paths for each vehicle, while columns below
With reduction and Without reduction provide the average solution times neces-
sary to solve the problem to optimality, respectively with and without reducing
the number of layers using the pre-processing. A time limit of 3600 seconds has
been set. Then, unsolved instances within this limit are written in parentheses
and the average solution times are computed without them. We see from Tables
1 and 2 that the pre-processing allows to reduce significantly the solution times,
especially for instances with 20 nodes. In particular, the 7 instances that could
not be solved within the time limit can be solved after the reduction.
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reduction With reduction Without reduction
|K|\Γ 0 1 2 0 1 2

1 – – – – 0.0746 0.0798 0.0846
2 0.168 0.319 0.162 0.169 0.299 0.25 0.192
3 0.615 0.19 0.847 0.769 0.388 0.976 0.907
4 1.2 0.182 0.426 0.557 0.38 0.8 0.914
5 1.34 0.104 0.312 0.326 0.466 0.658 0.681

Table 1. Results for instances with 10 cargoes.

reduction With reduction Without reduction
|K|\Γ 0 1 2 4 6 0 1 2 4 6

1 – – – – – – 7.16 5.13 8.56 7.58 9.95
2 6.09 18.8 54.4 140 134 192 22.3 174 269 528 536
3 8.59 44.4 332 908 1990 592 73.2 265(1) 307(1) 609(1) 741
4 81.9 13.2 89.1 160 237 253 101 760 828(1) 1161(1) 857(1)
5 334 13.6 52.8 67 188 153 57.9 218 323 193(1) 1487

Table 2. Results for instances with 20 cargoes.

5 Conclusion

In this paper, we present the first robust formulation for the vehicle routing
problem with time windows and uncertain travel times. To this aim, we introduce
a new layered formulation for the vehicle routing problem with time windows
that enables us to apply the classical static robust programming approach. We
test this approach on instances that describe a maritime transportation problem.
We see that this methodology can solve instances with up to 20 nodes. In order
to solve larger instances, future work will address different approaches for the
problem that rely on the use of alternative robust programming techniques, such
as adjustable robust programming.
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