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Definable zero-sum stochastic games

Jérôme BOLTE∗, Stéphane GAUBERT † & Guillaume VIGERAL‡

January 9, 2013

Abstract

Definable zero-sum stochastic games involve a finite number of states and action sets,
reward and transition functions that are definable in an o-minimal structure. Prominent
examples of such games are finite, semi-algebraic or globally subanalytic stochastic games.
We prove that the Shapley operator of any definable stochastic game with separable transition
and reward functions is definable in the same structure. This result is used to prove that
any separable definable game has a uniform value; in the case of polynomially bounded
structures we also provide convergence rates. Using an approximation procedure, we actually
establish that general zero-sum games with separable definable transition functions have a
uniform value. These results cover the particular case of stochastic games with polynomial
transitions, definable games with finite actions on one side, definable games with perfect
information or switching controls, as well as nonlinear maps arising in risk sensitive control
and Perron-Frobenius theory

Keywords Zero-sum stochastic games, Shapley operator, o-minimal structures, definable games,
uniform value, nonexpansive mappings, nonlinear Perron-Frobenius theory, risk-sensitive control.

1 Introduction

Zero-sum stochastic games have been widely studied since their introduction by Shapley [40] in
1953 (see the textbooks [42, 16, 27, 31] for an overview of the topic). They model long term
interactions between two players with completely opposite interest; they appear in a wealth of
domains including computer science, population dynamics or economics. In such games the
players face, at each time n, a zero-sum game whose data are determined by the state of nature.
The evolution of the game is governed by a stochastic process which is partially controlled by
both players through their actions, and which determines, at each stage of the game, the state
of nature and thus the current game faced by both players. The players aim at optimizing their
gain over time which implies, depending on the mathematical model, specific choices of payoff
evaluations.

We shall focus here on two kind of payoff evaluations which are based on Cesàro and Abel
means. For any finite horizon time n, one defines the “repeated game" in n stages for which
each player aims at optimizing his averaged gain. Similarly for any discount rate λ, one defines
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the λ-discounted game for infinite horizon games. Under minimal assumptions these games have
values, and an important issue in Dynamic Games theory is the asymptotic study of these values
(see Subsection 3.1). These aspects have been dealt along two lines:

− The “asymptotic approach" consists in the study of the convergence of these values when
the players grow more and more patient – that is when n goes to infinity or λ goes to 0.

− The “uniform value approach", for which one seeks to establish that, in addition, both
players have near optimal strategies that do not depend on the horizon (provided that the
game is played is long enough).

The asymptotic approach is less demanding as there are games [49] with no uniform value
but for which the value does converge to a common limit; the reader is referred to [27] for a
thorough discussion on those two approaches and their differences in zero-sum repeated games.

For the asymptotic approach, the first positive results were initially obtained in recursive
games [15], games with incomplete information [3, 28] and absorbing games [21]. In 1976, Bewley
and Kohlberg settled, in a fundamental paper [4], the case of games with finite sets of states
and actions. Their proof is based on the use of Puiseux Lemma for the discounted values curve.
Several types of improvements based on techniques of semi-algebraic geometry were developed
in [30, 29].

Bewley-Kohlberg’s result of convergence was later considerably strengthened by Mertens and
Neyman who proved [25] the existence of a uniform value in this finite framework, when the
payoff is observed by the players.

The semi-algebraic techniques used in the proof of Bewley and Kohlberg have long been
considered as specifically related to the finiteness of the action sets and it seemed that they could
not be adapted to wider settings. In [39] the authors consider a special instance of polynomial
games but their focus is computational and concerns mainly the estimation of discounted values
for a fixed discount rate. In order to go beyond their result and to tackle more complex games,
most researchers have used topological or analytical arguments, see e.g. [26, 33, 35, 36, 37, 43,
44, 45]. The common feature of most of these papers is to study the analytical properties of the
so-called Shapley operator of the game in order to infer various convergence results of the values.
This protocol, called the “operator approach" by Rosenberg and Sorin, grounds on Shapley’s
theorem which ensures that the dynamic structure of the game is entirely represented by the
Shapley operator.

Our paper can be viewed as a ‘definable operator approach". In the spirit of Bewley-Kohlberg
and Neyman, we identify first a class of potentially “well-behaved games" through their under-
lying geometric features (definable stochastic games) and we show how these properties actually
impact the structure of the Shapley operator (its definability and subsequent properties). By
the use of Mertens-Neyman result this implies in turn the existence of a uniform value for a wide
range of games (e.g. polynomial games).

Before giving a more precise account of our results, let us describe briefly the topological/geo-
metrical framework used in this paper. The rather recent introduction of o-minimal structures
as models for a tame topology (see [13]) is a major source of inspiration to this work. O-
minimal structures can be thought of as an abstraction of semi-algebraic geometry through an
axiomatization of its most essential properties. An o-minimal structure consists indeed in a
collection of subsets belonging to spaces of the form Rn, where n ranges over N, called definable
sets (1). Among other things, this collection is required to be stable by linear projections and

1Functions are called definable whenever their graph is definable.
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its ‘one-dimensional" sets must be finite unions of intervals. Definable sets are then shown to
share most of the qualitative properties of semi-algebraic sets like finiteness of the number of
connected components or differential regularity up to stratification.

Our motivation for studying stochastic games in this framework is double. First, it appears
that definability allows one to avoid highly oscillatory phenomena in a wide variety of settings:
partial differential equations [41], Hamilton-Jacobi-Bellman equations and control theory (see
[46] and references therein), continuous optimization [20]. We strongly suspect that definability
is a simple means to ensure the existence of a value to stochastic games.

Another very important motivation for working within these structures is their omnipresence
in finite-dimensional models and applications (see e.g. [20] and the last section).

The aim of this article is therefore to consider stochastic games –with a strong focus on their
asymptotic properties– in this o-minimal framework. We always assume that the set of states is
finite and we say that a stochastic game is definable in some o-minimal structure if all its data
(action sets, payoff and transition functions) are definable in this structure. The central issue
behind this work is probably:

(Q) Do definable stochastic games have definable Shapley operators ?

As we shall see this question plays a pivotal role in the study of stochastic games. It seems
however difficult to solve it in its full generality and we are only able to give here partial results.
We prove in particular that any stochastic game with definable, separable reward and transition
functions (e.g. polynomial games) yields a Shapley operator which is definable in the same struc-
ture. The separability assumption is important to ensure definability in the same structure, we
indeed describe a rather simple semi-algebraic game whose Shapley operator is globally suban-
alytic but not semi-algebraic. The general question of knowing whether a definable game has a
Shapley operator definable in a possibly larger structure remains fully open.

An important consequence of the definability of the Shapley operator is the existence of a
uniform value for the corresponding game (Theorem 3). The proof of this result is both based
on the techniques and results of [30] and [25]. For games having a Shapley operator definable in
a polynomially bounded structure, we also show, in the spirit of Milman [29], that the rate of
convergence is of the form O( 1

nγ ) for some positive γ.
These results are used in turn to study games with arbitrary continuous reward functions

(not necessarily definable) and separable and definable transition functions. Using the Stone-
Weierstrass and Mertens-Neyman theorems, we indeed establish that such games have a uniform
value (Theorem 7). This considerably generalizes previous results; for instance, our central
results imply that:

− definable games in which one player has finitely many actions,

− games with polynomial transition functions,

− games with perfect information and definable transition functions,

− games with switching control and definable transition functions,

have a uniform value.
The above results evidence that most of the asymptotic complexity of a stochastic game

lies in its dynamics, i.e. in its transition function. In the same spirit a recent companion work
[47] shows, through a counterexample to the convergence of values, that the o-minimality of
the underlying stochastic process is a fundamental assumption. The example involves finitely
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many states, simple compact action sets, and continuous transition and payoffs but the transition
functions are typically non definable since they oscillate infinitely many times on a compact set.

We also include an application to a class of maps arising in risk sensitive control [17, 9, 2]
and in nonlinear Perron-Frobenius theory (growth minimization in population dynamics). In
this context, one considers a self-map T of the interior of the standard positive cone of Rd, and
looks for conditions of existence of the geometric growth rate [T k(e)]

1/k
i as k → ∞, where e is

an arbitrary vector in the interior of this cone. This leads to examples of Shapley operators, the
conjugates of T by log-glasses, that are definable in the log-exp structure.

The paper is structured as follows. The first sections give a basic primer on the theory of
o-minimal structures and on stochastic games. We introduce in particular definable zero-sum
stochastic games and discuss several subclasses of games. The main result of that section is the
following: if the Shapley operator of a game is definable in an o-minimal structure, this game has
a uniform value. Since the Shapley operator is itself a one-shot game where the expectation of the
future payoffs acts as a parameter, we study one-shot parametric games in Section 4. We prove
that the value of a parametric definable game is itself definable in two cases: either if the game
is separable, or if the payoff is convex. These results are in turn used in Section 5 to prove the
existence of a uniform value for several classes of games including separably definable games. We
finally point an application to a class of “log-exp” maps arising in population dynamics (growth
minimization problems) and in risk sensitive control.

2 O-minimal structures

O-minimal structures play a fundamental role in this paper; we recall here the basic results
that we shall use throughout the article. Some references on the subject are van der Dries [13],
van derDries-Miller [14], Coste [11].

For a given p in N, the collection of subsets of Rp is denoted by P(Rp).

Definition 1 (o-minimal structure, [11, Definition 1.5]). An o-minimal structure on (R,+, .) is
a sequence of Boolean algebras O = (Op)p∈N with Op ⊂ P(Rp), such that for each p ∈ N:

(i) if A belongs to Op, then A× R and R×A belong to Op+1 ;

(ii) if Π : Rp+1 → Rp is the canonical projection onto Rp then for any A in Op+1, the set Π(A)
belongs to Op ;

(iii) Op contains the family of real algebraic subsets of Rp, that is, every set of the form

{x ∈ Rp : g(x) = 0},

where g : Rp → R is a real polynomial function ;

(iv) the elements of O1 are exactly the finite unions of intervals.

A subset of Rp which belongs to an o-minimal structure O, is said to be definable in O or simply
definable. A mapping F : S ⊂ Rp → Rq is called definable (in O), if its graph {(x, y) ∈ Rp×Rq :
y ∈ F (x)} is definable (in O) as a subset of Rp × Rq. Similarly if g : Rp → (−∞,+∞] (resp.
g : Rp → [−∞,+∞)) is a real-extended-valued function, it is called definable (in O), if its graph
{(x, r) ∈ Rp × R : g(x) = r} is definable (in O).
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Remark 1. The smallest o-minimal structure is given by the class SA of real semi-algebraic
objects(2). We recall that a set A ⊂ Rp is called semi-algebraic if it can be written as

A =
l⋃

j=1

k⋂
i=1

{x ∈ Rp : gij(x) = 0, hij(x) < 0},

where the gij , hij : Rp → R are real polynomial functions on Rp. The fact that SA is an o-
minimal structure stems from the Tarski-Seidenberg principle (see [7]) which asserts the validity
of item (ii) in this class.

The following result is an elementary but fundamental consequence of the definition.

Proposition 1 ([14]). Let A ⊂ Rp and g : A→ Rq be definable objects.
(i) Let B ⊂ A a definable set. Then g(B) is definable.
(ii) Let C ⊂ Rq be a definable set. Then g−1(C) is definable.

One can already guess from the above definition and proposition that definable sets behave
qualitatively as semi-algebraic sets. The reader is referred to [14, 11] for a comprehensive account
on the topic.
Example 1 (max and min functions). In order to illustrate these stability properties, let us
consider nonempty subsets A,B of Rp,Rq respectively, and g : A×B → R a definable function.
Using the projection axiom, we see that both A and B are definable. Set h(x) = infy∈B g(x, y)
for all x in A and let us establish the definability of h; note that the domain of h, i.e. domh =
{x ∈ A : h(x) > −∞} may be smaller than A and possibly empty. The graph of h is given by

graphh := {(x, r) ∈ A× R : (∀y ∈ B, g(x, y) > r) and (∀ε > 0,∃y ∈ B, g(x, y) < r + ε)} .

As explained below, the assertion

(∀y ∈ B, g(x, y) > r) and (∀ε > 0,∃y ∈ B, g(x, y) < r + ε) ,

is called a first order formula, but the main point for the moment is to prove that such a formula
necessarily describes a definable set.

Consider the sets

T = {(x, r) ∈ A× R : ∀ε > 0, ∃y ∈ B, g(x, y) < r + ε} ,

S0 = {(x, y, r, ε) ∈ A×B × R× (0,+∞) : g(x, y)− r − ε < 0} .

We wish to prove that T is definable. Projecting S0 via Π(x, y, r, ε) = (x, r, ε), one obtains the
definable set S1 = {(x, r, ε) ∈ A × R × (0,+∞) : ∃y ∈ B, g(x, y) − r − ε < 0}. Introducing
Π′(x, r, ε) = (x, r), we see that T can be expressed as

(A× R) \Π′ [(A× R× (0,+∞)) \ S1] .

Since the complement operations preserve definability, T is definable. Using this type of idea
and Definition 1, we can prove similarly that

T ′ = {(x, r) ∈ A× R : ∀y ∈ B, g(x, y) > r}

is definable. Hence graphh = T ∩ T ′ is definable and thus h is definable.
2This is due to axiom (iii). Sometimes this axiom is weakened [13], allowing smaller classes than SA, for

instance the structure of semilinear sets.
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The most common method to establish the definability of a set is thus to interpret it as
the result of a finite sequence of basic operations on definable sets (projection, complement,
intersection, union). This idea is conveniently captured by the notion of a first order formula.
First order formulas are built inductively according to the following rules:

− If A is a definable set, x ∈ A is a first order formula

− If P (x1, . . . , xp) and Q(x1, . . . , xq) are first order formulas then (non P ), (P and Q), and
(P or Q) are first order formulas.

− Let A be a definable subset of Rp and P (x1, . . . , xp, y1, . . . , yq) a first order formula then
both

(∃x ∈ A,P (x, y))
(∀x ∈ A,P (x, y))

are first order formulas.

Note that Proposition 1 ensures that “g(x1, . . . , xp) = 0” or ‘g(x1, . . . , xp) < 0” are first order
formulas whenever g : Rp → R is definable (e.g. polynomial).
It is then easy to check, by induction, that:

Proposition 2 ([11]). If Φ(x1, . . . , xp) is a first order formula, then {(x1, . . . , xp) ∈ Rp :
Φ(x1, . . . , xp)} is a definable set.

Remark 2. A rigorous treatment of these aspects of o-minimality can be found in [23].
An easy consequence of the above proposition that we shall use repeatedly and in various

form is the following.

Proposition 3. Let Ω be a definable open subset of Rn and g : Ω→ Rm a definable differentiable
mapping. Then its derivative g′ is definable.

There exists many regularity results for definable sets [14]. In this paper, we essentially use
the following fundamental lemma.

Let O be an o-minimal structure on (R,+, .).

Monotonicity Lemma ([14, Theorem4.1]). Let f : I ⊂ R → R be a definable function and
k ∈ N. Then there exists a finite partition of I into l disjoint intervals I1, . . . , Il such that f
restricted to each nontrivial interval Ij, j ∈ {1, . . . , l} is Ck and either strictly monotone or
constant.

We end this section by giving examples of o-minimal structures (see [14] and references therein).
Examples (a) (globally subanalytic sets) There exists an o-minimal structure, that contains
all sets of the form {(x, t) ∈ [−1, 1]p × R : f(x) = t} where f : [−1, 1]p → R (p ∈ N) is an
analytic function that can be extended analytically on a neighborhood of the box [−1, 1]p. The
sets belonging to this structure are called globally subanalytic sets; see [14] and also [5] for an
account on subanalytic geometry.

For instance the functions
sin : [−a, a]→ R

(where a ranges over R+) are globally subanalytic, while sin : R → R is not (else the set
sin−1({0}) would be finite by Proposition 1 and Definition 1(iv)).
(b) (log-exp structure) There exists an o-minimal structure containing the globally subanalytic
sets and the graph of exp : R→ R.

We shall also use a more “quantitative" characteristic of o-minimal structures.
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Definition 2 (Polynomially bounded structures). An o-minimal structure is called polynomially
bounded if for all function ψ : (a,+∞)→ R there exists a positive constant C and an integer N
such that |ψ(t)| 6 CtN for all t sufficiently large

The classes of semi-algebraic sets or of globally subanalytic sets are polynomially bounded
[14], while the log-exp structure is obviously not.

We have the following result in the spirit of the classical Puiseux development of semi-
algebraic mappings.

Corollary 1 ([14]). If ε > 0 and φ : (0, ε)→ R is definable in a polynomially bounded o-minimal
structure there exist c ∈ R and α ∈ R such that

φ(t) = ctα + o(tα), t ∈ (0, ε).

3 Stochastic games

3.1 Definitions and fundamental properties

Stochastic games: definition. A stochastic game is determined by

− Three sets: a finite set of states Ω, with cardinality d, and two nonempty sets of actions
X ⊂ Rp and Y ⊂ Rq.

− A payoff function g : Ω×X × Y → R and a transition probability ρ : Ω×X × Y → ∆(Ω),
where ∆(Ω) is the set of probabilities over Ω.

Such a game is denoted by (Ω, X, Y, g, ρ). Unless explicitly specified, we will always assume the
following, which guarantees that the finite horizon and discounted values do exist.

Standing assumptions (A): The reward function g and the transi-
tion function ρ are continuous; both action sets X,Y are nonempty
compact sets.

Strategies and values. The game is played as follows. At time n = 1, the state ω1 is known
by both players, player 1 (resp. 2) makes a move x in X (resp. y in Y ) and the resulting payoff
g1 := g(x1, y1, ω1) is observed by the two players. The new state ω2 is drawn according to the
probability distribution ρ(·|x1, y1, ω1), both players observe this new state and can thus play
accordingly. This process goes on indefinitely and generates a stream of actions xi, yi, states ωi
and payoffs gi = g(xi, yi, ωi). Denote by Hn = (X × Y ×Ω)n ×Ω the sets of stories of length n,
H = ∪n∈NHn the set of all finite stories and H∞ = (Ω ×X × Y )N the set of infinite stories. A
strategy for player 1 (resp. player 2) is a mapping

σ : H → ∆(X) (resp. τ : H → ∆(Y )).

A triple (σ, τ, ω1) defines a probability measure on H∞ whose expectation is denoted Eσ,τ,ω1 .
The stream of payoffs corresponding to the triple (σ, τ, ω1) can be evaluated, at time n, as

γn(σ, τ, ω1) =
1

n

(
Eσ,τ,ω1

(
n∑
i=1

gi

))
. (3.1)
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The corresponding game is denoted by Γn; Assumption (A) allows us to apply Sion’s Theo-
rem [42, Theorem A.7, p. 156], which shows that this game has a value vn(ω1) or simply (vn)1.
When the sequence vn = ((vn)1, . . . , (vn)d) converges as n tends to infinity the game is said to
have a value.

Another possibility for evaluating the stream of payoffs is to rely on a discount factor λ ∈]0, 1[
and to consider the game Γλ with payoff

γλ(σ, τ, ω1) = Eσ,τ,ω1

(
λ

+∞∑
i=1

(1− λ)i−1gi

)
. (3.2)

Applying once more Sion result this game has a value which we denote by vλ(ω1) or simply (vλ)1.
The vector vλ is defined as vλ = ((vλ)1, . . . , (vλ)d). One of the central question of this paper is
to find sufficient conditions to have

lim
n→+∞

vn = lim
λ→0, λ>0

vλ.

Shapley operator and Shapley’s theorem. Let us now describe the fundamental result of
Shapley which provides an interpretation of the value of the games Γn as rescaled iterates of a
nonexpansive mapping. In the same spirit, the discounted values vλ appear as fixed points of a
family of contractions.

Let (Ω, X, Y, g, ρ) be an arbitrary stochastic game. The Shapley operator associated to such
a game is a mapping Ψ : Rd → Rd, whose kth component is defined through

Ψk(f1, . . . , fd) = max
µ∈∆(X)

min
ν∈∆(Y )

∫
X

∫
Y

[
g(x, y, ωk) +

d∑
i=1

ρ(ωi|x, y, ωk)fi

]
dµ(x) dν(y). (3.3)

Observe as before, that the maximum and the minimum can be interchanged in the above
formula. The space Rd can be thought of as the set of value functions F({1, . . . , d};R), i.e. the
functions which map {1, . . . , d} ' Ω (set of states) to R (real-space of values). It is known that
a self-map Ψ of Rd can be represented as the Shapley operator of some stochastic game — that
does not satisfy necessarily assumption (A) – if and only if it preserves the standard partial order
of Rd and commutes with the addition of a constant [22]. Moreover, the transition probabilities
can be even required to be degenerate (deterministic), see [38, 19].

Theorem 2 (Shapley, [40]).
(i) For every positive integer n, the value vn of the game Γn satisfies vn = 1

nΨn(0).
(ii) The value vλ of the discounted game Γλ is characterized by the following fixed point condition

vλ = λΨ(
1− λ
λ

vλ). (3.4)

Uniform value. A stochastic game is said to have a uniform value v∞ if both players can almost
guarantee v∞ provided that the length of the n-stage game is large enough. Formally, v∞ is the
uniform value of the game if for any ε > 0, there is a couple of strategies of each player (σ, τ)
and a time N such that, for every n > N , every starting state ω1 and every strategies σ′ and τ ′,

γn(σ, τ ′, ω1) > v∞(ω1)− ε
γn(σ′, τ, ω1) 6 v∞(ω1) + ε

It is straightforward to establish that if a game has a uniform value v∞, then vn and vλ
converges to v∞. The converse is not true however, as there are games with no uniform value
but for which vn and vλ converge [28].
Some subclasses of stochastic games.
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− Markov Decision Processes : they correspond to one-player stochastic games (the choice of
Player 2 has no influence on payoff nor transition). In this case the Shapley operator has
the particular form

Ψk(f1, . . . , fd) = max
x∈X

[
g(x, ωk) +

d∑
i=1

ρ(ωi|x, ωk)fi

]
(3.5)

for every k = 1, . . . , d.

− Games with perfect information : each state is entirely controlled by one of the player (i.e.
the action of the other player has no influence on the payoff in this state nor on transitions
from this state). In that case, the Shapley operator has a specific form : for any state ωk
controlled by Player 1,

Ψk(f1, . . . , fd) = max
x∈X

[
g(x, ωk) +

d∑
i=1

ρ(ωi|x, ωk)fi

]
, (3.6)

and for any state ωk controlled by Player 2,

Ψk(f1, . . . , fd) = min
y∈Y

[
g(y, ωk) +

d∑
i=1

ρ(ωi|y, ωk)fi

]
. (3.7)

− Games with switching control : in each state the transition is entirely controlled by one
of the player (i.e. the action of the other player has no influence on transitions from this
state, but it may alter the payoff). In that case, the Shapley operator has a specific form:
for any state ωk where the transition is controlled by Player 1,

Ψk(f1, . . . , fd) = max
µ∈∆(X)

∫
X

[
min
y∈Y

g(x, y, ωk) +
d∑
i=1

ρ(ωi|x, ωk)fi

]
dµ(x), (3.8)

and for any state ωk where the transition is controlled by Player 2,

Ψk(f1, . . . , fd) = min
ν∈∆(Y )

∫
X

[
max
x∈X

g(x, y, ωk) +
d∑
i=1

ρ(ωi|y, ωk)fi

]
dν(y). (3.9)

Remark 3. Recall that we made assumption (A) in order to prove the existence of vλ and vn.
For Markov decision processes and games with perfect information this existence is automatic
as soon as the payoff is bounded, so there is no need to assume continuity of g or ρ.

Definable stochastic games. Let O be an o-minimal structure. A stochastic game is called
definable if both the payoff function and the probability transition are definable functions.

Observe in the above definition that the definability of g implies that the action sets are
also definable. Note also that the space ∆(Ω), is naturally identified to the d simplex and is
thus a semi-algebraic set. Hence there is no possible ambiguity when we assume that transition
functions are definable.

The questions we shall address in the sequel revolve around the following two ones
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(a) If a Shapley operator of a game is definable, what are the consequences in terms of games
values?

(b) Under which conditions the Shapley operator of a definable game is definable in the same
o-minimal structure?

In the next subsection we answer the first question in a satisfactory way: if a Shapley operator
is definable, then vn and vλ converge, to the same limit. The second question is more complex
and will be partially answered in Section 5

3.2 Games with definable Shapley operator have a uniform value

Let O be an o-minimal structure and d a positive integer. We recall the following definition: a
subset K ⊂ Rd is a called a cone if it satisfies R+K ⊂ K.
Let ‖ · ‖ be a norm on Rd. A mapping Ψ : A ⊂ Rd → Rd is called nonexpansive if

‖Ψ(f)−Ψ(g)‖ 6 ‖f − g‖,

whenever f, g are in Rd. Let us recall that the Shapley operator of a stochastic game is non-
expansive with respect to the supremum norm (see [42]), norm which is defined as usual by
‖f‖∞ = max{fi : i = 1, . . . , d}.

The following abstract result is strongly motivated by the operator approach to stochastic
games, i.e. the approach in terms of Shapley operator (see Sorin [43]). It grounds on the work
of Bewley-Kohlberg [4] and on its refinement by Neyman [30, Th. 4], who showed that the
convergence of the iterate Ψn(0)/n as n → ∞ is guaranteed if the map λ → vλ has bounded
variation, and deduced part (i) of the following theorem in the specific case of a semi-algebraic
operator [30, Th. 5].

Theorem 3 (Nonexpansive definable mappings). The vector space Rd is endowed with an arbi-
trary norm ‖ · ‖. Let K be a nonempty definable closed cone of Rd and Ψ : K → K a definable
nonexpansive mapping. Then

(i) There exists v in K, such that for all f in K, the sequence 1
nΨn(f) converges to v as n goes

to infinity.

(ii) When in addition Ψ is definable in a polynomially bounded structure there exists θ ∈]0, 1[
and c > 0 such that

‖Ψn(f)

n
− v‖ 6 c

nθ
+
‖f‖
n
,

for all f in K.

Proof. For any λ ∈ (0, 1], we can apply Banach fixed point theorem to define Vλ as the unique
fixed point of the map Ψ((1 − λ) ·) and set vλ = λVλ (recall that K is a cone). The graph of
Vλ is given by {(λ, f) ∈ (0, 1]×K : Ψ((1− λ)f)− f = 0}. Using Proposition 2, we obtain that
λ→ Vλ and λ→ vλ are definable in O. Observe also that

‖Vλ‖ = ‖Ψ((1− λ)Vλ)‖
6 ‖Ψ((1− λ)Vλ)−Ψ(0)‖+ ‖Ψ(0)‖
6 ‖(1− λ)Vλ‖+ ‖Ψ(0)‖
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so that the curve λ → vλ is bounded by ‖Ψ(0)‖. Applying the monotonicity lemma to each
component of this curve, we obtain that vλ is piecewise C1, has a limit as λ goes to 0 which we
denote by v = v0. In order to establish that∫ 1

0
‖ d
dλ
vλ‖ dλ < +∞, (3.10)

we first observe that there exists a constant σ > 0 such that∫ 1

0
‖ d
dλ
vλ‖ dλ 6 σ

∫ 1

0
‖ d
dλ
vλ‖∞ dλ.

It suffices thus to establish that (3.10) holds for the specific case of the supremum norm. Applying
the monotonicity lemma to the coordinate functions of vλ, we obtain the existence of ε ∈ (0, 1) and
of an index i0 ∈ {1, . . . , d} such that vλ is in C1(0, ε) with, for all λ ∈ (0, ε), |(v′λ)i0 | = ‖ ddλvλ‖∞
and (v′λ)i0 is of constant sign. Assume for instance that λ → (v′λ)i0 is positive on (0, ε). This
shows that ∫ ε

0
‖ d
dλ
vλ‖∞ dλ =

∫ ε

0
(v′λ)i0 dλ = (vε)i0 − (v0)i0 ,

and (3.10) follows.
Let λ̄ such that λ → vλ is C1 on (0, λ̄). Let λ > µ be in (0, λ̄). Then for any decreasing

sequence (λi)i∈N in (λ, µ), we have

+∞∑
i=1

‖vλi+1
− vλi‖ 6

∫ λ

µ
‖ d
dλ
vλ‖ds. (3.11)

Indeed ‖vλi+1
−vλi‖ 6 ‖

∫ λi
λi+1

d
dλvλdλ‖ 6

∫ λi
λi+1
‖ ddλvλ‖dλ, so that the result follows by summation.

The map λ → vλ is thus of bounded variation, and (i) follows from Neyman’s proof that
the latter property implies the convergence of Ψn(0)/n to the limit v := limλ→0+ vλ [30]. Some
intermediary results in Neyman’s proof are necessary to establish the rate of convergence of (ii);
we thus include the the remaining part of the proof of (i). First observe that

‖ 1

n
Ψn(f)− 1

n
Ψn(0)‖ 6 1

n
‖f‖, ∀f ∈ K (3.12)

for all positive integers n, so it suffices to establish the convergence result for f = 0.
For n in N, define

dn := ‖nv1/n −Ψn(0)‖ = ‖V1/n −Ψn(0)‖,

and let us prove that n−1dn tends to zero as n goes to infinity. If n > 0, we have

dn = ‖Ψ((n− 1)v1/n)−Ψn(0)‖
6 ‖(n− 1)v1/n −Ψn−1(0)‖
6 dn−1 + (n− 1)‖v1/n − v1/n−1‖. (3.13)

Let
Dn :=

∑
i>n

‖v1/i+1 − v1/i‖ <∞ ,

11



Using (3.13) and a discrete integration by parts, we get

dn 6
n−1∑
i=1

i‖v1/i+1 − v1/i‖+ d1 (3.14)

=
n−1∑
i=1

i(Di −Di+1) + d1 =
n−1∑
i=1

Di − (n− 1)Dn + d1 . (3.15)

Since Dn tends to 0 as n→∞, the Cesàro sum n−1
∑n−1

i=1 Di also tends to 0 as n→∞. Then,
it follows from (3.15) that n−1dn tends to 0 as n→∞.

Finally
∥∥v1/n − 1

nΨn(0)
∥∥ tends to 0 as n goes to infinity. We know from the monotonicity

lemma (or from the fact that vλ as bounded variation) that v1/n converges to some v. It follows
that 1

nΨn(0) also converges to v.

We now prove (ii). Assume that Ψ is definable in a polynomially bounded structure and
recall that the monotonicity lemma implies the existence of λ̄ ∈ (0, 1) such that v is C1 on the
open interval (0, λ̄) and continuous on [0, λ̄). Since O is a polynomially bounded structure and
since the first derivative of v is also definable in O (see Proposition 3), there exist γ and c1 > 0
such that ‖ ddλvλ‖ = c1λ

−γ + o(λ−γ) (see Corollary 1). If we are able to deal with the case when
γ is positive, the other case follow trivially. Assume thus that γ is positive; note that, since d

dλvλ
is integrable, we must also have γ < 1. Let c2 > 0 be such that

‖ d
dλ
vλ‖ 6 c2λ

−γ ,

for all positive λ small enough. Let us now consider a positive integer i which is sufficiently large;
by using (3.11), we have

i‖v1/i − v1/i+1‖ 6 i

∫ 1
i

1
i+1

‖ d
dλ
vλ‖dλ (3.16)

6 i

∫ 1
i

1
i+1

c2λ
−γdλ

6
∫ 1

i

1
i+1

c2λ
−1λ−γdλ

= c2

[
1

−1− γ
λ−γ

] 1
i

1
i+1

=
c2

1 + γ
((i+ 1)γ − iγ) (3.17)

Replacing c2 by a bigger constant, we may actually assume that (3.17) holds for all positive
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integers. Hence

||v 1
n
− Ψn(0)

n
|| = n−1dn 6 n−1

n∑
i=1

i‖v1/i+1 − v1/i‖ − n−1d1

6 n−1
n∑
i=1

c2

1 + γ
(iγ − (i+ 1)γ)− n−1d1

6
c2

1 + γ

(n+ 1)γ

n
− n−1d1

= O(
1

n1−γ ).

Recalling the estimate (3.12) and observing that

‖Ψn(0)

n
− v‖ 6 ‖Ψn(0)

n
− v 1

n
‖+ ‖v 1

n
− v‖

= O(
1

n1−γ ) +

∫ 1
n

0
‖ d
dλ
vλ‖dλ

6 O(
1

n1−γ ) +

∫ 1
n

0
c2

1

λγ
dλ = O(

1

n1−γ )

the conclusion follows by setting θ = 1− γ (θ ∈ (0, 1)).

The above result and some of its consequences can be recast within game theory as follows.
Point (iii) of the following corollary is essentially due to Mertens-Neymann [25].

Corollary 4. If the Shapley operator of a stochastic game is definable the following assertions
hold true.

(i) The limits of vλ and vn coincide, i.e.

lim
n→+∞

vn = lim
λ→0

vλ := v∞.

(ii) If Φ is definable in a polynomially bounded o-minimal structure, there exists θ ∈ (0, 1] such
that

‖vn − v∞‖ = O(
1

nθ
).

(iii) (Mertens-Neyman, [25]) The game has a uniform value.

Proof. Since the Shapley Operator of a game is nonexpansive for the supremum norm, the two
first points are a mere rephrasing of the proof of Theorem 3. Concerning the last one, we note
from the proof (see (3.10)), that there exists an L1 definable function φ : (0, 1)→ R+ such that

‖vλ − vµ‖ 6
∫ µ

λ
φ(s)ds, (3.18)

whenever λ < µ are in (0, 1). Applying [25, Theorem of p. 54], the result follows3.
3In [25] the authors uniquely consider finite stochastic games, however their proof relies only on the prop-

erty (3.18). We are indebted to X. Venel for his valuable advices on this aspect.

13



Remark 4. The first two items of Corollary 4 remain true if we do not assume that players
observe their stage payoffs (since the value vλ does not depend on this observation).
Remark 5. In the particular case of finite games, more is known: it is proved in [29] that the
real θ in (ii) can be chosen depending only on the dimension (number of states and actions) of
the game.
Remark 6. The definability of the Shapley operator and its Lipschitz continuity imply by [8,
Theorem 1] its semi-smoothness. This suggests that the use of nonsmooth Newton’s method for
the computation of the values of discounted games should yield good local behaviors [16, Section
3.3].

4 Definability of the value function for parametric games

Let O be an o-minimal structure over R. The previous section showed the importance of proving
the definability of the Shapley operator of a game.

Recall that the Shapley operator associates to each vector f in Rd, the values of d zero-sum
games

max
µ∈∆(X)

min
ν∈∆(Y )

∫
X

∫
Y

[
g(x, y, ωk) +

d∑
i=1

ρ(ωi|x, y, ωk)fi

]
dµdν,

where k ranges over {1, . . . , d}. Hence each coordinate function of the operator can be seen as
the value of a static zero-sum game depending on a vector parameter f . In this section we thus
turn our attention to the analysis of parametric zero-sum games with definable data.

Consider nonempty compact sets X ⊂ Rp, Y ⊂ Rq, an arbitrary nonempty set Z ⊂ Rd and a
continuous pay-off function g : X × Y ×Z → R. The sets X and Y are action spaces for players
1 and 2, whereas Z is a parameter space. Denote by ∆(X) (resp. ∆(Y )) the set of probability
measures over X (resp. Y ). When z ∈ Z is fixed, the mixed extension of g over ∆(X) ×∆(Y )
defines a zero-sum game Γ(z) whose value is denoted by V (z) (recall that the max and min
commutes by Sion’s theorem):

V (z) = max
µ∈∆(X)

min
ν∈∆(Y )

∫
X

∫
Y
g(x, y, z)dµdν (4.1)

= min
ν∈∆(Y )

max
µ∈∆(X)

∫
X

∫
Y
g(x, y, z)dµdν. (4.2)

In the sequel a parametric zero-sum game is denoted by (X,Y, Z, g); when the objects
X,Y, Z, g are definable, the game (X,Y, Z, g) is called definable.

The issue we would like to address in this section is: can we assert that the value function
V : Z → R is definable in O whenever the game (X,Y, Z, g) is definable in O?

As shown in a forthcoming section, the answer to the previous question is not positive in
general; but as we shall see additional algebraic or geometric structure may ensure the definability
of the value function.

4.1 Separable parametric games

The following type of games and the ideas of convexification used in their studies seems to
originate in the work of Dresher-Karlin-Shapley [12] (where these games appear as polynomial-
like games).
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When x1, . . . , xm are vectors in Rp, the convex envelope of the family {x1, . . . , xm} is denoted
by

co {x1, . . . , xm}.

Definition 3 (Separable functions and games). Let X ⊂ Rp, Y ⊂ Rq, Z ⊂ Rd and
g : X × Y × Z → R be as above.
(i) The function g is called separable with respect to the variables x, y, if it is of the form

g(x, y, z) =
I∑
i=1

J∑
j=1

mij(z)ai(x, z)bj(y, z).

where I, J are positive integers and the ai, bj , mij are continuous functions.
The function g is called separably definable, if in addition the functions ai, bj , mij are definable.
(ii) A parametric game (X,Y, Z, g) is called separably definable, if its payoff function g is itself
separably definable.

Proposition 4 (Separable definable parametric games). Let (X,Y, Z, g) be a separably definable
zero-sum game. Then the value function Z 3 z → V (z) is definable in O.

Proof. Let us consider the correspondence L : Z ⇒ RI defined by

L(z) = co{(a1(x, z), · · · , aI(x, z)) : x ∈ X}

and define M : Z ⇒ RJ similarly by M(z) = co{(b1(y, z), · · · , bJ(y, z)) : y ∈ X}. Using
Carathéodory’s theorem, we observe that the graph of L is defined by a first order formula, as
(z, s) ∈ Z × RI if and only if

∃(λ1, . . . , λI+1) ∈ RI+1
+ ,∃(x1, . . . , xI+1) ∈ XI+1,

I+1∑
i=1

λi = 1, s =
I+1∑
i=1

λiai(xi, z) .

This ensures the definability of L andM. Let us introduce the definable matrix-valued function

Z 3 z →M(z) = [mij(z)]16i6I ,16i6J

and the mapping
W (z) = sup

S∈L(z)
inf

T∈M(z)
SM(z)T t.

Using again Proposition 2, we obtain easily that W is definable. Let us prove that W = V ,
which will conclude the proof. Using the linearity of the integral

W (z) = sup
S∈L(z)

inf
T∈M(z)

SM(z)T t = sup
S∈L(z)

inf
y∈Y

I∑
i=1

J∑
j=1

mij(z)Si bj(y, z)

6 sup
µ∈∆(X)

inf
y∈Y

∫
X
g(x, y, z)dµ

= V (z).

An analogous inequality for inf sup and a minmax argument imply the result.
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4.2 Definable parametric games with convex payoff

Scalar products on Rm spaces are denoted by 〈·, ·〉.
We consider parametric games (X,Y, Z, g) such that:

Y and the partial payoff gx,z :

{
Y → R
y → g(x, y, z)

are both convex. (4.3)

One could alternatively assume that X is convex and that player 1 is facing a concave function
gy,z for each y, z fixed.

We recall some well-known concepts of convex analysis (see [34]). If f : Rp → (−∞,+∞] is
a convex function its subdifferential ∂f(x) at x is defined by

x∗ ∈ ∂f(x)⇔ f(y) > f(x) + 〈x∗, y − x〉,∀y ∈ Rp,

whenever f(x) is finite; else we set ∂f(x) = ∅. When C is a closed convex set and x ∈ C, the
normal cone to C at x is given by

NC(x) := {v ∈ Rp : 〈v, y − x〉 6 0, ∀y ∈ C} .

The indicator function of C, written IC , is defined by IC(x) = 0 if x is in C, IC(x) = +∞
otherwise. It is straightforward to see that ∂IC = NC (where we adopt the convention NC(x) = ∅
whenever x /∈ C).

Proposition 5. Let (X,Y, Z, g) be a zero-sum parametric game. Assume that Y and g satisfy
(4.3). Then

(i) The value V (z) of the game coincides with

max
(x1, . . . , xq+1) ∈ Xq+1

λ ∈ ∆q+1

min
y ∈ Y

q+1∑
i=1

λig(xi, y, z),

where ∆q+1 = {(λ1, . . . , λq+1) ∈ R+ :
∑p+1

i=1 λi = 1} denotes the q + 1 simplex.

(ii) If the payoff function g is definable then so is the value mapping V .

Proof. Item (ii) follows from the fact that (i) provides a first order formula that describes the
graph of V .

Let us establish (i). In what follows ∂ systematically denotes the subdifferentiation with
respect to the variable y ∈ Y , the other variables being fixed.

Fix z in the parameter space. Let us introduce the following continuous function

Φ(y, z) = max
x∈X

g(x, y, z). (4.4)

Φ(·, z) is clearly convex and continuous. Let us denote by ȳ a minimizer of Φ(·, z) over Y . Using
the sum rule for the subdifferential of convex functions, we obtain

∂Φ(ȳ, z) +NY (ȳ) 3 0. (4.5)
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Now from the envelope’s theorem (see [34]), we know that ∂Φ(ȳ, z) = co{∂g(x, ȳ, z) : x ∈
J(y, z)}, where J(y, z) := {x in X which maximizes g(x, y, z) over X}. Hence Carathéodory’s
theorem implies the existence of µ ∈ Rq+1, x1, . . . , xq+1 ∈ X such that

q+1∑
i=1

µi∂g(xi, ȳ, z) +NY (ȳ) 3 0. (4.6)

where, for each i, xi is a maximizer of x → g(x, ȳ, z) over the compact set X. Being given x in
X, the Dirac measure at x is denoted by δx. We now establish that x̄ =

∑q+1
i=1 µiδxi and ȳ are

optimal strategies in the game Γ(z). Let x be in X, we have∫
X
g(x, ȳ)dx̄ =

∑
i

µig(xi, ȳ, z) (4.7)

=
∑
i

µig(x1, ȳ, z)

= g(x1, ȳ, z)

> g(x, ȳ, z).

Using the sum rule for the subdifferential, we see that (4.6) rewrites

∂

(∑
i

µig(xi, ·, z) + IY

)
(ȳ) 3 0,

where IY denotes the indicator function of Y . The above equation implies that ȳ is a minimizer
of the convex function

∑
i µig(xi, ·, z) over Y . This implies that∫

X
g(x, ȳ)dx̄ =

∑
i

µig(xi, ȳ, z)

6
∑
i

µig(xi, y, z).

Together with (4.7), this shows that (x̄, ȳ) is a saddle point of the mixed extension of g with
value

∫
X g(x, ȳ)dx̄. To conclude, we finally observe that we also have

q+1∑
i=1

µig(x̄i, ȳ, z) = g(x̄1, ȳ, z) >
q+1∑
i=1

λig(xi, ȳ, z)

for all λ ∈ ∆q+1 and xi in X. Hence ((λ, x1, . . . , xq+1), ȳ) is a saddle point of the map
(λ, x1, . . . , xq+1), y)→

∑q+1
i=1 λig(xi, y, z) with value

∑
µig(x̄i, ȳ, z) =

∫
X g(x, ȳ)dx̄.

Remark 7. (a) Observe that the above proof actually yields optimal strategies for both players.
(b) An analogous result holds, when we assume that X is convex and X 3 x → g(x, y, p) is a
concave function.

4.3 A semi-algebraic parametric game whose value function is not semi-
algebraic

The following lemma is adapted from an example, due to McKinsey [24, Ex. 10.12 p 204], of
a one-shot game played on the square where the payoff is a rational function yet the value is
transcendental.
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Lemma 6. Consider the semi-algebraic payoff function

g(x, y, z) =
(1 + x)(1 + yz)

2(1 + xy)2

where (x, y, z) evolves in [0, 1]× [0, 1]× (0, 1]. Then

V (z) =
z

2 ln(1 + z)
, ∀z ∈ (0, 1].

Proof. Fix z in (0, 1]. Player 1 can guarantee V (z) by playing the probability density

dx

ln(1 + z)(1 + x)

on [0, z] since for any y ∈ [0, 1],∫ z

0

g(x, y, z)dx

ln(1 + z)(1 + x)
=

1 + yz

2 ln(1 + z)

∫ z

0

dx

(1 + xy)2
=

z

2 ln(1 + z)

On the other hand, Player 2 can guarantee V (z) by playing the probability density

z dy

ln(1 + z)(1 + yz)

on [0, 1] since for any x ∈ [0, 1],∫ 1

0

z g(x, y, z)dy

ln(1 + z)(1 + yz)
=

z(1 + x)

2 ln(1 + z)

∫ 1

0

dy

(1 + xy)2
=

z

2 ln(1 + z)
.

We see on this example that the underlying objects of the initial game are semi-algebraic
while the value function is not. Observe however that the value function is definable in a larger
structure since it is globally subanalytic (the log function only appears through its restriction on
compact sets). The question of the possible definability of the value function in a larger structure
is exciting but it seems difficult, it is certainly a matter for future research.

5 Values of stochastic games

5.1 Definable stochastic games

We start by a simple result. Recall that a stochastic game has perfect information if each state
is controlled by only one of the players (see Section 3.1).

Proposition 7 (Definable games with perfect information). Games with perfect information and
bounded payoff4 have a uniform value.

Proof. Let ωk be any state controlled by the first player. The Shapley operator in this state can
be written as

Ψk(f) = sup
X

[
g(x, ωk) +

d∑
i=1

ρ(ωi|x, ωk)fi

]
.

So Ψk is the supremum, taken on a definable set, of definable functions, and is thus definable
(see Example 1). The same is true if ωk is controlled by the second player, so we conclude by
Corollary 4.

4recall that we do not need to assume continuity of g and ρ in that case, as stated in Remark 3
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A stochastic game (Ω, X, Y, g, ρ) is called separably definable, if both the payoff and the
transition functions are separably definable. More precisely:

(a) Ω is finite and X ⊂ Rp, Y ⊂ Rq are definable sets.

(b) For each state ω, the reward function g(·, ·, ω) has a definable/separable structure, that is

g(x, y, ω) :=

Iω∑
i=1

Jω∑
j=1

mω
i,j ai(x, ω) bj(y, ω), ∀(x, y) ∈ X × Y,

where Iω, Jω are positive integers, mω
ij are real numbers, ai(·, ω) and bj(·, ω) are continuous

definable functions.

(c) For each couple of states ω, ω′, the transition function ρ(ω′|·, ·, ω) has a definable/separable
structure, that is

ρ(ω′|x, y, ω) :=

K(ω,ω′)∑
i=1

L(ω,ω′)∑
j=1

n
(ω,ω′)
i,j ci(x, ω, ω

′) dj(y, ω, ω
′) ∀(x, y) ∈ X × Y,

whereK(ω,ω′), L(ω,ω′) are positive integers, n
(ω,ω′)
ij are real numbers, ci(·, ω, ω′) and dj(·, ω, ω′)

are continuous definable functions.

The most natural example of separably definable games are games with semi-algebraic action
spaces and polynomial reward and transition functions.

Theorem 5 (Separably definable games). Separably definable games have a uniform value.

Proof. The coordinate functions of the Shapley operator yield d parametric separable definable
games. Hence the Shapley operator of the game, say Ψ, is itself definable. Applying Corollary 4
to Ψ, the result follows.

An important subclass of separable definable games is the class of definable games for which
one of the player has a finite set of strategies.

Corollary 6 (Definable games finite on one-side). Consider a definable stochastic game and
assume that one of the player has a finite set of strategies. Then the game has a uniform value.

Proof. It suffices to observe that the mixed extension of the game is both separable and definable,
and to apply the previous theorem.
One could alternatively observe that the mixed extension fulfills the convexity assumptions of
Proposition 5. This shows that the Shapley operator of the game is definable, hence Corollary 4
applies and yields the result.

The above theorems generalize in particular the results of Bewley-Kohlberg [4], Mertens-
Neyman [25] on finite stochastic games.

As shown by the following result, it is not true in general that semi-algebraic stochastic games
have a semi-algebraic Shapley operator.
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Proposition 8. Consider the following stochastic game with two states {ω1, ω2} and action sets
[0, 1] for each player. The first state is absorbing with payoff 0, while for the second state, the
payoff is

g(x, y, ω2) =
1 + x

2(1 + xy)2

and the transition probability is given by

1− ρ(ω1|x, y, ω2) = ρ(ω2|x, y, ω2) =
(1 + x)y

2(1 + xy)2
,

for all (x, y) in [0, 1]2.
This stochastic game is defined by semi-algebraic and continuous functions but neither the

Shapley operator Ψ nor the curve of values (vλ)λ∈(0,1] are semi-algebraic mappings.

Proof. Notice first that ρ(ω2|x, y, ω2) ∈ [0, 1] for all x and y so the game is well defined. It is
straightforward that Ψ1(f1, f2) = f1, and Ψ2(f1, f2) = f1 + V (f2 − f1) (where V is the value of
the parametric game in Lemma 6) hence Ψ is not semi algebraic.

For any λ ∈]0, 1[ let uλ =

(
0, λ(e

1−λ
2 −1)

1−λ

)
, the identity uλ = vλ will follow as we prove that

uλ = λΨ(1−λ
λ uλ). This is clear for the first coordinate, and for the second, since 1−λ

λ uλ =

e
1−λ
2 − 1 ∈]0, 1[, Lemma 6 implies that

λΨ2(
1− λ
λ

uλ) = λV (e
1−λ
2 − 1)

= λ
e

1−λ
2 − 1

1− λ
= uλ.

Remark 8. As in Lemma 6, one observes that both the Shapley operator Ψ and the curve of
values (vλ)λ∈(0,1] are globally subanalytic.

5.2 Stochastic games with separable definable transitions

Theorem 7 (Games with separable definable transitions). Let (Ω, X, Y, g, ρ) be a stochastic
game, and assume that:

(i) Ω is finite and X,Y are definable,

(ii) the reward function g is an arbitrary continuous function,

(iii) the transition function ρ is definable and separable (e.g. polynomial).

Then the game (Ω, X, Y, g, ρ) has a uniform value.

As it appears below, the proof of the above theorem relies on Mertens-Neyman uniform value
theorem [25] that we do not reproduce here. We shall however provide a complete proof of a
weaker result in the spirit of the “asymptotic approach" of Rosenberg-Sorin:
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Theorem 8 (Games with separable definable transitions – weak version). We consider a stochas-
tic game (Ω, X, Y, g, ρ) which is as in Theorem 7.
Then the following limits exist and coincide:

lim
n→=∞

vn = lim
λ→0

vλ.

Before establishing the above results, we need some abstract results that allow to deal with
certain approximation of stochastic games. In the following proposition, the space (X , ‖ · ‖)
denotes a real Banach space and K denotes a nonempty closed cone of X . Being given two
mappings Φ1,Φ2 : K → K, we define their supremum “norm" through

‖Φ1 − Φ2‖∞ = sup {‖Φ1(f)− Φ2(f)‖ : f ∈ K} .

Observe that the above value may be +∞, so that ‖ · ‖∞ is not longer a norm, however,
δ(Φ1,Φ2) := ‖Φ1−Φ2‖∞/(1 + ‖Φ1−Φ2‖∞) does provide a proper metric5 on the space of map-
pings K → K We say that a sequence Ψk : K → K (k ∈ N) converges uniformly to Ψ : K → K if
‖Ψk −Ψ‖∞ tends to zero as k goes to infinity, or equivalently, if it converges to Ψ with respect
to the metric δ. The observation that the set of nonexpansive mappings Ψ : K → K such that
the limit limn→∞Ψn(0)/n does exist is closed in the topology of uniform convergence was made
in [18].

Proposition 9. Let Ψk : K → K be a sequence of nonexpansive mappings. Assume that
(i) There exists Ψ : K → K such that Ψk converges uniformly to Ψ,
(ii) for each fixed integer k, the sequence 1

nΨn
k(0) has a limit vk in K as n→ +∞.

Then the sequence vk has a limit v in K, Ψ is nonexpansive and 1
nΨn(0) converges to v as k

goes to infinity.

Proof. Take ε > 0. Note first, that if Φ1,Φ2 are two nonexpansive mappings such that ‖Φ1 −
Φ2‖∞ 6 ε, we have ‖Φn

1 − Φn
2‖∞ 6 nε. This follows indeed from an induction argument. The

result obviously holds for n = 1, so assume that n > 2 and consider that the inequality holds at
n− 1. For all f in K, we have

‖Φn
1 (f)− Φn

2 (f)‖ 6 ‖Φ1(Φn−1
1 (f))− Φ1(Φn−1

2 (f))‖+ ‖Φ1(Φn−1
2 (f))− Φ2(Φn−1

2 (f))‖
6 ‖Φn−1

1 (f)− Φn−1
2 (f)‖+ ε

6 nε. (5.1)

Let us now prove that vk is a Cauchy sequence. Let N > 0 be such that ‖Ψp − Ψq‖∞ 6 ε, for
all p, q > N . Then, for each p, q > N and each positive integer n, we have

‖
Ψn
p (0)

n
−

Ψn
q (0)

n
‖ 6 ε.

Letting n goes to infinity (p and q are fixed), one gets ‖vp − vq‖ 6 ε and thus vk converges to a
vector v belonging to K.

Take ε > 0. Let N be such that ‖Ψp −Ψ‖∞ 6 ε/3 and ‖vp − v‖ < ε/3 for all p > N . Using
(5.1), one obtains ‖Ψn

p (0)−Ψn(0)‖ 6 n ε/3 where n > 0 is an arbitrary integer. Whence

‖v − Ψn(0)

n
‖ 6 ‖v − vp‖+ ‖vp −

Ψn
p (0)

n
‖+ ‖

Ψn
p (0)

n
− Ψn(0)

n
‖

6
2ε

3
+ ‖vp −

Ψn
p (0)

n
‖,

5We of course set: δ(Φ1,Φ2) := 1 whenever ‖Φ1 − Φ2‖∞ =∞.
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for all n > 0. The conclusion follows by choosing n large enough.

Similarly, we prove:

Proposition 10. Let Ψk : K → K be a sequence of nonexpansive mappings. Assume that
(i) There exists Ψ : K → K such that Ψk converges uniformly to Ψ,
(ii) for each fixed integer k, the family of fixed point vkλ := λΨk

(
1−λ
λ vkλ

)
has a limit vk in K as

λ→ 0.
Then the sequence vk has a limit v in K, Ψ is nonexpansive and vλ := λΨ

(
1−λ
λ vλ

)
converges

to v as k goes to infinity.

Proof. Take ε > 0. Let N > 0 be such that ‖Ψp − Ψq‖∞ 6 ε, for all p, q > N . Then, for each
p, q > N and any λ ∈]0, 1], we have

‖vpλ − v
q
λ‖ = λ

∥∥∥∥Ψp

(
1− λ
λ

vpλ

)
−Ψq

(
1− λ
λ

vqλ

)∥∥∥∥
6 λ

∥∥∥∥Ψp

(
1− λ
λ

vpλ

)
−Ψq

(
1− λ
λ

vpλ

)∥∥∥∥+ λ

∥∥∥∥Ψq

(
1− λ
λ

vpλ

)
−Ψq

(
1− λ
λ

vqλ

)∥∥∥∥
6 λε+ (1− λ)‖vpλ − v

q
λ‖.

so ‖vpλ − v
q
λ‖ 6 ε.

Letting λ to 0, we get that vk is a Cauchy sequence, hence converge to some v. Moreover,
for any p > N ,

‖v − vλ‖ 6 ‖v − vp‖+ ‖vp − vpλ‖+ ‖vpλ − vλ‖
6 2ε+ ‖vp − vpλ‖

for all λ ∈]0, 1]. Hence vλ converges to v.

Proof of Theorem 8. Let k be a positive integer. From the Stone-Weierstrass theorem (see [10]),
there exists a finite family {πk(·, ω);ω ∈ Ω} of real polynomial functions

πk(x, y, ω) =
∑

06i, j 6 δωk

mk
ij(ω)xiyj (5.2)

with δωk in N∗, mk
ij(ω) in R and (x, y) in X × Y ⊂ Rp × Rq, such that

sup
ω∈Ω

sup {|πk(x, y, ω)− r(x, y, ω)| : (x, y) ∈ X × Y } 6 1

k
.

Consider now, for each positive k, the game given by (Ω, X, Y, πk, ρ). Since this game is definable,
Proposition 4 applies and the game has a value. In other words its Shapley operator Ψk : Rd → Rd
(recall that the cardinality of Ω is d) is such that the sequence 1

nΨn
k(0) has a limit as n goes to

+∞. On the other hand, one easily sees that

Ψ(f)− 1

k
6 Ψk(f) 6 Ψ(f) +

1

k

whenever f is in Rd and k is positive. This proves that Ψk converges uniformly to Ψ. Thus by
using Proposition 9 and Proposition 10 , we obtain the existence of a common limit v in Rd of
the sequence vn = 1

nΨn(0) and of the family of fixed points vλ.
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Let us now establish the stronger version of our result.

Proof of Theorem 7. Let k be a positive integer. As before we consider a finite family of real
polynomial functions, {πk(·, ω);ω ∈ Ω}, such that

sup
ω∈Ω

sup {|πk(x, y, ω)− r(x, y, ω)| : (x, y) ∈ X × Y } 6 1

k
. (5.3)

Consider now, for each positive k, the game Γk given by (Ω, X, Y, πk, ρ). Since this game is
definable, Theorem 5 applies and the game has a uniform value vk. Hence, there exists an
integer N (depending on k) and a strategy σ of Player 1 which is 1

k optimal in the n-stage game
Γkn for any n > N . That is, for any strategy τ of Player 2 and any starting state ω,

γkn(σ, τ, ω) > vk(ω)− 1

k
.

Hence by (5.3),

γn(σ, τ, ω) > vk(ω)− 2

k
. (5.4)

Taking the infimum over all possible strategies τ , we get that for every ω and every large n,

vn(ω) > vk(ω)− 2

k
.

Using the dual inequality

vn(ω) 6 vk(ω) +
2

k
(5.5)

one gets that lim sup vn(ω) − lim inf vn(ω) 6 4
k . Hence vn converges to some v. Moreover,

combining (5.4) and (5.5) yields

γn(σ, τ, ω) > vn(ω)− 4

k
> v(ω)− 5

k

for n sufficiently large. Hence v is the uniform value of the game.

An immediate consequence of Theorem 7 is the following

Corollary 9. Any game with switching control and with a definable transition probability has a
uniform value.

5.3 Geometric growth in nonlinear Perron-Frobenius theory

We finally point out an application of the present results to nonlinear Perron-Frobenius theory,
in which Shapley operators do appear, albeit in a disguised form.

We denote by C = Rd+ the standard (closed) nonnegative cone of Rd, equipped with the
product ordering. We are interested in maps T defined on the interior of C, satisfying some of
the following properties. We say that T is order preserving if

f 6 g =⇒ T (f) 6 T (g), ∀f, g ∈ intC,

that it is positively homogeneous (of degree 1) if

T (λf) = λT (f), ∀f ∈ intC, ∀λ > 0,

23



and positively subhomogeneous if

T (λf) 6 λT (f), ∀f ∈ intC, ∀λ > 1.

Let log : intC → Rd denote the map which does log entrywise, and let exp := log−1. It is clear
that T is order-preserving and positively homogeneous if and only if the conjugate map

Ψ := log ◦T ◦ exp (5.6)

is order-preserving and commutes with the addition of a constant. These two properties hold if
and only if Ψ is a dynamic programming operator associated to an undiscounted game with state
space {1, . . . , d}, i.e. if Ψ can be written as in (3.3), but with possibly noncompact sets of actions
(see in particular [22]). Note also that if T is order preserving and positively subhomogeneous,
then, Ψ is sup-norm nonexpansive.

In the setting of nonlinear Perron-Frobenius theory, we are interested in the existence of the
geometric growth rate χ(T ), defined by

χ(T ) := exp( lim
n→∞

n−1 log Tn(e)) = exp( lim
n→∞

n−1Ψn(log e)) (5.7)

where e is an arbitrary vector in the interior of C.
Problems of this nature arise in population dynamics. In this context, one considers a popu-

lation vector f(n) ∈ intRd+, where [f(n)]i represents the number of individuals of type i at time
n, assuming a dynamics of the form f(n) = T (f(n− 1)). Then, [χ(T )]i = limn→∞[Tn(f(0))]

1/n
i

represents the geometric growth rate of individuals of type i.

Corollary 10 (Geometric Growth). Let T be an order preserving and positively subhomogeneous
self map of intC that is definable in the log-exp structure, and let e be a vector in intC. Then,
the growth rate χ(T ), defined by (5.7), does exist and is independent of the choice of e.

Proof. Apply Theorem 3 to the operator (5.6), which is nonexpansive in the sup-norm as well as
definable in the log-exp structure, and use (5.7).

Here is now an application of Corollary 10 to a specific class of maps.

Corollary 11 (Growth minimization). Assume that T is a self-map of intC every coordinate of
which can be written as

[T (f)]i = inf
p∈Mi

〈p, f〉 1 6 i 6 d , (5.8)

whereMi is a subset of C. Assume in addition that everyMi is definable in the log-exp structure.
Then, the growth rate χ(T ) does exist and is independent of the choice of e ∈ intC.

Proof. The map T is obviously order preserving, positively homogeneous, and, by Proposition 2
or Example 1, it is definable in the log-exp structure as soon as every setMi is definable in this
structure. Hence, the result follows from Corollary 10.

Several motivations lead to consider maps of the form (5.8). The first motivation arises from
discrete time controlled growth processes. As above, to each time n > 1 and state 1 6 i 6 d is
attached a population [f(n)]i. The control at time n is chosen after observing the current state
1 6 i 6 d. It consists in selecting a vector p ∈ Mi. Then, the population at time i becomes
[f(n)]i = 〈p, f(n− 1)〉. The iterate [Tn(e)]i represents the minimal possible population at state
i and time n, with an initial population e. Then, the limit χ(T ) represents the minimal possible
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growth rate. This is motivated in particular by some therapeutic problems (see e.g [6]), for which
χ(T ) yields a lower bound on the achievable growth rates.

Another motivation comes from risk sensitive control [17, 9] or from mathematical finance
models with logarithmic utility [2]. In this context, it is useful to consider the conjugate map
Ψ := log ◦T ◦ exp, which has the following explicit representation

[Ψ(h)]i = inf
p∈Mi

log(
∑

16j6d

pje
hj ) = inf

p∈Mi

sup
q∈∆d

(−S(q, p) + 〈q, h〉) (5.9)

where
S(q, p) :=

∑
16j6d

qj log(qj/pj)

denotes the relative entropy or Kullback-Leibler divergence, and ∆d := {q ∈ C |
∑

16j6d qj = 1}
is the standard simplex. Then, log[χ(T )]i can be interpreted as the value of an ergodic risk
sensitive problem, and it is also the value of a zero-sum game.

The case in which inf is replaced by sup in (5.8), i.e., [T (f)]i = supp∈Mi
〈p, f〉, for 1 6 i 6 d,

which is also of interest, turns out to be simpler. Indeed, every coordinate of the operator
Ψ := log ◦T ◦ exp becomes convex (this can be easily seen from the representation analogous
to (5.9), in which the infimum is now replaced by a supremum). More generally, the latter
convexity property is known to hold if and only if Ψ is the dynamic programming operator of a
one player stochastic game [1, 48]. It has been shown by several authors [18, 48, 32] that for this
class of operators (or games), the limit limn→+∞Ψn(f)/n does exist, from which the existence
of the limit (5.7) readily follows.

Finally, we note that we may consider more general hybrid versions of (5.8), for instance with
a partition {1, . . . , d} = I ∪ J and

[T (f)]i = inf
p∈Mi

〈p, f〉 i ∈ I, [T (f)]i = sup
p∈Mi

〈p, f〉 i ∈ J .

Then the existence of the growth rate, for such maps, also follows from Corollary 10.

Acknowledgments. The authors would like to thank X. Venel and S. Sorin for their very useful
comments.
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