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Abstract: The presentation deals with the non linear stpe{stic and viscous behaviour of poly
ethylene terephthalate near the glass transitiopeeature and biaxially stretched at high straiesa
representative of the injection stretch blow maudgdprocess. A non linear visco-hyperelastic model
identified from the experimental results of the idgjaxial tension test is implemented into a finite
element code developed in the Matlab environmeme. thermal behaviour modelling, identification
and simulation has also been managed. The modalseaisto simulate the 2D plane stress case and
then was applied to a 2D axi-symmetric case. Batiulations are compared with equi biaxial
testing. The final goal of this work is to perfortime free blowing simulation to compare with
experimental data. Therefore, we should solve arative procedure for a thermo-mechanical
equation. At each time step, the proposed visc@tgjpstic model is used for the mechanical part,
and a classical heat transfer equation is diseefiar the thermal part. All mechanical paramesees
reactualized from the temperature field.

Introduction

The injection stretch blow moulding (ISBM) proceglsich is managed at a temperature near or
slightly above the glass transition temperatureniglves multiaxial large strains at high straitera
of the polyethylene terephthalate material (PETyrily the ISBM process, the PET behaviour
exhibits a highly elasticity, a strain hardeningeef and a strong viscous and temperature
dependency. Therefore, much research has been aeddon the rheological behaviour of PET.
Essentially, the viscoelastic model which take extoount the strain hardening and strain rate tsffec
have been widely used for ISBM process in litemtuwrspired from Buckley modEl], we proposed
a non linear incompressible visco-hyperelastic rhtmmodel the complex constitutive behaviour of
PET [2]. Based on the experimental results of thei-biaxial tension test [3], we identified the
properties of this visco-hyperelastic behaviourthis work, we implemented the proposed model
into a finite element code developed with Matlaborbbver, the thermal behaviour modelling,
identification and simulation has also been managed

First, a numerical simulation of 2D plane stressedaas been performed involving 2 fields (global
velocity V and elastic Cauchy Green tensor Be) t&egular finite elements with quadratic and linear
interpolations have been employed for velocity el elastic left Cauchy Green tensor. Degree of
interpolation has been tested for all possible doatlons to test the Ladyzenskaia-Babushka-Brezzi
(LBB) like condition [4]. Second, an axial symmetficmulation involving 4 fields (global velocity
V, Lagrange multiplier p associated with the glolmedompressibility condition, and multiplier q
associated with the incompressibility of the etagiart) has been performed using rectangular
elements. Both simulations are compared with egaxial testing in order to reproduce the strain
hardening effect and the self-heating observed.

In order to accurately simulate the ISBM processthermo-mechanical model was used.
Mechanical and thermal equilibrium equations atly fuon linear and solved together with implicit
schemes on the current deformed configuration, kvhéc updated at each time step. Biaxial



characterization tests were used to manage theifidation of the model parameters, in order to
simulate the ISBM process.

Modelling the Viscohyperelastic Behaviour of PET

Inspired from Figiel and Buckley [1], we proposedam linear incompressible visco-hyperelastic
model with nonlinear forms for both elastic andceigs parts to represent the mechanical behaviour.
G =2Gé, o
= and o=27,D+5-pl-ql 1
= 27D, g=2yD+&-pl-ql

I |

where g is the Cauchy stress tenspx,is the symmetric part of the viscous velocity gead) the
subscript “*" denotes the deviatoric part of thesiar, 7y is the small value of the viscosity of the
Newtonian branch of the Zener like modelling usedrder to solve the ill-conditioned problegais
the elastic part of the Eulerian strain measuraddfby:
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WhereB:g is the elastic left Cauchy Green tengois a Lagrange multiplier associated to the global
incompressibility condition, ang is the multiplier associated to the incompresgipiif the elastic
part. Since the elastic and global parts are incesgible, the viscous part is supposed to be also
incompressible:

detB, =1, diw =traceD =0, diw, =traceD, =0 )

The assumption of an additive decomposition oftieland viscous velocity gradient is adopted to
describe the kinematic structure of this model:
D=D,+D, (4)

Combining equations, 1, 2 and 4 in the Oldroyda@gion of the elastic left Cauchy-Green tensor
leads to:
oB
—=,%g 8 =0 (5)
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whereG is the elastic shear modulasd/ is the ratio of the viscosity. In order to reprasthe strain
hardening and strain rate effect and temperatyverdiency, we choose two rheological functions for

elastic and viscous partS(&) andr](‘sv,é_V , T).
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and g=27,D+5- pl-ql (6)
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whereg is the equivalent elastic strain al'q_;j is the equivalent viscous strain rate.

Identification of the Material’'s Properties

One can first identify the initial shear modulugf@®m the initial slope of the global experimental
strain-stress curves which were carried out by Meatal. [3].

Table 1. The numerical value of G

Strain Rate (/s 1 2 4 8 16
Go (MPa) 7.2 8.1 7.7 7.9 8.9
Min Gy (MPa) 7.2

Max & (MPa) 8.9




As they are conducted at constant nominal stra@ dairing the biaxial tests, the global straie rat
decreases versus time. The shear modulusa@not remain constant because the elastic saten
increases too much and may exceed the global saténTherefore, we consider a Hart-Smith like
model to represent the elastic part:

G =G, expA(l, -3)°), I, =trace(B,) (7)

For the non- Ilnear viscous part of the model wdofelthe same method as in Cosson and
Chevalier [5] to represent macroscopically theisthardening effect. Instead we choose a Carreau
type law instead of the power law in the viscousieip

m-1
p=nle )i E). 1E)=bbise, ) ®
whereg,; is a reference strain rate that can be taken dquils’. The strain hardening effect is

related to theh function which increases continuously wéh We detailed the identification

procedure for thda function in [3]. The strain hardening effect igluenced by the temperature.
Thereforeh is a function ofT also:
1,(T)[1-expl- Kz, )
nohle, )= : (©)
(1 3 /£V|Im( ))

Parameter& andN do not vary much with the temperature; at the reont variables)o(T) and
eviim(T) show a significant dependence on temperature.ese the Williams-Landel-Ferry (WLF)
model for the evolution ofy(T):

-c,(rT-T,)

In(a )= ﬁ (10)

whereC; andC, are the WLF parameter§,s =90°C. We propose the evolution afin(T) in the
following way:

T —T
Eim = Eviim_ret (1"' Bé%B))j (11)
2
Wheree, ., o =&, oc- Finally, the characteristics of the PET for theseo-hyperelastic model

expressions to represent conveniently the expetahare:

Table 2. The characteristics of the PET

G(&) Go A
8 Mpa 0.001
f(gv) A a m
9.91 2 0.2
I’](é’\,’év ) T) h(E_V) o K hO N Evlim _ref
8.4 Mpa.s 3.2 -0.21 0.42 1.83
1no(T), Cy Co B, B,
eviim(T) 1.88 25.81C 0.07 111.8%C

Numerical Implementation of the Model

The four-field approach is adopted for the numérigaplementation. Some standard
manipulations lead to the following weak form'

jD GBdQ+J'D2/7DdQJ'D p,+ o)cnj V_F ds=0

[ (det =e) - J) dQ = (12)
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Where the superscript * denotes test quantities gfhis the prescribed traction fielver the
boundaryoQ. .

To solve this nonlinear problem (finite elasticpde&ements, non constant shear mod@wsnd
viscosityz) an iterative procedure (e.g. Newton-Raphson) rbestsed. A consistent linearization is
achieved with the help of the Gateaux operatahdrequi-biaxial elongation plane stress caserbefo
deriving the weak form, we can establish a relabetween the pressures and the velocity and the
elastic left Cauchy Green tensor:

G 2

033 =0= p+q=-21, (D11 + Dzz) + 3 ( BB, - 8122 B BzzJ (13)

Therefore, the searched solution is a mixed veldcandB,. formulation and the weak form over
the entire volume is given by:
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Simulation the Biaxial Plan Stress Testing

The domainQ is approximated by a set of 8-nodes isoparametdtangles. In the case of the
classical incompressible problem (a mixed veloeaity pressure formulation), the finite element
calculations are not stable, some of them showiegsure oscillations if velocity and pressure space
are not chosen carefully. To be stable, a mixeohfibation must verify consistency. The well-known
inf-sup condition or the LBB condition [4] guaraegi the stability of a finite element velocity -
pressure calculatiom our two-field approacheég andB. case, we tested different interpolations to
obtain accurate solutions. We choose the diffeskape function for the convergence test: VLBL is
the linear interpolation for bot andBe; VLBQ is the linear interpolation fof and quadratic foBg;
VQBL is the quadratic interpolation fofand linear foBe ; VQBQ is the quadratic interpolation for
bothV andB.. The error is the comparison between numericalaaradytical results of stress in the
equi-biaxial elongation case.

Opum =0,
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eﬂor:l————————
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The errors should decrease when the size of tiheecsldh decrease.
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Figure 1. The errors versus the size of the element h



We implement the proprieties identified in the nuiced simulation for the best choice:
interpolation for velocity is quadratic and lindar Be.

Figures 2a and 2b show a substantially good reptasen of the experimental results. The mean
difference does not exceed 10%.
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Figure 2. (a) The experimental data (+) and the finite eletaersults of the visco-elastic model
(lines) at 90°C under different strain rates; (f)elexperimental data (+) and the finite elements
results of the visco-elastic model (lines) at'&usder different temperatures.

Simulation of a Thermo-mechanical Model

The numerical simulation of the stretch/blow mongfof the proposed visco-hyperelastic mode

consists in solving the following set of thermo-inaaical equations on the domaih
The mechanical part is written in Eq. 14 in thenplatress case and the heat part is:

ocT -KAT =g:D

kOT th=-h(T-T,) on aQ, (16)

T=T, at t=0
where:p the mass densitg,the specific heat capacity aridis the material's conductiviti is the
heat transfer coefficient.

Table 3. The value of thermal proprieties
Parameters o (kg/m®) ¢ (J /kg.K) k (W/m.K) he (W/m2.K)
Values 1344.6 1879.8 0.1022 28.59

0Q, is the union of the top and bottom face of thecspen. No thermal exchange is assumed

between the specimen and the grips. To be conssiinthe plan stress assumptidns chosen as a
function of the plan coordinatesy and time. Consequently the weak form writes:

e(pcaQT °ds+k[_OT'OTds- [T"(o D)jsj [, T (h(r-T.)s (17)

Using an |terat|ve procedure, at each time stephmaacal and temperature balance equations are
solved together on the current deformed configanafifhen, the geometry is updated.

Figure 3 shows, that stresses obtained from tleisrtb-mechanical simulation are lower than the
experimental data. Because the temperature in@edsdout 6°C during the biaxial elongation, the
self heating effect affects the mechanical propsrtiespecially the viscosity which decreases.
Consequently, the parameters identified assumingathermal elongation must be modified to take
into account this.
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Figure 3. (a) The experimental data (the points) and the thernsohanical results; (b) The
evolution of temperature under different strainest(c) The variation of viscosity with temperature
under different strain rates.

Conclusions

A visco-hyperelastic model identified from the ebiaxial tests performed at conditions close to
ISBM process strain rate and temperature was imgiéea for numerical simulations. This finite
elements model was used to simulate the planesgtss It reproduces successfully the experimental
results and can be used to simulate uniaxial aresgcpl biaxial tests to predict the PET behaviour.

Thermal effects have also been identified and weethout non-isothermal visco-hyperelastic
simulations in order to compare with the experirabdata.

The parameters identified in the proposed modet habe adjusted because the self heating effect
is not negligible and has an important effect an\fscous part of the model. Therefore, in further
works, after this adjustment, we intend to impletmem axi-symmetric version of the
visco-hyperelastic model coupled to temperatumarder to simulate accurately the ISBM process.
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